(PID.TID 0000.0001) (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // MITgcm UV (PID.TID 0000.0001) // ========= (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // execution environment starting up... (PID.TID 0000.0001) (PID.TID 0000.0001) // MITgcmUV version: checkpoint67c (PID.TID 0000.0001) // Build user: mlosch (PID.TID 0000.0001) // Build host: baudelaire (PID.TID 0000.0001) // Build date: Fri Aug 24 08:27:30 EDT 2018 (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Execution Environment parameter file "eedata" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># Example "eedata" file (PID.TID 0000.0001) ># Lines beginning "#" are comments (PID.TID 0000.0001) ># nTx - No. threads per process in X (PID.TID 0000.0001) ># nTy - No. threads per process in Y (PID.TID 0000.0001) > &EEPARMS (PID.TID 0000.0001) > nTx=1, (PID.TID 0000.0001) > nTy=1, (PID.TID 0000.0001) > / (PID.TID 0000.0001) ># Note: Some systems use & as the namelist terminator (as shown here). (PID.TID 0000.0001) ># Other systems use a / character. (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Computational Grid Specification ( see files "SIZE.h" ) (PID.TID 0000.0001) // ( and "eedata" ) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) nPx = 1 ; /* No. processes in X */ (PID.TID 0000.0001) nPy = 1 ; /* No. processes in Y */ (PID.TID 0000.0001) nSx = 2 ; /* No. tiles in X per process */ (PID.TID 0000.0001) nSy = 2 ; /* No. tiles in Y per process */ (PID.TID 0000.0001) sNx = 40 ; /* Tile size in X */ (PID.TID 0000.0001) sNy = 21 ; /* Tile size in Y */ (PID.TID 0000.0001) OLx = 3 ; /* Tile overlap distance in X */ (PID.TID 0000.0001) OLy = 3 ; /* Tile overlap distance in Y */ (PID.TID 0000.0001) nTx = 1 ; /* No. threads in X per process */ (PID.TID 0000.0001) nTy = 1 ; /* No. threads in Y per process */ (PID.TID 0000.0001) Nr = 1 ; /* No. levels in the vertical */ (PID.TID 0000.0001) Nx = 80 ; /* Total domain size in X ( = nPx*nSx*sNx ) */ (PID.TID 0000.0001) Ny = 42 ; /* Total domain size in Y ( = nPy*nSy*sNy ) */ (PID.TID 0000.0001) nTiles = 4 ; /* Total no. tiles per process ( = nSx*nSy ) */ (PID.TID 0000.0001) nProcs = 1 ; /* Total no. processes ( = nPx*nPy ) */ (PID.TID 0000.0001) nThreads = 1 ; /* Total no. threads per process ( = nTx*nTy ) */ (PID.TID 0000.0001) usingMPI = F ; /* Flag used to control whether MPI is in use */ (PID.TID 0000.0001) /* note: To execute a program with MPI calls */ (PID.TID 0000.0001) /* it must be launched appropriately e.g */ (PID.TID 0000.0001) /* "mpirun -np 64 ......" */ (PID.TID 0000.0001) useCoupler= F ;/* Flag used to control communications with */ (PID.TID 0000.0001) /* other model components, through a coupler */ (PID.TID 0000.0001) debugMode = F ; /* print debug msg. (sequence of S/R calls) */ (PID.TID 0000.0001) printMapIncludesZeros= F ; /* print zeros in Std.Output maps */ (PID.TID 0000.0001) maxLengthPrt1D= 65 /* maxLength of 1D array printed to StdOut */ (PID.TID 0000.0001) (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // Mapping of tiles to threads (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // -o- Thread 1, tiles ( 1: 2, 1: 2) (PID.TID 0000.0001) (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // Tile <-> Tile connectvity table (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // Tile number: 000001 (process no. = 000000) (PID.TID 0000.0001) // WEST: Tile = 000002, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000001 (PID.TID 0000.0001) // EAST: Tile = 000002, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000001 (PID.TID 0000.0001) // SOUTH: Tile = 000003, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000002 (PID.TID 0000.0001) // NORTH: Tile = 000003, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000002 (PID.TID 0000.0001) // Tile number: 000002 (process no. = 000000) (PID.TID 0000.0001) // WEST: Tile = 000001, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000001 (PID.TID 0000.0001) // EAST: Tile = 000001, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000001 (PID.TID 0000.0001) // SOUTH: Tile = 000004, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000002 (PID.TID 0000.0001) // NORTH: Tile = 000004, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000002 (PID.TID 0000.0001) // Tile number: 000003 (process no. = 000000) (PID.TID 0000.0001) // WEST: Tile = 000004, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000002 (PID.TID 0000.0001) // EAST: Tile = 000004, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000002 (PID.TID 0000.0001) // SOUTH: Tile = 000001, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000001 (PID.TID 0000.0001) // NORTH: Tile = 000001, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000001 (PID.TID 0000.0001) // Tile number: 000004 (process no. = 000000) (PID.TID 0000.0001) // WEST: Tile = 000003, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000002 (PID.TID 0000.0001) // EAST: Tile = 000003, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000002 (PID.TID 0000.0001) // SOUTH: Tile = 000002, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000001 (PID.TID 0000.0001) // NORTH: Tile = 000002, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000001 (PID.TID 0000.0001) (PID.TID 0000.0001) INI_PARMS: opening model parameter file "data" (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># ==================== (PID.TID 0000.0001) ># | Model parameters | (PID.TID 0000.0001) ># ==================== (PID.TID 0000.0001) ># (PID.TID 0000.0001) > &PARM01 (PID.TID 0000.0001) > tRef= -1.62, (PID.TID 0000.0001) > sRef= 30., (PID.TID 0000.0001) > no_slip_sides=.FALSE., (PID.TID 0000.0001) > no_slip_bottom=.TRUE., (PID.TID 0000.0001) >#bottomDragLinear=1.E-3, (PID.TID 0000.0001) > bottomDragQuadratic=5.E-3, (PID.TID 0000.0001) > viscAr=3.E-2, (PID.TID 0000.0001) > viscAh=3.E+2, (PID.TID 0000.0001) > HeatCapacity_Cp = 3986., (PID.TID 0000.0001) > rhoNil = 1030., (PID.TID 0000.0001) > rhoConstFresh = 1000., (PID.TID 0000.0001) > eosType='LINEAR', (PID.TID 0000.0001) > tAlpha=2.E-4, (PID.TID 0000.0001) > sBeta= 0., (PID.TID 0000.0001) > staggerTimeStep=.TRUE., (PID.TID 0000.0001) > saltStepping=.FALSE., (PID.TID 0000.0001) > tempStepping=.FALSE., (PID.TID 0000.0001) >#tempAdvection=.FALSE., (PID.TID 0000.0001) > momStepping=.FALSE., (PID.TID 0000.0001) > f0=0.e-4, (PID.TID 0000.0001) > beta=0., (PID.TID 0000.0001) > useJamartWetPoints=.TRUE., (PID.TID 0000.0001) > rigidLid=.FALSE., (PID.TID 0000.0001) > implicitFreeSurface=.TRUE., (PID.TID 0000.0001) >#exactConserv=.TRUE., (PID.TID 0000.0001) > convertFW2Salt=-1, (PID.TID 0000.0001) > readBinaryPrec=64, (PID.TID 0000.0001) > writeBinaryPrec=64, (PID.TID 0000.0001) >#globalFiles=.TRUE., (PID.TID 0000.0001) > useSingleCpuIO=.TRUE., (PID.TID 0000.0001) >#debugLevel=4, (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># Elliptic solver parameters (PID.TID 0000.0001) > &PARM02 (PID.TID 0000.0001) > cg2dMaxIters=500, (PID.TID 0000.0001) > cg2dTargetResidual=1.E-12, (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># Time stepping parameters (PID.TID 0000.0001) > &PARM03 (PID.TID 0000.0001) > startTime=0.0, (PID.TID 0000.0001) >#endTime=432000., (PID.TID 0000.0001) > deltaT=1800.0, (PID.TID 0000.0001) > abEps=0.1, (PID.TID 0000.0001) > forcing_In_AB = .FALSE., (PID.TID 0000.0001) > pChkptFreq=3600000., (PID.TID 0000.0001) > dumpFreq = 432000., (PID.TID 0000.0001) > monitorFreq=864000., (PID.TID 0000.0001) > monitorSelect=2, (PID.TID 0000.0001) > nTimeSteps=12, (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># Gridding parameters (PID.TID 0000.0001) > &PARM04 (PID.TID 0000.0001) > usingCartesianGrid=.TRUE., (PID.TID 0000.0001) > delX=80*5.E3, (PID.TID 0000.0001) > delY=42*5.E3, (PID.TID 0000.0001) > ygOrigin=-110.E3, (PID.TID 0000.0001) >#delR= 20., 30., 50., (PID.TID 0000.0001) > delR= 10., (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># Input datasets (PID.TID 0000.0001) > &PARM05 (PID.TID 0000.0001) > bathyFile = 'bathy_3c.bin', (PID.TID 0000.0001) > uVelInitFile = 'uVel_3c0.bin', (PID.TID 0000.0001) > vVelInitFile = 'vVel_3c0.bin', (PID.TID 0000.0001) > pSurfInitFile = 'eta_3c0.bin', (PID.TID 0000.0001) >#uVelInitFile = 'uVel_3c1.bin', (PID.TID 0000.0001) >#vVelInitFile = 'vVel_3c1.bin', (PID.TID 0000.0001) >#pSurfInitFile = 'eta_3c1.bin', (PID.TID 0000.0001) >#bathyFile = 'channel.bin', (PID.TID 0000.0001) >#uVelInitFile = 'const+40.bin', (PID.TID 0000.0001) >#vVelInitFile = 'const-10.bin', (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) INI_PARMS ; starts to read PARM01 (PID.TID 0000.0001) INI_PARMS ; read PARM01 : OK (PID.TID 0000.0001) INI_PARMS ; starts to read PARM02 (PID.TID 0000.0001) INI_PARMS ; read PARM02 : OK (PID.TID 0000.0001) INI_PARMS ; starts to read PARM03 (PID.TID 0000.0001) INI_PARMS ; read PARM03 : OK (PID.TID 0000.0001) INI_PARMS ; starts to read PARM04 (PID.TID 0000.0001) INI_PARMS ; read PARM04 : OK (PID.TID 0000.0001) INI_PARMS ; starts to read PARM05 (PID.TID 0000.0001) INI_PARMS ; read PARM05 : OK (PID.TID 0000.0001) INI_PARMS: finished reading file "data" (PID.TID 0000.0001) PACKAGES_BOOT: opening data.pkg (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.pkg (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.pkg" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># Packages (PID.TID 0000.0001) > &PACKAGES (PID.TID 0000.0001) > useEXF = .TRUE., (PID.TID 0000.0001) > useSEAICE = .TRUE., (PID.TID 0000.0001) > useThSIce = .TRUE., (PID.TID 0000.0001) > useDiagnostics=.TRUE., (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) PACKAGES_BOOT: finished reading data.pkg (PID.TID 0000.0001) PACKAGES_BOOT: On/Off package Summary -------- pkgs with a standard "usePKG" On/Off switch in "data.pkg": -------- pkg/exf compiled and used ( useEXF = T ) pkg/seaice compiled and used ( useSEAICE = T ) pkg/thsice compiled and used ( useThSIce = T ) pkg/diagnostics compiled and used ( useDiagnostics = T ) -------- pkgs without standard "usePKG" On/Off switch in "data.pkg": -------- pkg/generic_advdiff compiled but not used ( useGAD = F ) pkg/mom_common compiled but not used ( momStepping = F ) pkg/mom_vecinv compiled but not used ( +vectorInvariantMomentum = F ) pkg/mom_fluxform compiled but not used ( & not vectorInvariantMom = F ) pkg/monitor compiled and used ( monitorFreq > 0. = T ) pkg/debug compiled but not used ( debugMode = F ) pkg/rw compiled and used pkg/mdsio compiled and used (PID.TID 0000.0001) PACKAGES_BOOT: End of package Summary (PID.TID 0000.0001) (PID.TID 0000.0001) EXF_READPARMS: opening data.exf (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.exf (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.exf" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) ># External Forcing Data (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) > &EXF_NML_01 (PID.TID 0000.0001) ># (PID.TID 0000.0001) > useExfCheckRange = .TRUE., (PID.TID 0000.0001) >#repeatPeriod = 2635200.0, (PID.TID 0000.0001) > exf_iprec = 64, (PID.TID 0000.0001) > exf_monFreq = 86400000., (PID.TID 0000.0001) >#useRelativeWind = .TRUE., (PID.TID 0000.0001) ># (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) > &EXF_NML_02 (PID.TID 0000.0001) ># (PID.TID 0000.0001) > atempperiod = 0.0, (PID.TID 0000.0001) > aqhperiod = 0.0, (PID.TID 0000.0001) ># (PID.TID 0000.0001) > uwindperiod = 0.0, (PID.TID 0000.0001) > vwindperiod = 0.0, (PID.TID 0000.0001) ># (PID.TID 0000.0001) > precipperiod = 0.0, (PID.TID 0000.0001) > swdownperiod = 0.0, (PID.TID 0000.0001) > lwdownperiod = 0.0, (PID.TID 0000.0001) ># (PID.TID 0000.0001) > climsstperiod = 0.0, (PID.TID 0000.0001) >#climsstTauRelax = 2592000., (PID.TID 0000.0001) > climsssperiod = 0.0, (PID.TID 0000.0001) >#climsssTauRelax = 2592000., (PID.TID 0000.0001) ># (PID.TID 0000.0001) >#atempfile = 'tair_4x.bin', (PID.TID 0000.0001) >#aqhfile = 'qa70_4x.bin', (PID.TID 0000.0001) > uwindfile = 'windx.bin', (PID.TID 0000.0001) >#vwindfile = 'windy.bin', (PID.TID 0000.0001) >#precipfile = 'const_00.bin', (PID.TID 0000.0001) >#lwdownfile = 'dlw_250.bin', (PID.TID 0000.0001) >#swdownfile = 'dsw_100.bin', (PID.TID 0000.0001) >#runoffFile = ' ' (PID.TID 0000.0001) >#climsstfile = 'tocn.bin', (PID.TID 0000.0001) >#climsssfile = 'socn.bin', (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) > &EXF_NML_03 (PID.TID 0000.0001) >#exf_offset_atemp=5; (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) ># old open64 compiler (4.2.1) cannot skip this namelist to read in the next one; (PID.TID 0000.0001) ># comment out this namelist (not read). (PID.TID 0000.0001) >#&EXF_NML_04 (PID.TID 0000.0001) >#& (PID.TID 0000.0001) > (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) > &EXF_NML_OBCS (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) EXF_READPARMS: reading EXF_NML_01 (PID.TID 0000.0001) EXF_READPARMS: reading EXF_NML_02 (PID.TID 0000.0001) EXF_READPARMS: reading EXF_NML_03 (PID.TID 0000.0001) EXF_READPARMS: finished reading data.exf (PID.TID 0000.0001) (PID.TID 0000.0001) SEAICE_READPARMS: opening data.seaice (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.seaice (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.seaice" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># SEAICE parameters (PID.TID 0000.0001) > &SEAICE_PARM01 (PID.TID 0000.0001) > usePW79thermodynamics=.FALSE., (PID.TID 0000.0001) > SEAICE_strength = 2.6780e+04, (PID.TID 0000.0001) ># JFNK-convergence is better with this old default value (2 times the new (PID.TID 0000.0001) ># default) probably because the ice starts to move earlier (PID.TID 0000.0001) > SEAICE_drag = 0.002, (PID.TID 0000.0001) ># (PID.TID 0000.0001) > OCEAN_drag = 8.1541e-04, (PID.TID 0000.0001) > SEAICE_no_Slip = .FALSE., (PID.TID 0000.0001) ># JFNK solver parameters (PID.TID 0000.0001) > SEAICEetaZmethod = 3, (PID.TID 0000.0001) > SEAICEuseJFNK = .TRUE., (PID.TID 0000.0001) > SEAICEpreconLinIter = 10, (PID.TID 0000.0001) > SEAICEnonLinIterMax = 200, (PID.TID 0000.0001) > SEAICElinearIterMax = 50, (PID.TID 0000.0001) > SEAICEnonLinTol = 1.e-09, (PID.TID 0000.0001) > SEAICE_JFNK_lsIter = 0, (PID.TID 0000.0001) > JFNKres_tFac = 0.5, (PID.TID 0000.0001) > SEAICE_JFNKalpha = 1.5, (PID.TID 0000.0001) ># end of JFNK solver parameters (PID.TID 0000.0001) >#- to use seaice-advection from pkg/seaice, uncomment following 4 lines: (PID.TID 0000.0001) >#SEAICEadvScheme = 77, # this is the new default (PID.TID 0000.0001) >#AreaFile = 'const100.bin', (PID.TID 0000.0001) >#HeffFile = 'const+20.bin', (PID.TID 0000.0001) >#HsnowFile = 'const_00.bin', (PID.TID 0000.0001) > SEAICEwriteState = .TRUE., (PID.TID 0000.0001) > SEAICE_monFreq = 1800., (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) > &SEAICE_PARM03 (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) SEAICE_READPARMS: finished reading data.seaice (PID.TID 0000.0001) THSICE_READPARMS: opening data.ice (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.ice (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.ice" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) > &THSICE_CONST (PID.TID 0000.0001) >#- with fractional ice: (PID.TID 0000.0001) > iceMaskMin = 0.001, (PID.TID 0000.0001) > hiMax = 10., (PID.TID 0000.0001) > hsMax = 10., (PID.TID 0000.0001) > dhSnowLin = 0.1, (PID.TID 0000.0001) > fracEnFreez= 0.4, (PID.TID 0000.0001) > hNewIceMax = 1., (PID.TID 0000.0001) > albIceMax = 0.6, (PID.TID 0000.0001) > albIceMin = 0.6, (PID.TID 0000.0001) >#albColdSnow= 0.85, (PID.TID 0000.0001) >#albWarmSnow= 0.60, (PID.TID 0000.0001) >#tempSnowAlb= -5., (PID.TID 0000.0001) >#albOldSnow = 0.60, (PID.TID 0000.0001) >#hNewSnowAge= 2.e-3, (PID.TID 0000.0001) >#snowAgTime = 4320000., (PID.TID 0000.0001) >#hAlbIce = 0.44, (PID.TID 0000.0001) >#hAlbSnow = 0.15, (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) > &THSICE_PARM01 (PID.TID 0000.0001) >#StartIceModel=1, (PID.TID 0000.0001) > thSIce_skipThermo=.TRUE., (PID.TID 0000.0001) > thSIceAdvScheme=77, (PID.TID 0000.0001) >#thSIce_diffK =800., (PID.TID 0000.0001) > stressReduction=0., (PID.TID 0000.0001) > thSIceFract_InitFile='const100.bin', (PID.TID 0000.0001) > thSIceThick_InitFile='const+20.bin', (PID.TID 0000.0001) >#thSIce_diagFreq=2592000., (PID.TID 0000.0001) > thSIce_monFreq =21600., (PID.TID 0000.0001) > thSIce_monFreq =1800., (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) (PID.TID 0000.0001) THSICE_READPARMS: read THSICE_CONST (PID.TID 0000.0001) THSICE_READPARMS: read THSICE_PARM01 ThSI: rhos = 3.3000000000000E+02 ThSI: rhoi = 9.0000000000000E+02 ThSI: rhosw = 1.0300000000000E+03 ThSI: rhofw = 1.0000000000000E+03 ThSI: floodFac = 3.9393939393939E-01 ThSI: cpIce = 2.1060000000000E+03 ThSI: cpWater = 3.9860000000000E+03 ThSI: kIce = 2.0300000000000E+00 ThSI: kSnow = 3.0000000000000E-01 ThSI: bMeltCoef = 6.0000000000000E-03 ThSI: Lfresh = 3.3400000000000E+05 ThSI: qsnow = 3.3400000000000E+05 ThSI: albColdSnow = 8.5000000000000E-01 ThSI: albWarmSnow = 7.0000000000000E-01 ThSI: tempSnowAlb = -1.0000000000000E+01 ThSI: albOldSnow = 5.5000000000000E-01 ThSI: hNewSnowAge = 2.0000000000000E-03 ThSI: snowAgTime = 4.3200000000000E+06 ThSI: albIceMax = 6.0000000000000E-01 ThSI: albIceMin = 6.0000000000000E-01 ThSI: hAlbIce = 5.0000000000000E-01 ThSI: hAlbSnow = 3.0000000000000E-01 ThSI: i0swFrac = 3.0000000000000E-01 ThSI: ksolar = 1.5000000000000E+00 ThSI: dhSnowLin = 1.0000000000000E-01 ThSI: saltIce = 4.0000000000000E+00 ThSI: S_winton = 1.0000000000000E+00 ThSI: mu_Tf = 5.4000000000000E-02 ThSI: Tf0kel = 2.7315000000000E+02 ThSI: Tmlt1 = -5.4000000000000E-02 ThSI: Terrmax = 5.0000000000000E-01 ThSI: nitMaxTsf = 20 ThSI: hIceMin = 1.0000000000000E-02 ThSI: hiMax = 1.0000000000000E+01 ThSI: hsMax = 1.0000000000000E+01 ThSI: iceMaskMax = 1.0000000000000E+00 ThSI: iceMaskMin = 1.0000000000000E-03 ThSI: fracEnMelt = 4.0000000000000E-01 ThSI: fracEnFreez = 4.0000000000000E-01 ThSI: hThinIce = 2.0000000000000E-01 ThSI: hThickIce = 2.5000000000000E+00 ThSI: hNewIceMax = 1.0000000000000E+00 ThSI: stressReduction = 0.0000000000000E+00 ThSI: thSIce_skipThermo = T ThSI: thSIceAdvScheme = 77 ThSI: thSIceBalanceAtmFW= 0 ThSI: thSIce_diffK = 0.0000000000000E+00 ThSI: thSIce_deltaT = 1.8000000000000E+03 ThSI: ocean_deltaT = 1.8000000000000E+03 ThSI: stepFwd_oceMxL = F ThSI: tauRelax_MxL = 0.0000000000000E+00 ThSI: tauRelax_MxL_salt = 0.0000000000000E+00 ThSI: hMxL_default = 5.0000000000000E+01 ThSI: sMxL_default = 3.5000000000000E+01 ThSI: vMxL_default = 5.0000000000000E-02 ThSI: thSIce_taveFreq = 0.0000000000000E+00 ThSI: thSIce_diagFreq = 4.3200000000000E+05 ThSI: thSIce_monFreq = 1.8000000000000E+03 ThSI: startIceModel = 0 (PID.TID 0000.0001) DIAGNOSTICS_READPARMS: opening data.diagnostics (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.diagnostics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.diagnostics" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># Diagnostic Package Choices (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) ># dumpAtLast (logical): always write output at the end of simulation (default=F) (PID.TID 0000.0001) ># diag_mnc (logical): write to NetCDF files (default=useMNC) (PID.TID 0000.0001) >#--for each output-stream: (PID.TID 0000.0001) ># fileName(n) : prefix of the output file name (max 80c long) for outp.stream n (PID.TID 0000.0001) ># frequency(n):< 0 : write snap-shot output every |frequency| seconds (PID.TID 0000.0001) ># > 0 : write time-average output every frequency seconds (PID.TID 0000.0001) ># timePhase(n) : write at time = timePhase + multiple of |frequency| (PID.TID 0000.0001) ># averagingFreq : frequency (in s) for periodic averaging interval (PID.TID 0000.0001) ># averagingPhase : phase (in s) for periodic averaging interval (PID.TID 0000.0001) ># repeatCycle : number of averaging intervals in 1 cycle (PID.TID 0000.0001) ># levels(:,n) : list of levels to write to file (Notes: declared as REAL) (PID.TID 0000.0001) ># when this entry is missing, select all common levels of this list (PID.TID 0000.0001) ># fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n (PID.TID 0000.0001) ># (see "available_diagnostics.log" file for the full list of diags) (PID.TID 0000.0001) ># missing_value(n) : missing value for real-type fields in output file "n" (PID.TID 0000.0001) ># fileFlags(n) : specific code (8c string) for output file "n" (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) ># This example dumps EXF diagnostics as snapshot after 10 time-steps (PID.TID 0000.0001) ># Note: EXF air-sea fluxes over Sea-Ice are wrong (PID.TID 0000.0001) > &DIAGNOSTICS_LIST (PID.TID 0000.0001) > dumpAtLast = .TRUE., (PID.TID 0000.0001) >#-- (PID.TID 0000.0001) > fields(1:11,1) = 'EXFtaux ','EXFtauy ','EXFqnet ','EXFempmr', (PID.TID 0000.0001) > 'EXFhl ','EXFhs ','EXFswnet','EXFlwnet', (PID.TID 0000.0001) > 'EXFuwind','EXFvwind','EXFatemp', (PID.TID 0000.0001) ># fileName(1) = 'exfDiag', (PID.TID 0000.0001) > frequency(1) = 86400., (PID.TID 0000.0001) > (PID.TID 0000.0001) > fields(1:5,2) = 'SIuice ','SIvice ','SIheff ', (PID.TID 0000.0001) > 'SI_Fract','SI_Thick', (PID.TID 0000.0001) ># fileName(2) = 'iceDiag', (PID.TID 0000.0001) > frequency(2) = 86400., (PID.TID 0000.0001) > missing_value(2) = -999., (PID.TID 0000.0001) > (PID.TID 0000.0001) > fields(1:5,3) = 'SIuice ','SIvice ','SIheff ', (PID.TID 0000.0001) > 'SI_Fract','SI_Thick', (PID.TID 0000.0001) > fileName(3) = 'snapshot', (PID.TID 0000.0001) > frequency(3) = -86400., (PID.TID 0000.0001) > timePhase(3) = 3600., (PID.TID 0000.0001) > missing_value(3) = -999., (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) ># Parameter for Diagnostics of per level statistics: (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) ># diagSt_mnc (logical): write stat-diags to NetCDF files (default=diag_mnc) (PID.TID 0000.0001) ># diagSt_regMaskFile : file containing the region-mask to read-in (PID.TID 0000.0001) ># nSetRegMskFile : number of region-mask sets within the region-mask file (PID.TID 0000.0001) ># set_regMask(i) : region-mask set-index that identifies the region "i" (PID.TID 0000.0001) ># val_regMask(i) : region "i" identifier value in the region mask (PID.TID 0000.0001) >#--for each output-stream: (PID.TID 0000.0001) ># stat_fName(n) : prefix of the output file name (max 80c long) for outp.stream n (PID.TID 0000.0001) ># stat_freq(n):< 0 : write snap-shot output every |stat_freq| seconds (PID.TID 0000.0001) ># > 0 : write time-average output every stat_freq seconds (PID.TID 0000.0001) ># stat_phase(n) : write at time = stat_phase + multiple of |stat_freq| (PID.TID 0000.0001) ># stat_region(:,n) : list of "regions" (default: 1 region only=global) (PID.TID 0000.0001) ># stat_fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n (PID.TID 0000.0001) ># (see "available_diagnostics.log" file for the full list of diags) (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) > &DIAG_STATIS_PARMS (PID.TID 0000.0001) >#stat_fields(1:5,1) = 'SI_Fract','SI_Thick','SI_SnowH', (PID.TID 0000.0001) >#stat_fields(1:5,1) = 'SIarea ','SIheff ','SIhsnow ', (PID.TID 0000.0001) > stat_fields(1:6,1) = 'SI_Fract','SI_Thick', (PID.TID 0000.0001) > 'SIarea ','SIheff ', (PID.TID 0000.0001) > 'SIuice ','SIvice ', (PID.TID 0000.0001) > stat_fName(1) = 'iceStDiag', (PID.TID 0000.0001) > stat_freq(1) = 7200., (PID.TID 0000.0001) > stat_phase(1) = 1800., (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) S/R DIAGNOSTICS_READPARMS, read namelist "diagnostics_list": start (PID.TID 0000.0001) S/R DIAGNOSTICS_READPARMS, read namelist "diagnostics_list": OK (PID.TID 0000.0001) S/R DIAGNOSTICS_READPARMS, read namelist "DIAG_STATIS_PARMS": start (PID.TID 0000.0001) S/R DIAGNOSTICS_READPARMS, read namelist "DIAG_STATIS_PARMS": OK (PID.TID 0000.0001) DIAGNOSTICS_READPARMS: global parameter summary: (PID.TID 0000.0001) dumpAtLast = /* always write time-ave diags at the end */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) diag_mnc = /* write NetCDF output files */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useMissingValue = /* put MissingValue where mask = 0 */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) diagCG_maxIters = /* max number of iters in diag_cg2d */ (PID.TID 0000.0001) 500 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diagCG_resTarget = /* residual target for diag_cg2d */ (PID.TID 0000.0001) 1.000000000000000E-12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diagCG_pcOffDFac = /* preconditioner off-diagonal factor */ (PID.TID 0000.0001) 9.611687812379854E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ----------------------------------------------------- (PID.TID 0000.0001) DIAGNOSTICS_READPARMS: active diagnostics summary: (PID.TID 0000.0001) ----------------------------------------------------- (PID.TID 0000.0001) Creating Output Stream: snapshot (PID.TID 0000.0001) Output Frequency: -86400.000000 ; Phase: 3600.000000 (PID.TID 0000.0001) Averaging Freq.: 0.000000 , Phase: 0.000000 , Cycle: 1 (PID.TID 0000.0001) missing value: -9.990000000000E+02 (PID.TID 0000.0001) Levels: will be set later (PID.TID 0000.0001) Fields: SIuice SIvice SIheff SI_Fract SI_Thick (PID.TID 0000.0001) ----------------------------------------------------- (PID.TID 0000.0001) DIAGNOSTICS_READPARMS: statistics diags. summary: (PID.TID 0000.0001) Creating Stats. Output Stream: iceStDiag (PID.TID 0000.0001) Output Frequency: 7200.000000 ; Phase: 1800.000000 (PID.TID 0000.0001) Regions: 0 (PID.TID 0000.0001) Fields: SI_Fract SI_Thick SIarea SIheff SIuice SIvice (PID.TID 0000.0001) ----------------------------------------------------- (PID.TID 0000.0001) (PID.TID 0000.0001) SET_PARMS: done (PID.TID 0000.0001) Enter INI_VERTICAL_GRID: setInterFDr= T ; setCenterDr= F (PID.TID 0000.0001) %MON XC_max = 3.9750000000000E+05 (PID.TID 0000.0001) %MON XC_min = 2.5000000000000E+03 (PID.TID 0000.0001) %MON XC_mean = 2.0000000000000E+05 (PID.TID 0000.0001) %MON XC_sd = 1.1546103238755E+05 (PID.TID 0000.0001) %MON XG_max = 3.9500000000000E+05 (PID.TID 0000.0001) %MON XG_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON XG_mean = 1.9750000000000E+05 (PID.TID 0000.0001) %MON XG_sd = 1.1546103238755E+05 (PID.TID 0000.0001) %MON DXC_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXC_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXC_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXC_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DXF_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXF_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXF_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXF_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DXG_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXG_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXG_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXG_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DXV_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXV_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXV_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXV_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON YC_max = 9.7500000000000E+04 (PID.TID 0000.0001) %MON YC_min = -1.0750000000000E+05 (PID.TID 0000.0001) %MON YC_mean = -5.0000000000000E+03 (PID.TID 0000.0001) %MON YC_sd = 6.0604592785256E+04 (PID.TID 0000.0001) %MON YG_max = 9.5000000000000E+04 (PID.TID 0000.0001) %MON YG_min = -1.1000000000000E+05 (PID.TID 0000.0001) %MON YG_mean = -7.5000000000000E+03 (PID.TID 0000.0001) %MON YG_sd = 6.0604592785256E+04 (PID.TID 0000.0001) %MON DYC_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYC_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYC_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYC_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DYF_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYF_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYF_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYF_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DYG_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYG_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYG_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYG_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DYU_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYU_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYU_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYU_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON RA_max = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RA_min = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RA_mean = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RA_sd = 3.7252902984619E-09 (PID.TID 0000.0001) %MON RAW_max = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAW_min = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAW_mean = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAW_sd = 3.7252902984619E-09 (PID.TID 0000.0001) %MON RAS_max = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAS_min = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAS_mean = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAS_sd = 3.7252902984619E-09 (PID.TID 0000.0001) %MON RAZ_max = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAZ_min = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAZ_mean = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAZ_sd = 3.7252902984619E-09 (PID.TID 0000.0001) %MON AngleCS_max = 1.0000000000000E+00 (PID.TID 0000.0001) %MON AngleCS_min = 1.0000000000000E+00 (PID.TID 0000.0001) %MON AngleCS_mean = 1.0000000000000E+00 (PID.TID 0000.0001) %MON AngleCS_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON AngleSN_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON AngleSN_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON AngleSN_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON AngleSN_sd = 0.0000000000000E+00 (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: bathy_3c.bin (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field Model R_low (ini_masks_etc) (PID.TID 0000.0001) // CMIN = -1.000000000000000E+01 (PID.TID 0000.0001) // CMAX = -1.000000000000000E+01 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field Model Ro_surf (ini_masks_etc) (PID.TID 0000.0001) // CMIN = 1.000000000000000E+32 (PID.TID 0000.0001) // CMAX = -1.000000000000000E+32 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field hFacC at iteration 0 (PID.TID 0000.0001) // CMIN = 1.000000000000000E+00 (PID.TID 0000.0001) // CMAX = 1.000000000000000E+00 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field hFacW at iteration 0 (PID.TID 0000.0001) // CMIN = 1.000000000000000E+00 (PID.TID 0000.0001) // CMAX = 1.000000000000000E+00 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field hFacS at iteration 0 (PID.TID 0000.0001) // CMIN = 1.000000000000000E+00 (PID.TID 0000.0001) // CMAX = 1.000000000000000E+00 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) GAD_INIT_FIXED: GAD_OlMinSize= 0 0 1 (PID.TID 0000.0001) (PID.TID 0000.0001) // =================================== (PID.TID 0000.0001) // GAD parameters : (PID.TID 0000.0001) // =================================== (PID.TID 0000.0001) tempAdvScheme = /* Temp. Horiz.Advection scheme selector */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempVertAdvScheme = /* Temp. Vert. Advection scheme selector */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempMultiDimAdvec = /* use Muti-Dim Advec method for Temp */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempSOM_Advection = /* use 2nd Order Moment Advection for Temp */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) AdamsBashforthGt = /* apply Adams-Bashforth extrapolation on Gt */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) AdamsBashforth_T = /* apply Adams-Bashforth extrapolation on Temp */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltAdvScheme = /* Salt. Horiz.advection scheme selector */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltVertAdvScheme = /* Salt. Vert. Advection scheme selector */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltMultiDimAdvec = /* use Muti-Dim Advec method for Salt */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltSOM_Advection = /* use 2nd Order Moment Advection for Salt */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) AdamsBashforthGs = /* apply Adams-Bashforth extrapolation on Gs */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) AdamsBashforth_S = /* apply Adams-Bashforth extrapolation on Salt */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) // =================================== (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // External forcing (EXF) configuration >>> START <<< (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) EXF general parameters: (PID.TID 0000.0001) (PID.TID 0000.0001) exf_iprec = /* exf file precision */ (PID.TID 0000.0001) 64 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useExfYearlyFields = /* add extension _YEAR to input file names */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) twoDigitYear = /* use 2-digit year extension */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useExfCheckRange = /* check for fields range */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_debugLev = /* select EXF-debug printing level */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_monFreq = /* EXF monitor frequency [ s ] */ (PID.TID 0000.0001) 8.640000000000000E+07 (PID.TID 0000.0001) ; (PID.TID 0000.0001) repeatPeriod = /* period for cycling forcing dataset [ s ] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) climTempFreeze= /* Minimum climatological temperature [deg.C] */ (PID.TID 0000.0001) -1.900000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) windStressMax = /* Maximum absolute windstress [ Pa ] */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) stressIsOnCgrid = /* set u,v_stress on Arakawa C-grid */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) rotateStressOnAgrid = /* rotate u,v_stress on Arakawa A-grid */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) cen2kel = /* conversion of deg. Centigrade to Kelvin [K] */ (PID.TID 0000.0001) 2.731500000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravity_mks= /* gravitational acceleration [m/s^2] */ (PID.TID 0000.0001) 9.810000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) atmrho = /* mean atmospheric density [kg/m^3] */ (PID.TID 0000.0001) 1.200000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) atmcp = /* mean atmospheric specific heat [J/kg/K] */ (PID.TID 0000.0001) 1.005000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) flamb = /* latent heat of evaporation [J/kg] */ (PID.TID 0000.0001) 2.500000000000000E+06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) flami = /* latent heat of pure-ice melting [J/kg] */ (PID.TID 0000.0001) 3.340000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cvapor_fac = /* const. for Saturation calculation [?] */ (PID.TID 0000.0001) 6.403800000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cvapor_exp = /* const. for Saturation calculation [?] */ (PID.TID 0000.0001) 5.107400000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cvapor_fac_ice= /* const. for Saturation calculation [?] */ (PID.TID 0000.0001) 1.163780000000000E+07 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cvapor_exp_ice= /* const. for Saturation calculation [?] */ (PID.TID 0000.0001) 5.897800000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) humid_fac = /* humidity coef. in virtual temp. [(kg/kg)^-1] */ (PID.TID 0000.0001) 6.060000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gamma_blk = /* adiabatic lapse rate [?] */ (PID.TID 0000.0001) 1.000000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltsat = /* reduction of Qsat over salty water [-] */ (PID.TID 0000.0001) 9.800000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) noNegativeEvap = /* prevent negative Evaporation */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) sstExtrapol = /* extrapolation coeff from lev. 1 & 2 to surf [-] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cDrag_1 = /* coef used in drag calculation [?] */ (PID.TID 0000.0001) 2.700000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cDrag_2 = /* coef used in drag calculation [?] */ (PID.TID 0000.0001) 1.420000000000000E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cDrag_3 = /* coef used in drag calculation [?] */ (PID.TID 0000.0001) 7.640000000000000E-05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cStanton_1 = /* coef used in Stanton number calculation [?] */ (PID.TID 0000.0001) 3.270000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cStanton_2 = /* coef used in Stanton number calculation [?] */ (PID.TID 0000.0001) 1.800000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cDalton = /* coef used in Dalton number calculation [?] */ (PID.TID 0000.0001) 3.460000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_scal_BulkCdn= /* Drag coefficient scaling factor [-] */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) zolmin = /* minimum stability parameter [?] */ (PID.TID 0000.0001) -1.000000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) psim_fac = /* coef used in turbulent fluxes calculation [-] */ (PID.TID 0000.0001) 5.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) zref = /* reference height [ m ] */ (PID.TID 0000.0001) 1.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hu = /* height of mean wind [ m ] */ (PID.TID 0000.0001) 1.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ht = /* height of mean temperature [ m ] */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hq = /* height of mean spec.humidity [ m ] */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) uMin = /* minimum wind speed [m/s] */ (PID.TID 0000.0001) 5.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useStabilityFct_overIce= /* transfert Coeffs over sea-ice depend on stability */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_iceCd = /* drag coefficient over sea-ice (fixed) [-] */ (PID.TID 0000.0001) 1.630000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_iceCe = /* transfert coeff. over sea-ice, for Evap (fixed) [-] */ (PID.TID 0000.0001) 1.630000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_iceCh = /* transfert coeff. over sea-ice, Sens.Heat.(fixed)[-] */ (PID.TID 0000.0001) 1.630000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_albedo = /* Sea-water albedo [-] */ (PID.TID 0000.0001) 1.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useExfZenAlbedo = /* Sea-water albedo varies with zenith angle */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) select_ZenAlbedo = /* Sea-water albedo computation method */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useExfZenIncoming = /* compute incoming solar radiation */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) ocean_emissivity = /* longwave ocean-surface emissivity [-] */ (PID.TID 0000.0001) 9.700176366843034E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ice_emissivity = /* longwave seaice emissivity [-] */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) snow_emissivity = /* longwave snow emissivity [-] */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) EXF main CPP flags: (PID.TID 0000.0001) (PID.TID 0000.0001) // USE_EXF_INTERPOLATION: NOT defined (PID.TID 0000.0001) // ALLOW_ATM_TEMP: defined (PID.TID 0000.0001) // ALLOW_ATM_WIND (useAtmWind): defined (PID.TID 0000.0001) // ALLOW_DOWNWARD_RADIATION: defined (PID.TID 0000.0001) // ALLOW_BULKFORMULAE: defined (PID.TID 0000.0001) (PID.TID 0000.0001) Zonal wind forcing period is 0. (PID.TID 0000.0001) Zonal wind forcing is read from file: (PID.TID 0000.0001) >> windx.bin << (PID.TID 0000.0001) (PID.TID 0000.0001) // ALLOW_READ_TURBFLUXES: NOT defined (PID.TID 0000.0001) // EXF_READ_EVAP: NOT defined (PID.TID 0000.0001) // ALLOW_RUNOFF: defined (PID.TID 0000.0001) // ALLOW_RUNOFTEMP: NOT defined (PID.TID 0000.0001) // ALLOW_SALTFLX: defined (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // External forcing (EXF) climatology configuration : (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ALLOW_CLIMSST_RELAXATION: defined (PID.TID 0000.0001) climsst relaxation is NOT used (PID.TID 0000.0001) (PID.TID 0000.0001) // ALLOW_CLIMSSS_RELAXATION: defined (PID.TID 0000.0001) climsss relaxation is NOT used (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // External forcing (EXF) configuration >>> END <<< (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Seaice configuration (SEAICE_PARM01) >>> START <<< (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice time stepping configuration > START < (PID.TID 0000.0001) ---------------------------------------------- (PID.TID 0000.0001) SEAICE_deltaTtherm= /* thermodynamic timestep */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_deltaTdyn = /* dynamic timestep */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_deltaTevp = /* EVP timestep */ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseBDF2 = /* use backw. differencing for mom. eq. */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEupdateOceanStress= /* update Ocean surf. stress */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICErestoreUnderIce = /* restore T and S under ice */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice dynamics configuration > START < (PID.TID 0000.0001) ------------------------------------------ (PID.TID 0000.0001) SEAICEuseDYNAMICS = /* use dynamics */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) model grid type = /* type of sea ice model grid */ (PID.TID 0000.0001) 'C-GRID' (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseStrImpCpl = /* use strongly implicit coupling */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEusePicardAsPrecon = /* Picard as preconditioner */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseLSR = /* use default Picard-LSR solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseKrylov = /* use Picard-Krylov solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseEVP = /* use EVP solver rather than LSR */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseJFNK = /* use JFNK solver */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseFREEDRIFT = /* use free drift solution */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) OCEAN_drag = /* air-ocean drag coefficient */ (PID.TID 0000.0001) 8.154100000000000E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_drag = /* air-ice drag coefficient */ (PID.TID 0000.0001) 2.000000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_drag_south = /* Southern Ocean SEAICE_drag */ (PID.TID 0000.0001) 2.000000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_waterDrag = /* water-ice drag */ (PID.TID 0000.0001) 5.500000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_waterDrag_south = /* Southern Ocean waterDrag */ (PID.TID 0000.0001) 5.500000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseTilt = /* include surface tilt in dyna. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseTEM = /* use truncated ellipse rheology */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_strength = /* sea-ice strength Pstar */ (PID.TID 0000.0001) 2.678000000000000E+04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_cStar = /* sea-ice strength parameter cStar */ (PID.TID 0000.0001) 2.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpressReplFac= /* press. replacement method factor */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_tensilFac = /* sea-ice tensile strength factor */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_tensilDepth= /* crit. depth for tensile strength */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpresH0 = /* sea-ice strength Heff threshold */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpresPow0 = /* exponent for HeffSEAICEpresH0 */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEetaZmethod = /* method computing eta at Z-point */ (PID.TID 0000.0001) 3 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_zetaMin = /* lower bound for viscosity */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_eccen = /* elliptical yield curve eccent */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEstressFactor = /* wind stress scaling factor */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_airTurnAngle = /* air-ice turning angle */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_waterTurnAngle = /* ice-water turning angle */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseMetricTerms = /* use metric terms */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_no_slip = /* no slip boundary conditions */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_2ndOrderBC = /* 2nd order no slip boundary conditions */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_clipVeloctities = /* impose max. vels. */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useHB87stressCoupling = /* altern. ice-ocean stress */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEscaleSurfStress = /* scale atm. and ocean-surface stress with AREA */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_maskRHS = /* mask RHS of solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEaddSnowMass = /* add snow mass to seaiceMassC/U/V */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) LSR_mixIniGuess = /* mix free-drift sol. into LSR initial Guess */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_LSRrelaxU = /* LSR solver: relaxation parameter */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_LSRrelaxV = /* LSR solver: relaxation parameter */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) LSR_ERROR = /* sets accuracy of LSR solver */ (PID.TID 0000.0001) 1.000000000000000E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SOLV_NCHECK = /* test interval for LSR solver */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseMultiTileSolver = /* use full domain tri-diag solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_OLx = /* overlap for LSR/preconditioner */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_OLy = /* overlap for LSR/preconditioner */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEnonLinIterMax = /* max. number of nonlinear solver steps */ (PID.TID 0000.0001) 200 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICElinearIterMax = /* max. number of linear solver steps */ (PID.TID 0000.0001) 50 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEnonLinTol = /* non-linear solver tolerance */ (PID.TID 0000.0001) 1.000000000000000E-09 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpreconLinIter = /* number of linear preconditioner steps */ (PID.TID 0000.0001) 10 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpreconNL_Iter = /* number of non-linear preconditioner steps */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseIMEX = /* IMEX scheme with JFNK-solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_JFNK_lsIter = /* start of line search */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_JFNK_tolIter = /* tol. is relaxed after this */ (PID.TID 0000.0001) 100 (PID.TID 0000.0001) ; (PID.TID 0000.0001) JFNKres_t= /* JFNK parameter */ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) JFNKres_tFac= /* JFNK parameter */ (PID.TID 0000.0001) 5.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_JFNKepsilon= /* JFNK: FD-gradient step size */ (PID.TID 0000.0001) 1.000000000000000E-06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_JFNKphi = /* JFNK: inexact Newtow parameter */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_JFNKalpha = /* JFNK: inexact Newtow parameter */ (PID.TID 0000.0001) 1.500000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice advection diffusion config, > START < (PID.TID 0000.0001) ----------------------------------------------- (PID.TID 0000.0001) ==> advection diffusion done in pkg ThSIce (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice thermodynamics configuration > START < (PID.TID 0000.0001) ----------------------------------------------- (PID.TID 0000.0001) SEAICE_rhoIce = /* density of sea ice (kg/m3) */ (PID.TID 0000.0001) 9.100000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_rhoSnow = /* density of snow (kg/m3) */ (PID.TID 0000.0001) 3.300000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_rhoAir = /* density of air (kg/m3) */ (PID.TID 0000.0001) 1.200000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) usePW79thermodynamics = /* default 0-layer TD */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) pkg/seaice thermodynamics is OFF (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice initialization and IO config., > START < (PID.TID 0000.0001) ------------------------------------------------- (PID.TID 0000.0001) SEAICE_initialHEFF= /* initial sea-ice thickness */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) AreaFile = /* Initial ice concentration File */ (PID.TID 0000.0001) '' (PID.TID 0000.0001) ; (PID.TID 0000.0001) HeffFile = /* Initial effective ice thickness File */ (PID.TID 0000.0001) '' (PID.TID 0000.0001) ; (PID.TID 0000.0001) HsnowFile = /* Initial snow thickness File */ (PID.TID 0000.0001) '' (PID.TID 0000.0001) ; (PID.TID 0000.0001) uIceFile = /* Initial U-ice velocity File */ (PID.TID 0000.0001) '' (PID.TID 0000.0001) ; (PID.TID 0000.0001) vIceFile = /* Initial V-ice velocity File */ (PID.TID 0000.0001) '' (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEwriteState = /* write sea ice state to file */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_monFreq = /* monitor frequency */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_dumpFreq = /* dump frequency */ (PID.TID 0000.0001) 4.320000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_taveFreq = /* time-averaging frequency */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_mon_stdio = /* write monitor to std-outp */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_dump_mdsio = /* write snap-shot using MDSIO */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_tave_mdsio = /* write TimeAverage using MDSIO */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice regularization numbers, > START < (PID.TID 0000.0001) ----------------------------------------------- (PID.TID 0000.0001) SEAICE_deltaMin = /* reduce singularities in Delta */ (PID.TID 0000.0001) 1.000000000000000E-10 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_EPS = /* small number */ (PID.TID 0000.0001) 1.000000000000000E-10 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_EPS_SQ = /* small number squared */ (PID.TID 0000.0001) 1.000000000000000E-20 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_area_reg = /* reduce derivative singularities */ (PID.TID 0000.0001) 1.000000000000000E-05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_hice_reg = /* reduce derivative singularities */ (PID.TID 0000.0001) 5.000000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_area_floor = /* reduce derivative singularities */ (PID.TID 0000.0001) 1.000000000000000E-05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Seaice configuration (SEAICE_PARM01) >>> END <<< (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) ------------------------------------------------------------ (PID.TID 0000.0001) DIAGNOSTICS_SET_LEVELS: done (PID.TID 0000.0001) Total Nb of available Diagnostics: ndiagt= 248 (PID.TID 0000.0001) write list of available Diagnostics to file: available_diagnostics.log (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 155 SIuice (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 156 SIvice (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 149 SIheff (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 216 SI_Fract (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 217 SI_Thick (PID.TID 0000.0001) - NOTE - SETDIAG: Counter-mate # 216 SI_Fract is already set (PID.TID 0000.0001) space allocated for all diagnostics: 5 levels (PID.TID 0000.0001) set mate pointer for diag # 155 SIuice , Parms: UU M1 , mate: 156 (PID.TID 0000.0001) set mate pointer for diag # 156 SIvice , Parms: VV M1 , mate: 155 (PID.TID 0000.0001) DIAGNOSTICS_SET_POINTERS: Set levels for Outp.Stream: snapshot (PID.TID 0000.0001) Levels: 1. (PID.TID 0000.0001) DIAGNOSTICS_SET_POINTERS: done (PID.TID 0000.0001) ------------------------------------------------------------ (PID.TID 0000.0001) DIAGSTATS_SET_REGIONS: define no region (PID.TID 0000.0001) ------------------------------------------------------------ (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 216 SI_Fract (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 217 SI_Thick (PID.TID 0000.0001) - NOTE - SETDIAG: Counter Diagnostic # 216 SI_Fract has already been set (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 146 SIarea (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 149 SIheff (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 155 SIuice (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 156 SIvice (PID.TID 0000.0001) space allocated for all stats-diags: 6 levels (PID.TID 0000.0001) DIAGSTATS_SET_POINTERS: done (PID.TID 0000.0001) ------------------------------------------------------------ (PID.TID 0000.0001) DIAGSTATS_INI_IO: open file: iceStDiag.0000000000.txt , unit= 9 (PID.TID 0000.0001) %MON fCori_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCori_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCori_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCori_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriG_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriG_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriG_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriG_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriCos_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriCos_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriCos_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriCos_sd = 0.0000000000000E+00 (PID.TID 0000.0001) INI_CG2D: CG2D normalisation factor = 1.0000000000000001E-01 (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Model configuration (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // (PID.TID 0000.0001) // "Physical" paramters ( PARM01 in namelist ) (PID.TID 0000.0001) // (PID.TID 0000.0001) buoyancyRelation = /* Type of relation to get Buoyancy */ (PID.TID 0000.0001) 'OCEANIC' (PID.TID 0000.0001) ; (PID.TID 0000.0001) fluidIsAir = /* fluid major constituent is Air */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) fluidIsWater = /* fluid major constituent is Water */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingPCoords = /* use p (or p*) vertical coordinate */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingZCoords = /* use z (or z*) vertical coordinate */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) tRef = /* Reference temperature profile ( oC or K ) */ (PID.TID 0000.0001) -1.620000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) sRef = /* Reference salinity profile ( psu ) */ (PID.TID 0000.0001) 3.000000000000000E+01 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) useStrainTensionVisc= /* Use StrainTension Form of Viscous Operator */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useVariableVisc = /* Use variable horizontal viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useHarmonicVisc = /* Use harmonic horizontal viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useBiharmonicVisc= /* Use biharmonic horiz. viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useSmag3D = /* Use isotropic 3-D Smagorinsky viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) viscAh = /* Lateral harmonic viscosity ( m^2/s ) */ (PID.TID 0000.0001) 3.000000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) viscA4 = /* Lateral biharmonic viscosity ( m^4/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) no_slip_sides = /* Viscous BCs: No-slip sides */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) sideDragFactor = /* side-drag scaling factor (non-dim) */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) viscArNr = /* vertical profile of vertical viscosity ( m^2/s )*/ (PID.TID 0000.0001) 3.000000000000000E-02 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) no_slip_bottom = /* Viscous BCs: No-slip bottom */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) bottomVisc_pCell = /* Partial-cell in bottom Visc. BC */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) bottomDragLinear = /* linear bottom-drag coefficient ( m/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) bottomDragQuadratic = /* quadratic bottom-drag coefficient (-) */ (PID.TID 0000.0001) 5.000000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectBotDragQuadr = /* select quadratic bottom drag options */ (PID.TID 0000.0001) -1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKhT = /* Laplacian diffusion of heat laterally ( m^2/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffK4T = /* Biharmonic diffusion of heat laterally ( m^4/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKhS = /* Laplacian diffusion of salt laterally ( m^2/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffK4S = /* Biharmonic diffusion of salt laterally ( m^4/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrNrT = /* vertical profile of vertical diffusion of Temp ( m^2/s )*/ (PID.TID 0000.0001) 0.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrNrS = /* vertical profile of vertical diffusion of Salt ( m^2/s )*/ (PID.TID 0000.0001) 0.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrBL79surf = /* Surface diffusion for Bryan and Lewis 79 ( m^2/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrBL79deep = /* Deep diffusion for Bryan and Lewis 1979 ( m^2/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrBL79scl = /* Depth scale for Bryan and Lewis 1979 ( m ) */ (PID.TID 0000.0001) 2.000000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrBL79Ho = /* Turning depth for Bryan and Lewis 1979 ( m ) */ (PID.TID 0000.0001) -2.000000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ivdc_kappa = /* Implicit Vertical Diffusivity for Convection ( m^2/s) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hMixCriteria= /* Criteria for mixed-layer diagnostic */ (PID.TID 0000.0001) -8.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) dRhoSmall = /* Parameter for mixed-layer diagnostic */ (PID.TID 0000.0001) 1.000000000000000E-06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hMixSmooth= /* Smoothing parameter for mixed-layer diagnostic */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) eosType = /* Type of Equation of State */ (PID.TID 0000.0001) 'LINEAR' (PID.TID 0000.0001) ; (PID.TID 0000.0001) tAlpha = /* Linear EOS thermal expansion coefficient ( 1/oC ) */ (PID.TID 0000.0001) 2.000000000000000E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) sBeta = /* Linear EOS haline contraction coefficient ( 1/psu ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoNil = /* Reference density for Linear EOS ( kg/m^3 ) */ (PID.TID 0000.0001) 1.030000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectP_inEOS_Zc = /* select pressure to use in EOS (0,1,2,3) */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) 0= -g*rhoConst*z ; 1= pRef (from tRef,sRef); 2= Hyd P ; 3= Hyd+NH P (PID.TID 0000.0001) ; (PID.TID 0000.0001) HeatCapacity_Cp = /* Specific heat capacity ( J/kg/K ) */ (PID.TID 0000.0001) 3.986000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) celsius2K = /* 0 degree Celsius converted to Kelvin ( K ) */ (PID.TID 0000.0001) 2.731500000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoConst = /* Reference density (Boussinesq) ( kg/m^3 ) */ (PID.TID 0000.0001) 1.030000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoFacC = /* normalized Reference density @ cell-Center (-) */ (PID.TID 0000.0001) 1.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoFacF = /* normalized Reference density @ W-Interface (-) */ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoConstFresh = /* Fresh-water reference density ( kg/m^3 ) */ (PID.TID 0000.0001) 1.000000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravity = /* Gravitational acceleration ( m/s^2 ) */ (PID.TID 0000.0001) 9.810000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gBaro = /* Barotropic gravity ( m/s^2 ) */ (PID.TID 0000.0001) 9.810000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravFacC = /* gravity factor (vs surf.) @ cell-Center (-) */ (PID.TID 0000.0001) 1.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravFacF = /* gravity factor (vs surf.) @ W-Interface (-) */ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rotationPeriod = /* Rotation Period ( s ) */ (PID.TID 0000.0001) 8.616400000000000E+04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) omega = /* Angular velocity ( rad/s ) */ (PID.TID 0000.0001) 7.292123516990375E-05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) f0 = /* Reference coriolis parameter ( 1/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) beta = /* Beta ( 1/(m.s) ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) fPrime = /* Second coriolis parameter ( 1/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rigidLid = /* Rigid lid on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitFreeSurface = /* Implicit free surface on/off flag */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) freeSurfFac = /* Implicit free surface factor */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicSurfPress = /* Surface Pressure implicit factor (0-1)*/ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicDiv2DFlow = /* Barot. Flow Div. implicit factor (0-1)*/ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) uniformLin_PhiSurf = /* use uniform Bo_surf on/off flag*/ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) uniformFreeSurfLev = /* free-surface level-index is uniform */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) hFacMin = /* minimum partial cell factor (hFac) */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hFacMinDr = /* minimum partial cell thickness ( m) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exactConserv = /* Exact Volume Conservation on/off flag*/ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) linFSConserveTr = /* Tracer correction for Lin Free Surface on/off flag*/ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) nonlinFreeSurf = /* Non-linear Free Surf. options (-1,0,1,2,3)*/ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) -1,0= Off ; 1,2,3= On, 2=+rescale gU,gV, 3=+update cg2d solv. (PID.TID 0000.0001) ; (PID.TID 0000.0001) hFacInf = /* lower threshold for hFac (nonlinFreeSurf only)*/ (PID.TID 0000.0001) 2.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hFacSup = /* upper threshold for hFac (nonlinFreeSurf only)*/ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) select_rStar = /* r* Vertical coord. options (=0 r coord.; >0 uses r*)*/ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useRealFreshWaterFlux = /* Real Fresh Water Flux on/off flag*/ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) temp_EvPrRn = /* Temp. of Evap/Prec/R (UNSET=use local T)(oC)*/ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) salt_EvPrRn = /* Salin. of Evap/Prec/R (UNSET=use local S)(psu)*/ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectAddFluid = /* option for mass source/sink of fluid (=0: off) */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) temp_addMass = /* Temp. of addMass array (UNSET=use local T)(oC)*/ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) salt_addMass = /* Salin. of addMass array (UNSET=use local S)(psu)*/ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) convertFW2Salt = /* convert F.W. Flux to Salt Flux (-1=use local S)(psu)*/ (PID.TID 0000.0001) -1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) use3Dsolver = /* use 3-D pressure solver on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) nonHydrostatic = /* Non-Hydrostatic on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) nh_Am2 = /* Non-Hydrostatic terms scaling factor */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitNHPress = /* Non-Hyd Pressure implicit factor (0-1)*/ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectNHfreeSurf = /* Non-Hyd (free-)Surface option */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) quasiHydrostatic = /* Quasi-Hydrostatic on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) calc_wVelocity = /* vertical velocity calculation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momStepping = /* Momentum equation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) vectorInvariantMomentum= /* Vector-Invariant Momentum on/off */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momAdvection = /* Momentum advection on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momViscosity = /* Momentum viscosity on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momImplVertAdv= /* Momentum implicit vert. advection on/off*/ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitViscosity = /* Implicit viscosity on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectImplicitDrag= /* Implicit bot Drag options (0,1,2)*/ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) 0= Expl. ; 1= Impl. on provis. Vel ; 2= Fully Impl (with surf.P) (PID.TID 0000.0001) ; (PID.TID 0000.0001) metricTerms = /* metric-Terms on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useNHMTerms = /* Non-Hydrostatic Metric-Terms on/off */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectCoriMap = /* Coriolis Map options (0,1,2,3)*/ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) 0= f-Plane ; 1= Beta-Plane ; 2= Spherical ; 3= read from file (PID.TID 0000.0001) ; (PID.TID 0000.0001) use3dCoriolis = /* 3-D Coriolis on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useCoriolis = /* Coriolis on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useCDscheme = /* CD scheme on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useEnergyConservingCoriolis= /* Flx-Form Coriolis scheme flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useJamartWetPoints= /* Coriolis WetPoints method flag */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) useJamartMomAdv= /* V.I Non-linear terms Jamart flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useAbsVorticity= /* V.I Works with f+zeta in Coriolis */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectVortScheme= /* V.I Scheme selector for Vorticity-Term */ (PID.TID 0000.0001) 123456789 (PID.TID 0000.0001) = 0 : enstrophy (Shallow-Water Eq.) conserving scheme by Sadourny, JAS 75 (PID.TID 0000.0001) = 1 : same as 0 with modified hFac (PID.TID 0000.0001) = 2 : energy conserving scheme (used by Sadourny in JAS 75 paper) (PID.TID 0000.0001) = 3 : energy (general) and enstrophy (2D, nonDiv.) conserving scheme (PID.TID 0000.0001) from Sadourny (Burridge & Haseler, ECMWF Rep.4, 1977) (PID.TID 0000.0001) ; (PID.TID 0000.0001) upwindVorticity= /* V.I Upwind bias vorticity flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) highOrderVorticity= /* V.I High order vort. advect. flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) upwindShear= /* V.I Upwind vertical Shear advection flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectKEscheme= /* V.I Kinetic Energy scheme selector */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) momForcing = /* Momentum forcing on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momPressureForcing = /* Momentum pressure term on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitIntGravWave= /* Implicit Internal Gravity Wave flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) staggerTimeStep = /* Stagger time stepping on/off flag */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) doResetHFactors = /* reset thickness factors @ each time-step */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) multiDimAdvection = /* enable/disable Multi-Dim Advection */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) useMultiDimAdvec = /* Multi-Dim Advection is/is-not used */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitDiffusion = /* Implicit Diffusion on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempStepping = /* Temperature equation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempAdvection = /* Temperature advection on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempImplVertAdv = /* Temp. implicit vert. advection on/off */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempForcing = /* Temperature forcing on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) doThetaClimRelax = /* apply SST relaxation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempIsActiveTr = /* Temp. is a dynamically Active Tracer */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltStepping = /* Salinity equation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltAdvection = /* Salinity advection on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltImplVertAdv = /* Sali. implicit vert. advection on/off */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltForcing = /* Salinity forcing on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) doSaltClimRelax = /* apply SSS relaxation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltIsActiveTr = /* Salt is a dynamically Active Tracer */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) readBinaryPrec = /* Precision used for reading binary files */ (PID.TID 0000.0001) 64 (PID.TID 0000.0001) ; (PID.TID 0000.0001) writeBinaryPrec = /* Precision used for writing binary files */ (PID.TID 0000.0001) 64 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rwSuffixType = /* select format of mds file suffix */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) = 0 : myIter (I10.10) ; = 1 : 100*myTime (100th sec) ; (PID.TID 0000.0001) = 2 : myTime (seconds); = 3 : myTime/360 (10th of hr); (PID.TID 0000.0001) = 4 : myTime/3600 (hours) (PID.TID 0000.0001) ; (PID.TID 0000.0001) globalFiles = /* write "global" (=not per tile) files */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useSingleCpuIO = /* only master MPI process does I/O */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) useSingleCpuInput = /* only master process reads input */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) /* debLev[*] : level of debug & auxiliary message printing */ (PID.TID 0000.0001) debLevZero = 0 ; /* level of disabled aux. msg printing */ (PID.TID 0000.0001) debLevA = 1 ; /* level of minimum aux. msg printing */ (PID.TID 0000.0001) debLevB = 2 ; /* level of low aux. print (report read-file opening)*/ (PID.TID 0000.0001) debLevC = 3 ; /* level of moderate debug prt (most pkgs debug msg) */ (PID.TID 0000.0001) debLevD = 4 ; /* level of enhanced debug prt (add DEBUG_STATS prt) */ (PID.TID 0000.0001) debLevE = 5 ; /* level of extensive debug printing */ (PID.TID 0000.0001) debugLevel = /* select debug printing level */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) plotLevel = /* select PLOT_FIELD printing level */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) // (PID.TID 0000.0001) // Elliptic solver(s) paramters ( PARM02 in namelist ) (PID.TID 0000.0001) // (PID.TID 0000.0001) cg2dMaxIters = /* Upper limit on 2d con. grad iterations */ (PID.TID 0000.0001) 500 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dChkResFreq = /* 2d con. grad convergence test frequency */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dUseMinResSol= /* use cg2d last-iter(=0) / min-resid.(=1) solution */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dTargetResidual = /* 2d con. grad target residual */ (PID.TID 0000.0001) 1.000000000000000E-12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dTargetResWunit = /* CG2d target residual [W units] */ (PID.TID 0000.0001) -1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dPreCondFreq = /* Freq. for updating cg2d preconditioner */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useSRCGSolver = /* use single reduction CG solver(s) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) printResidualFreq = /* Freq. for printing CG residual */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) // (PID.TID 0000.0001) // Time stepping paramters ( PARM03 in namelist ) (PID.TID 0000.0001) // (PID.TID 0000.0001) deltaTMom = /* Momentum equation timestep ( s ) */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) deltaTFreeSurf = /* FreeSurface equation timestep ( s ) */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) dTtracerLev = /* Tracer equation timestep ( s ) */ (PID.TID 0000.0001) 1.800000000000000E+03 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) deltaTClock = /* Model clock timestep ( s ) */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cAdjFreq = /* Convective adjustment interval ( s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) momForcingOutAB = /* =1: take Momentum Forcing out of Adams-Bash. stepping */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tracForcingOutAB = /* =1: take T,S,pTr Forcing out of Adams-Bash. stepping */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) momDissip_In_AB = /* put Dissipation Tendency in Adams-Bash. stepping */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) doAB_onGtGs = /* apply AB on Tendencies (rather than on T,S)*/ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) abEps = /* Adams-Bashforth-2 stabilizing weight */ (PID.TID 0000.0001) 1.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) applyExchUV_early = /* Apply EXCH to U,V earlier in time-step */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) pickupStrictlyMatch= /* stop if pickup do not strictly match */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) nIter0 = /* Run starting timestep number */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) nTimeSteps = /* Number of timesteps */ (PID.TID 0000.0001) 12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) nEndIter = /* Run ending timestep number */ (PID.TID 0000.0001) 12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) baseTime = /* Model base time ( s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) startTime = /* Run start time ( s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) endTime = /* Integration ending time ( s ) */ (PID.TID 0000.0001) 2.160000000000000E+04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) pChkPtFreq = /* Permanent restart/pickup file interval ( s ) */ (PID.TID 0000.0001) 3.600000000000000E+06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) chkPtFreq = /* Rolling restart/pickup file interval ( s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) pickup_write_mdsio = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) pickup_read_mdsio = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) writePickupAtEnd = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) dumpFreq = /* Model state write out interval ( s ). */ (PID.TID 0000.0001) 4.320000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) dumpInitAndLast= /* write out Initial & Last iter. model state */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) snapshot_mdsio = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) monitorFreq = /* Monitor output interval ( s ). */ (PID.TID 0000.0001) 8.640000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) monitorSelect = /* select group of variables to monitor */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) monitor_stdio = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) externForcingPeriod = /* forcing period (s) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) externForcingCycle = /* period of the cyle (s). */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tauThetaClimRelax = /* relaxation time scale (s) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tauSaltClimRelax = /* relaxation time scale (s) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) latBandClimRelax = /* max. Lat. where relaxation */ (PID.TID 0000.0001) 6.300000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) // (PID.TID 0000.0001) // Gridding paramters ( PARM04 in namelist ) (PID.TID 0000.0001) // (PID.TID 0000.0001) usingCartesianGrid = /* Cartesian coordinates flag ( True/False ) */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingCylindricalGrid = /* Cylindrical coordinates flag ( True/False ) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingSphericalPolarGrid = /* Spherical coordinates flag ( True/False ) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingCurvilinearGrid = /* Curvilinear coordinates flag ( True/False ) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useMin4hFacEdges = /* set hFacW,S as minimum of adjacent hFacC factor */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) interViscAr_pCell = /* account for partial-cell in interior vert. viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) interDiffKr_pCell = /* account for partial-cell in interior vert. diffusion */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) pCellMix_select = /* option to enhance mixing near surface & bottom */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectSigmaCoord = /* Hybrid-Sigma Vert. Coordinate option */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rSigmaBnd = /* r/sigma transition ( units of r == m ) */ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rkSign = /* index orientation relative to vertical coordinate */ (PID.TID 0000.0001) -1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravitySign = /* gravity orientation relative to vertical coordinate */ (PID.TID 0000.0001) -1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) seaLev_Z = /* reference height of sea-level [m] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) top_Pres = /* reference pressure at the top [Pa] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) mass2rUnit = /* convert mass per unit area [kg/m2] to r-units [m] */ (PID.TID 0000.0001) 9.708737864077669E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rUnit2mass = /* convert r-units [m] to mass per unit area [kg/m2] */ (PID.TID 0000.0001) 1.030000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) drC = /* C spacing ( units of r ) */ (PID.TID 0000.0001) 2 @ 5.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) drF = /* W spacing ( units of r ) */ (PID.TID 0000.0001) 1.000000000000000E+01 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) delX = /* U spacing ( m - cartesian, degrees - spherical ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) delY = /* V spacing ( m - cartesian, degrees - spherical ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) xgOrigin = /* X-axis origin of West edge (cartesian: m, lat-lon: deg) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ygOrigin = /* Y-axis origin of South edge (cartesian: m, lat-lon: deg) */ (PID.TID 0000.0001) -1.100000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rSphere = /* Radius ( ignored - cartesian, m - spherical ) */ (PID.TID 0000.0001) 6.370000000000000E+06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) deepAtmosphere = /* Deep/Shallow Atmosphere flag (True/False) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) xC = /* xC(:,1,:,1) : P-point X coord ( deg. or m if cartesian) */ (PID.TID 0000.0001) 2.500000000000000E+03, /* I = 1 */ (PID.TID 0000.0001) 7.500000000000000E+03, /* I = 2 */ (PID.TID 0000.0001) 1.250000000000000E+04, /* I = 3 */ (PID.TID 0000.0001) . . . (PID.TID 0000.0001) 8.750000000000000E+04, /* I = 18 */ (PID.TID 0000.0001) 9.250000000000000E+04, /* I = 19 */ (PID.TID 0000.0001) 9.750000000000000E+04, /* I = 20 */ (PID.TID 0000.0001) 1.025000000000000E+05, /* I = 21 */ (PID.TID 0000.0001) 1.075000000000000E+05, /* I = 22 */ (PID.TID 0000.0001) 1.125000000000000E+05, /* I = 23 */ (PID.TID 0000.0001) . . . (PID.TID 0000.0001) 1.875000000000000E+05, /* I = 38 */ (PID.TID 0000.0001) 1.925000000000000E+05, /* I = 39 */ (PID.TID 0000.0001) 1.975000000000000E+05, /* I = 40 */ (PID.TID 0000.0001) 2.025000000000000E+05, /* I = 41 */ (PID.TID 0000.0001) 2.075000000000000E+05, /* I = 42 */ (PID.TID 0000.0001) 2.125000000000000E+05, /* I = 43 */ (PID.TID 0000.0001) . . . (PID.TID 0000.0001) 2.875000000000000E+05, /* I = 58 */ (PID.TID 0000.0001) 2.925000000000000E+05, /* I = 59 */ (PID.TID 0000.0001) 2.975000000000000E+05, /* I = 60 */ (PID.TID 0000.0001) 3.025000000000000E+05, /* I = 61 */ (PID.TID 0000.0001) 3.075000000000000E+05, /* I = 62 */ (PID.TID 0000.0001) 3.125000000000000E+05, /* I = 63 */ (PID.TID 0000.0001) . . . (PID.TID 0000.0001) 3.875000000000000E+05, /* I = 78 */ (PID.TID 0000.0001) 3.925000000000000E+05, /* I = 79 */ (PID.TID 0000.0001) 3.975000000000000E+05 /* I = 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) yC = /* yC(1,:,1,:) : P-point Y coord ( deg. or m if cartesian) */ (PID.TID 0000.0001) -1.075000000000000E+05, /* J = 1 */ (PID.TID 0000.0001) -1.025000000000000E+05, /* J = 2 */ (PID.TID 0000.0001) -9.750000000000000E+04, /* J = 3 */ (PID.TID 0000.0001) -9.250000000000000E+04, /* J = 4 */ (PID.TID 0000.0001) -8.750000000000000E+04, /* J = 5 */ (PID.TID 0000.0001) -8.250000000000000E+04, /* J = 6 */ (PID.TID 0000.0001) -7.750000000000000E+04, /* J = 7 */ (PID.TID 0000.0001) -7.250000000000000E+04, /* J = 8 */ (PID.TID 0000.0001) -6.750000000000000E+04, /* J = 9 */ (PID.TID 0000.0001) -6.250000000000000E+04, /* J = 10 */ (PID.TID 0000.0001) -5.750000000000000E+04, /* J = 11 */ (PID.TID 0000.0001) -5.250000000000000E+04, /* J = 12 */ (PID.TID 0000.0001) -4.750000000000000E+04, /* J = 13 */ (PID.TID 0000.0001) -4.250000000000000E+04, /* J = 14 */ (PID.TID 0000.0001) -3.750000000000000E+04, /* J = 15 */ (PID.TID 0000.0001) -3.250000000000000E+04, /* J = 16 */ (PID.TID 0000.0001) -2.750000000000000E+04, /* J = 17 */ (PID.TID 0000.0001) -2.250000000000000E+04, /* J = 18 */ (PID.TID 0000.0001) -1.750000000000000E+04, /* J = 19 */ (PID.TID 0000.0001) -1.250000000000000E+04, /* J = 20 */ (PID.TID 0000.0001) -7.500000000000000E+03, /* J = 21 */ (PID.TID 0000.0001) -2.500000000000000E+03, /* J = 22 */ (PID.TID 0000.0001) 2.500000000000000E+03, /* J = 23 */ (PID.TID 0000.0001) 7.500000000000000E+03, /* J = 24 */ (PID.TID 0000.0001) 1.250000000000000E+04, /* J = 25 */ (PID.TID 0000.0001) 1.750000000000000E+04, /* J = 26 */ (PID.TID 0000.0001) 2.250000000000000E+04, /* J = 27 */ (PID.TID 0000.0001) 2.750000000000000E+04, /* J = 28 */ (PID.TID 0000.0001) 3.250000000000000E+04, /* J = 29 */ (PID.TID 0000.0001) 3.750000000000000E+04, /* J = 30 */ (PID.TID 0000.0001) 4.250000000000000E+04, /* J = 31 */ (PID.TID 0000.0001) 4.750000000000000E+04, /* J = 32 */ (PID.TID 0000.0001) 5.250000000000000E+04, /* J = 33 */ (PID.TID 0000.0001) 5.750000000000000E+04, /* J = 34 */ (PID.TID 0000.0001) 6.250000000000000E+04, /* J = 35 */ (PID.TID 0000.0001) 6.750000000000000E+04, /* J = 36 */ (PID.TID 0000.0001) 7.250000000000000E+04, /* J = 37 */ (PID.TID 0000.0001) 7.750000000000000E+04, /* J = 38 */ (PID.TID 0000.0001) 8.250000000000000E+04, /* J = 39 */ (PID.TID 0000.0001) 8.750000000000000E+04, /* J = 40 */ (PID.TID 0000.0001) 9.250000000000000E+04, /* J = 41 */ (PID.TID 0000.0001) 9.750000000000000E+04 /* J = 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rcoord = /* P-point R coordinate ( units of r ) */ (PID.TID 0000.0001) -5.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rF = /* W-Interf. R coordinate ( units of r ) */ (PID.TID 0000.0001) 0.000000000000000E+00, /* K = 1 */ (PID.TID 0000.0001) -1.000000000000000E+01 /* K = 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) deepFacC = /* deep-model grid factor @ cell-Center (-) */ (PID.TID 0000.0001) 1.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) deepFacF = /* deep-model grid factor @ W-Interface (-) */ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rVel2wUnit = /* convert units: rVel -> wSpeed (=1 if z-coord)*/ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) wUnit2rVel = /* convert units: wSpeed -> rVel (=1 if z-coord)*/ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dBdrRef = /* Vertical grad. of reference buoyancy [(m/s/r)^2] */ (PID.TID 0000.0001) 0.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rotateGrid = /* use rotated grid ( True/False ) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) phiEuler = /* Euler angle, rotation about original z-coordinate [rad] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) thetaEuler = /* Euler angle, rotation about new x-coordinate [rad] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) psiEuler = /* Euler angle, rotation about new z-coordinate [rad] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxF = /* dxF(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxF = /* dxF(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyF = /* dyF(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyF = /* dyF(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxG = /* dxG(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxG = /* dxG(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyG = /* dyG(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyG = /* dyG(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxC = /* dxC(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxC = /* dxC(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyC = /* dyC(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyC = /* dyC(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxV = /* dxV(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxV = /* dxV(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyU = /* dyU(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyU = /* dyU(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rA = /* rA (:,1,:,1) ( units: m^2 ) */ (PID.TID 0000.0001) 80 @ 2.500000000000000E+07 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rA = /* rA (1,:,1,:) ( units: m^2 ) */ (PID.TID 0000.0001) 42 @ 2.500000000000000E+07 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rAw = /* rAw(:,1,:,1) ( units: m^2 ) */ (PID.TID 0000.0001) 80 @ 2.500000000000000E+07 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rAw = /* rAw(1,:,1,:) ( units: m^2 ) */ (PID.TID 0000.0001) 42 @ 2.500000000000000E+07 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rAs = /* rAs(:,1,:,1) ( units: m^2 ) */ (PID.TID 0000.0001) 80 @ 2.500000000000000E+07 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rAs = /* rAs(1,:,1,:) ( units: m^2 ) */ (PID.TID 0000.0001) 42 @ 2.500000000000000E+07 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) globalArea = /* Integrated horizontal Area (m^2) */ (PID.TID 0000.0001) 6.950000000000000E+10 (PID.TID 0000.0001) ; (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End of Model config. summary (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) == Packages configuration : Check & print summary == (PID.TID 0000.0001) (PID.TID 0000.0001) EXF_CHECK: #define ALLOW_EXF (PID.TID 0000.0001) SEAICE_CHECK: #define ALLOW_SEAICE (PID.TID 0000.0001) THSICE_CHECK: #define THSICE (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Check Model config. (CONFIG_CHECK): (PID.TID 0000.0001) // CONFIG_CHECK : Normal End (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: uVel_3c0.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: vVel_3c0.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: eta_3c0.bin (PID.TID 0000.0001) Start initial hydrostatic pressure computation (PID.TID 0000.0001) Pressure is predetermined for buoyancyRelation OCEANIC (PID.TID 0000.0001) (PID.TID 0000.0001) write diagnostics summary to file ioUnit: 6 Iter.Nb: 0 ; Time(s): 0.0000000000000E+00 ------------------------------------------------------------------------ 2D/3D diagnostics: Number of lists: 1 ------------------------------------------------------------------------ listId= 1 ; file name: snapshot nFlds, nActive, freq & phase , nLev 5 | 5 | -86400.000000 3600.000000 | 1 levels: 1 diag# | name | ipt | iMate | kLev| count | mate.C| 155 |SIuice | 1 | 2 | 1 | 0 | 0 | 156 |SIvice | 2 | 1 | 1 | 0 | 0 | 149 |SIheff | 3 | 0 | 1 | 0 | 216 |SI_Fract| 4 | 0 | 1 | 0 | 217 |SI_Thick| 5 | 4 | 1 | 0 | 0 | ------------------------------------------------------------------------ Global & Regional Statistics diagnostics: Number of lists: 1 ------------------------------------------------------------------------ listId= 1 ; file name: iceStDiag nFlds, nActive, freq & phase | 6 | 6 | 7200.000000 1800.000000 | Regions: 0 diag# | name | ipt | iMate | Volume | mate-Vol. | 216 |SI_Fract| 1 | 0 | 0.00000E+00 | 217 |SI_Thick| 2 | 1 | 0.00000E+00 | 0.00000E+00 | 146 |SIarea | 3 | 0 | 0.00000E+00 | 149 |SIheff | 4 | 0 | 0.00000E+00 | 155 |SIuice | 5 | 0 | 0.00000E+00 | 156 |SIvice | 6 | 0 | 0.00000E+00 | ------------------------------------------------------------------------ (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: windx.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: const100.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: const+20.bin (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Model current state (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR dynamic field statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON time_tsnumber = 0 (PID.TID 0000.0001) %MON time_secondsf = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_eta_max = 1.4855271423662E-02 (PID.TID 0000.0001) %MON dynstat_eta_min = -1.5547625271979E-02 (PID.TID 0000.0001) %MON dynstat_eta_mean = -6.8609663050809E-19 (PID.TID 0000.0001) %MON dynstat_eta_sd = 5.6185276903544E-03 (PID.TID 0000.0001) %MON dynstat_eta_del2 = 3.4210904025025E-06 (PID.TID 0000.0001) %MON dynstat_uvel_max = 5.4694595665363E-01 (PID.TID 0000.0001) %MON dynstat_uvel_min = 8.1797628424127E-02 (PID.TID 0000.0001) %MON dynstat_uvel_mean = 3.2603530929361E-01 (PID.TID 0000.0001) %MON dynstat_uvel_sd = 8.4661197148990E-02 (PID.TID 0000.0001) %MON dynstat_uvel_del2 = 1.3392731599312E-04 (PID.TID 0000.0001) %MON dynstat_vvel_max = 2.2780617104059E-01 (PID.TID 0000.0001) %MON dynstat_vvel_min = -1.4793000868950E-01 (PID.TID 0000.0001) %MON dynstat_vvel_mean = -3.2450632095700E-04 (PID.TID 0000.0001) %MON dynstat_vvel_sd = 6.0970835295293E-02 (PID.TID 0000.0001) %MON dynstat_vvel_del2 = 8.1836652323282E-05 (PID.TID 0000.0001) %MON dynstat_wvel_max = 1.6555698845343E-04 (PID.TID 0000.0001) %MON dynstat_wvel_min = -2.4393468746960E-04 (PID.TID 0000.0001) %MON dynstat_wvel_mean = -1.8006686469634E-21 (PID.TID 0000.0001) %MON dynstat_wvel_sd = 1.8006622332191E-05 (PID.TID 0000.0001) %MON dynstat_wvel_del2 = 3.4047422448573E-07 (PID.TID 0000.0001) %MON dynstat_theta_max = -1.6200000000000E+00 (PID.TID 0000.0001) %MON dynstat_theta_min = -1.6200000000000E+00 (PID.TID 0000.0001) %MON dynstat_theta_mean = -1.6200000000000E+00 (PID.TID 0000.0001) %MON dynstat_theta_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_theta_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_salt_max = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_min = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_mean = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_salt_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON trAdv_CFL_u_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON trAdv_CFL_v_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON trAdv_CFL_w_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON advcfl_uvel_max = 1.9690054439531E-01 (PID.TID 0000.0001) %MON advcfl_vvel_max = 8.2010221574612E-02 (PID.TID 0000.0001) %MON advcfl_wvel_max = 8.7816487489057E-02 (PID.TID 0000.0001) %MON advcfl_W_hf_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON pe_b_mean = 1.5484032096270E-05 (PID.TID 0000.0001) %MON ke_max = 1.4564487757410E-01 (PID.TID 0000.0001) %MON ke_mean = 5.8130401708830E-02 (PID.TID 0000.0001) %MON ke_vol = 6.9500000000000E+11 (PID.TID 0000.0001) %MON vort_r_min = -1.4191202448594E-04 (PID.TID 0000.0001) %MON vort_r_max = 8.9657385579761E-05 (PID.TID 0000.0001) %MON vort_a_mean = -6.5586096803907E-22 (PID.TID 0000.0001) %MON vort_a_sd = 1.5889649807104E-05 (PID.TID 0000.0001) %MON vort_p_mean = -6.8228760045090E-22 (PID.TID 0000.0001) %MON vort_p_sd = 3.0669223294758E-05 (PID.TID 0000.0001) %MON surfExpan_theta_mean = -1.4394880171946E-21 (PID.TID 0000.0001) %MON surfExpan_salt_mean = 1.6750406018264E-20 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR dynamic field statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 0 (PID.TID 0000.0001) %MON seaice_time_sec = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.9500000000000E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9500000000000E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 4.0000000000000E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0000000000000E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0000000000000E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0000000000000E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 2.0000000000000E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0000000000000E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR EXF statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON exf_tsnumber = 0 (PID.TID 0000.0001) %MON exf_time_sec = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_ustress_max = 1.3964039188763E-01 (PID.TID 0000.0001) %MON exf_ustress_min = 1.3964039188763E-01 (PID.TID 0000.0001) %MON exf_ustress_mean = 1.3964039188763E-01 (PID.TID 0000.0001) %MON exf_ustress_sd = 5.5511151231258E-17 (PID.TID 0000.0001) %MON exf_ustress_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_hflux_max = 1.3256147102117E+02 (PID.TID 0000.0001) %MON exf_hflux_min = 1.3256147102117E+02 (PID.TID 0000.0001) %MON exf_hflux_mean = 1.3256147102117E+02 (PID.TID 0000.0001) %MON exf_hflux_sd = 9.6633812063374E-13 (PID.TID 0000.0001) %MON exf_hflux_del2 = 7.8352778346434E-01 (PID.TID 0000.0001) %MON exf_sflux_max = 5.8259080752307E-08 (PID.TID 0000.0001) %MON exf_sflux_min = 5.8259080752307E-08 (PID.TID 0000.0001) %MON exf_sflux_mean = 5.8259080752308E-08 (PID.TID 0000.0001) %MON exf_sflux_sd = 8.7350272685600E-22 (PID.TID 0000.0001) %MON exf_sflux_del2 = 3.4435049684410E-10 (PID.TID 0000.0001) %MON exf_uwind_max = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_uwind_min = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_uwind_mean = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_uwind_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_uwind_del2 = 5.9106750809910E-02 (PID.TID 0000.0001) %MON exf_vwind_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vwind_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vwind_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vwind_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vwind_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_wspeed_max = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_wspeed_min = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_wspeed_mean = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_wspeed_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_wspeed_del2 = 5.9106750809910E-02 (PID.TID 0000.0001) %MON exf_evap_max = 5.8259080752307E-08 (PID.TID 0000.0001) %MON exf_evap_min = 5.8259080752307E-08 (PID.TID 0000.0001) %MON exf_evap_mean = 5.8259080752308E-08 (PID.TID 0000.0001) %MON exf_evap_sd = 8.7350272685600E-22 (PID.TID 0000.0001) %MON exf_evap_del2 = 3.4435049684410E-10 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR EXF statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 1 0.99000E+00 0.95257E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 1, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 2 0.99000E+00 0.94494E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 2, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 3 0.99000E+00 0.92786E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 3, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 4 0.99000E+00 0.88282E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 4, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 5 0.99000E+00 0.85280E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 5, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 6 0.99000E+00 0.80647E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 6, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 7 0.99000E+00 0.66263E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 7, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 8 0.56408E+00 0.45238E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 8, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 9 0.53059E+00 0.29649E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 9, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 9 1 0.10000E+01 0.29649E+00 0.79581E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 9 2-0.50000E+00 0.29649E+00 0.32588E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 10 0.92759E+00 0.28199E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 10, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 11 0.63270E+00 0.20783E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 11, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 11 1 0.10000E+01 0.20783E+00 0.33865E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 11 2-0.50000E+00 0.20783E+00 0.23346E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 12 0.97211E+00 0.20395E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 12, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 13 0.49074E+00 0.12689E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 13, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 13 1 0.10000E+01 0.12689E+00 0.17531E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 13 2-0.50000E+00 0.12689E+00 0.13504E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 14 14 0.89031E+00 0.11743E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 14 / 14, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 15 15 0.53957E+00 0.77829E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 15 / 15, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 15 1 0.10000E+01 0.77829E-01 0.12587E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 15 2-0.50000E+00 0.77829E-01 0.10609E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 15 3-0.25000E+00 0.77829E-01 0.83296E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 16 16 0.95694E+00 0.75578E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 16 / 16, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 17 17 0.67109E+00 0.57932E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 17 / 17, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 17 1 0.10000E+01 0.57932E-01 0.10549E+00 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 17 2-0.50000E+00 0.57932E-01 0.78424E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 18 18 0.83612E+00 0.51416E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 18 / 18, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 18 1 0.10000E+01 0.51416E-01 0.83723E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 19 19 0.99000E+00 0.51384E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 19 / 19, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 20 20 0.93637E+00 0.49181E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 20 / 20, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 20 1 0.10000E+01 0.49181E-01 0.57984E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 20 2-0.50000E+00 0.49181E-01 0.52909E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 20 3-0.25000E+00 0.49181E-01 0.49655E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 21 21 0.92326E+00 0.46631E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 21 / 21, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 21 1 0.10000E+01 0.46631E-01 0.50808E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 22 22 0.92518E+00 0.44275E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 22 / 22, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 22 1 0.10000E+01 0.44275E-01 0.62667E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 22 2-0.50000E+00 0.44275E-01 0.45681E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 23 23 0.88631E+00 0.40853E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 23 / 23, Nb. of FGMRES iterations = 5 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 23 1 0.10000E+01 0.40853E-01 0.90477E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 23 2-0.50000E+00 0.40853E-01 0.47358E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 24 24 0.86224E+00 0.37009E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 24 / 24, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 25 25 0.86842E+00 0.33687E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 25 / 25, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 26 26 0.83905E+00 0.29968E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 26 / 26, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 26 1 0.10000E+01 0.29968E-01 0.82032E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 26 2-0.50000E+00 0.29968E-01 0.53596E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 27 27 0.84970E+00 0.26884E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 27 / 27, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 28 28 0.78970E+00 0.22969E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 28 / 28, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 28 1 0.10000E+01 0.22969E-01 0.78705E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 28 2-0.50000E+00 0.22969E-01 0.44619E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 29 29 0.75454E+00 0.19037E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 29 / 29, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 29 1 0.10000E+01 0.19037E-01 0.30469E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 30 30 0.77822E+00 0.16106E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 30 / 30, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 31 31 0.95161E+00 0.15583E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 31 / 31, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 32 32 0.63189E+00 0.11474E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 32 / 32, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 32 1 0.10000E+01 0.11474E-01 0.19611E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 33 33 0.57649E+00 0.79480E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 33 / 33, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 33 1 0.10000E+01 0.79480E-02 0.25390E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 34 34 0.63815E+00 0.58913E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 34 / 34, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 35 35 0.54517E+00 0.39316E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 35 / 35, Nb. of FGMRES iterations = 7 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 35 1 0.10000E+01 0.39316E-02 0.17029E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 36 36 0.60244E+00 0.28044E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 36 / 36, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 37 37 0.47472E+00 0.17066E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 37 / 37, Nb. of FGMRES iterations = 9 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 38 38 0.61312E+00 0.12317E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 38 / 38, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 39 39 0.37625E+00 0.64192E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 39 / 39, Nb. of FGMRES iterations = 10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 40 40 0.18525E+00 0.20860E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 40 / 40, Nb. of FGMRES iterations = 16 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 41 41 0.10000E+00 0.37929E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 41 / 41, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 42 42 0.10000E+00 0.34630E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 42 / 42, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 43 43 0.10000E+00 0.30511E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 43 / 43, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 44 44 0.10000E+00 0.29498E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 44 / 44, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 45 45 0.10000E+00 0.27135E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 45 / 45, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 46 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 252 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 252 in timestep 1 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 1 (PID.TID 0000.0001) %MON seaice_time_sec = 1.8000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.4469148712937E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 2.9707526058168E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.0383761741364E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 7.3544520414918E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 6.3785121229547E-05 (PID.TID 0000.0001) %MON seaice_vice_max = 1.2260045119874E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.0442956369857E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -7.0041174816866E-04 (PID.TID 0000.0001) %MON seaice_vice_sd = 4.4864795328084E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 3.5138378984371E-05 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 1.8000000000000E+03 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.9436214346382E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9439572384162E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9996641962221E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0018372445623E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0040922445323E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0001774493498E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 2.2747719811368E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0012174310763E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= Compute Stats, Diag. # 216 SI_Fract vol( 0 ): 6.950E+10 Parms: SM P M1 Compute Stats, Diag. # 217 SI_Thick vol( 0 ): 6.950E+10 Parms: SM PC M1 use Counter Mate # 216 SI_Fract vol( 0 ): 6.950E+10 integral 6.950E+10 Compute Stats, Diag. # 146 SIarea vol( 0 ): 6.950E+10 Parms: SM M1 Compute Stats, Diag. # 149 SIheff vol( 0 ): 6.950E+10 Parms: SM M1 Compute Stats, Diag. # 155 SIuice vol( 0 ): 6.900E+10 Parms: UU M1 Compute Stats, Diag. # 156 SIvice vol( 0 ): 6.750E+10 Parms: VV M1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 201 0.99000E+00 0.55659E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 201, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 202 0.99000E+00 0.52861E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 202, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 2 1 0.10000E+01 0.52861E-01 0.52945E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 203 0.99000E+00 0.51272E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 203, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 204 0.99000E+00 0.50767E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 204, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 4 1 0.10000E+01 0.50767E-01 0.55278E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 205 0.99000E+00 0.50031E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 205, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 206 0.99000E+00 0.49437E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 206, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 6 1 0.10000E+01 0.49437E-01 0.54225E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 207 0.99000E+00 0.48944E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 207, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 7 1 0.10000E+01 0.48944E-01 0.53504E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 208 0.99000E+00 0.47759E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 208, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 209 0.99000E+00 0.46773E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 209, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 210 0.99000E+00 0.46154E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 210, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 10 1 0.10000E+01 0.46154E-01 0.57641E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 211 0.99000E+00 0.43320E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 211, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 11 1 0.10000E+01 0.43320E-01 0.44029E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 212 0.99000E+00 0.41375E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 212, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 213 0.99000E+00 0.39767E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 213, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 14 214 0.99000E+00 0.39269E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 14 / 214, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 15 215 0.99000E+00 0.38815E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 15 / 215, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 16 216 0.99000E+00 0.35831E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 16 / 216, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 17 217 0.99000E+00 0.35170E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 17 / 217, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 18 218 0.99000E+00 0.32615E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 18 / 218, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 19 219 0.99000E+00 0.32091E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 19 / 219, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 20 220 0.99000E+00 0.30099E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 20 / 220, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 20 1 0.10000E+01 0.30099E-01 0.56155E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 21 221 0.99000E+00 0.28621E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 21 / 221, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 22 222 0.99000E+00 0.27878E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 22 / 222, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 23 223 0.90337E+00 0.26051E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 23 / 223, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 23 1 0.10000E+01 0.26051E-01 0.46706E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 23 2-0.50000E+00 0.26051E-01 0.26141E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 24 224 0.84175E+00 0.23225E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 24 / 224, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 24 1 0.10000E+01 0.23225E-01 0.69838E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 24 2-0.50000E+00 0.23225E-01 0.30371E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 25 225 0.83969E+00 0.20671E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 25 / 225, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 25 1 0.10000E+01 0.20671E-01 0.65908E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 25 2-0.50000E+00 0.20671E-01 0.41894E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 26 226 0.82316E+00 0.18156E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 26 / 226, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 26 1 0.10000E+01 0.18156E-01 0.59193E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 26 2-0.50000E+00 0.18156E-01 0.32825E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 27 227 0.82842E+00 0.16015E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 27 / 227, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 27 1 0.10000E+01 0.16015E-01 0.50116E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 28 228 0.78806E+00 0.13664E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 28 / 228, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 29 229 0.68543E+00 0.10622E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 29 / 229, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 29 1 0.10000E+01 0.10622E-01 0.50737E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 30 230 0.67124E+00 0.81431E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 30 / 230, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 30 1 0.10000E+01 0.81431E-02 0.83614E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 31 231 0.64610E+00 0.60858E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 31 / 231, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, facLS, JFNKresidual, resLoc = 31 1 0.10000E+01 0.60858E-02 0.19039E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 32 232 0.60667E+00 0.43614E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 32 / 232, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 33 233 0.56878E+00 0.29940E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 33 / 233, Nb. of FGMRES iterations = 7 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 34 234 0.60569E+00 0.21433E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 34 / 234, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 35 235 0.44617E+00 0.12515E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 35 / 235, Nb. of FGMRES iterations = 8 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 36 236 0.31672E+00 0.58148E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 36 / 236, Nb. of FGMRES iterations = 13 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 37 237 0.20500E+00 0.20216E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 37 / 237, Nb. of FGMRES iterations = 11 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 38 238 0.10000E+00 0.31361E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 38 / 238, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 39 239 0.10000E+00 0.29676E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 39 / 239, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 40 240 0.10000E+00 0.21988E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 40 / 240, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 41 241 0.10000E+00 0.13926E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 41 / 241, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 42 242 0.10000E+00 0.11606E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 42 / 242, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 43 243 0.10000E+00 0.96750E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 43 / 243, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 2 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 44 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 258 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 258 in timestep 2 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 2 (PID.TID 0000.0001) %MON seaice_time_sec = 3.6000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.8743384244851E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 3.1434267282459E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2685365267315E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 7.8572479021879E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 7.5718108922017E-05 (PID.TID 0000.0001) %MON seaice_vice_max = 1.4597935059468E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.2518453930568E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -1.5081255659693E-03 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.2466556792718E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 4.6115733714001E-05 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 3.6000000000000E+03 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.9372180792247E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9378991156833E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9993189635414E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0036850278107E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0082439400904E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0003360515282E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 2.5156326620130E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0023343737268E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 401 0.99000E+00 0.10953E-01 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 401, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 402 0.99000E+00 0.82146E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 402, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 403 0.99000E+00 0.71175E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 403, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 404 0.99000E+00 0.62167E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 404, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 405 0.79297E+00 0.53260E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 405, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 406 0.51329E+00 0.34143E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 406, Nb. of FGMRES iterations = 7 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 407 0.67401E+00 0.26247E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 407, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 408 0.50386E+00 0.16620E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 408, Nb. of FGMRES iterations = 8 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 409 0.39608E+00 0.89635E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 409, Nb. of FGMRES iterations = 8 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 410 0.26961E+00 0.37408E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 410, Nb. of FGMRES iterations = 11 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 411 0.12694E+00 0.94486E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 411, Nb. of FGMRES iterations = 15 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 412 0.10000E+00 0.80589E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 412, Nb. of FGMRES iterations = 16 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 413 0.10000E+00 0.63763E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 413, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 14 414 0.10000E+00 0.53016E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 14 / 414, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 15 415 0.10000E+00 0.49278E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 15 / 415, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 16 416 0.10000E+00 0.47813E-09 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 16 / 416, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 17 417 0.10000E+00 0.43635E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 17 / 417, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 3 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 18 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 175 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 175 in timestep 3 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 3 (PID.TID 0000.0001) %MON seaice_time_sec = 5.4000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.9120639703719E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 2.7696543769723E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2754011323878E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 7.9712661223631E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.0090403249739E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.5490791095437E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.2923393197748E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -1.4629763721882E-03 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.4113172770418E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 5.5442292908020E-05 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 5.4000000000000E+03 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.9308813978476E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9318960839147E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9989853139328E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0055169324232E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0123695858553E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0004928410138E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 2.7173212022099E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0034255146434E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= Computing Diagnostic # 155 SIuice Counter: 1 Parms: UU M1 Vector Mate for SIuice Diagnostic # 156 SIvice exists Computing Diagnostic # 156 SIvice Counter: 1 Parms: VV M1 Vector Mate for SIvice Diagnostic # 155 SIuice exists Computing Diagnostic # 149 SIheff Counter: 1 Parms: SM M1 Computing Diagnostic # 216 SI_Fract Counter: 1 Parms: SM P M1 Computing Diagnostic # 217 SI_Thick Counter: 1 Parms: SM PC M1 use Counter Mate for SI_Thick Diagnostic # 216 SI_Fract (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 601 0.99000E+00 0.91204E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 601, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 602 0.99000E+00 0.54444E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 602, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 603 0.70133E+00 0.42976E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 603, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 604 0.35010E+00 0.21348E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 604, Nb. of FGMRES iterations = 4 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 605 0.25838E+00 0.86602E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 605, Nb. of FGMRES iterations = 5 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 606 0.14606E+00 0.24018E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 606, Nb. of FGMRES iterations = 11 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 607 0.10000E+00 0.31384E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 607, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 608 0.10000E+00 0.31551E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 608, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 609 0.10000E+00 0.23379E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 609, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 610 0.10000E+00 0.22073E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 610, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 611 0.10000E+00 0.18993E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 611, Nb. of FGMRES iterations = 15 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 612 0.10000E+00 0.18275E-09 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 612, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 613 0.10000E+00 0.16187E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 613, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 4 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 14 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 147 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 147 in timestep 4 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 4 (PID.TID 0000.0001) %MON seaice_time_sec = 7.2000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.9288692426672E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 2.4201549882673E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2726544954150E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.0657041850005E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.3343919092839E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.6608417628208E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.3060998672480E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -1.3232395307652E-03 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.4862673606709E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 6.6513977804402E-05 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 7.2000000000000E+03 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.9245878780228E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9259271109367E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9986607670861E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0073396778046E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0164806232776E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0006510033366E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 2.8889190879901E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0045047813571E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 801 0.99000E+00 0.74596E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 801, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 802 0.99000E+00 0.40130E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 802, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 803 0.62779E+00 0.29422E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 803, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 804 0.42982E+00 0.16757E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 804, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 805 0.39287E+00 0.89887E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 805, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 806 0.20297E+00 0.31045E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 806, Nb. of FGMRES iterations = 11 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 807 0.10000E+00 0.62205E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 807, Nb. of FGMRES iterations = 14 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 808 0.10000E+00 0.49537E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 808, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 809 0.10000E+00 0.37962E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 809, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 810 0.10000E+00 0.34594E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 810, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 811 0.10000E+00 0.33830E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 811, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 812 0.10000E+00 0.28889E-09 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 812, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 813 0.10000E+00 0.26492E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 813, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 5 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 14 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 152 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 152 in timestep 5 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 5 (PID.TID 0000.0001) %MON seaice_time_sec = 9.0000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.9434187464337E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 2.1495728640178E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2697844798388E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.1528050896002E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.6001675492418E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.7571844469803E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.3158146418065E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -1.2006119828869E-03 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.5389005039947E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 8.0140903384205E-05 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 9.0000000000000E+03 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.9183281565711E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9199854798377E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9983426767334E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0091559240071E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0205833593146E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0008104799400E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 3.0398880859130E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0065298071228E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= Compute Stats, Diag. # 216 SI_Fract vol( 0 ): 2.780E+11 Parms: SM P M1 Compute Stats, Diag. # 217 SI_Thick vol( 0 ): 2.774E+11 Parms: SM PC M1 use Counter Mate # 216 SI_Fract vol( 0 ): 2.780E+11 integral 2.774E+11 Compute Stats, Diag. # 146 SIarea vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 149 SIheff vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 155 SIuice vol( 0 ): 2.760E+11 Parms: UU M1 Compute Stats, Diag. # 156 SIvice vol( 0 ): 2.700E+11 Parms: VV M1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 1001 0.99000E+00 0.61109E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 1001, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 1002 0.99000E+00 0.31219E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 1002, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 1003 0.56012E+00 0.21213E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 1003, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 1004 0.69671E+00 0.16671E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 1004, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 1005 0.31873E+00 0.77789E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 1005, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 1006 0.15379E+00 0.22329E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 1006, Nb. of FGMRES iterations = 13 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 1007 0.10000E+00 0.45984E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 1007, Nb. of FGMRES iterations = 16 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 1008 0.10000E+00 0.35125E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 1008, Nb. of FGMRES iterations = 16 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 1009 0.10000E+00 0.32577E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 1009, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 1010 0.10000E+00 0.29392E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 1010, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 1011 0.10000E+00 0.23554E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 1011, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 1012 0.10000E+00 0.23272E-09 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 1012, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 1013 0.10000E+00 0.22591E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 1013, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 6 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 14 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 155 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 155 in timestep 6 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 6 (PID.TID 0000.0001) %MON seaice_time_sec = 1.0800000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.9557915676692E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.9428268693220E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2671575837934E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.2321628449459E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.7812109259306E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.8359239891719E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.3262906048862E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -1.0886901987345E-03 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.5818318451862E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 9.6742176871102E-05 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 1.0800000000000E+04 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.9120967725799E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9140690916232E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9980276809566E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0109672154969E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0246810076361E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0009715523872E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 3.1768265038162E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0091554544188E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 1201 0.99000E+00 0.51184E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 1201, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 1202 0.99000E+00 0.27262E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 1202, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 1203 0.55377E+00 0.18384E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 1203, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 1204 0.39404E+00 0.98810E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 1204, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 1205 0.21533E+00 0.35498E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 1205, Nb. of FGMRES iterations = 7 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 1206 0.20107E+00 0.12183E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 1206, Nb. of FGMRES iterations = 9 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 1207 0.10000E+00 0.17637E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 1207, Nb. of FGMRES iterations = 16 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 1208 0.10000E+00 0.17405E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 1208, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 1209 0.10000E+00 0.14734E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 1209, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 1210 0.10000E+00 0.14135E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 1210, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 1211 0.10000E+00 0.11071E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 1211, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 1212 0.10000E+00 0.98761E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 1212, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 1213 0.10000E+00 0.93179E-11 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 1213, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 7 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 14 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 163 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 163 in timestep 7 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 7 (PID.TID 0000.0001) %MON seaice_time_sec = 1.2600000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.9663596743664E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.7700179464700E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2646451833498E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.3074471621059E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.9184018385419E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.9011182726080E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.3386396481674E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -9.7694262316479E-04 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.6183940400714E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 1.1581066530695E-04 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 1.2600000000000E+04 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.9058911688832E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9081767409690E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9977144279142E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0127742618695E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0287753298871E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0011341273180E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 3.3032524886470E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0121766078594E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 1401 0.99000E+00 0.43067E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 1401, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 1402 0.99000E+00 0.24109E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 1402, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 1403 0.58465E+00 0.16857E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 1403, Nb. of FGMRES iterations = 2 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 1404 0.41166E+00 0.93282E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 1404, Nb. of FGMRES iterations = 5 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 1405 0.26340E+00 0.38330E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 1405, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 1406 0.16828E+00 0.11683E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 1406, Nb. of FGMRES iterations = 13 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 1407 0.10000E+00 0.19275E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 1407, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 1408 0.10000E+00 0.15910E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 1408, Nb. of FGMRES iterations = 16 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 1409 0.10000E+00 0.14301E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 1409, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 1410 0.10000E+00 0.12207E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 1410, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 1411 0.10000E+00 0.10031E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 1411, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 1412 0.10000E+00 0.86365E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 1412, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 1413 0.10000E+00 0.77416E-11 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 1413, Nb. of FGMRES iterations = 22 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 8 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 14 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 165 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 165 in timestep 8 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 8 (PID.TID 0000.0001) %MON seaice_time_sec = 1.4400000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.9755676807505E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.6297042033576E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2622430202480E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.3791898598237E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 2.0219830174698E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.9568689963190E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.3877918237425E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -8.6817451656315E-04 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.6512879752051E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 1.3501548138195E-04 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 1.4400000000000E+04 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.8997075648496E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.9023050227596E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9974025420901E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0145781352840E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0328686475396E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0012983504665E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 3.4210792319560E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0155255158282E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 1601 0.99000E+00 0.36191E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 1601, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 1602 0.99000E+00 0.21502E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 1602, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 1603 0.55017E+00 0.14437E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 1603, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 1604 0.30690E+00 0.65687E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 1604, Nb. of FGMRES iterations = 8 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 1605 0.14102E+00 0.17796E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 1605, Nb. of FGMRES iterations = 15 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 1606 0.10000E+00 0.24321E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 1606, Nb. of FGMRES iterations = 16 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 1607 0.10000E+00 0.22479E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 1607, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 1608 0.10000E+00 0.19969E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 1608, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 1609 0.10000E+00 0.19442E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 1609, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 1610 0.10000E+00 0.17921E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 1610, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 1611 0.10000E+00 0.16449E-09 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 1611, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 1612 0.10000E+00 0.15743E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 1612, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 9 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 13 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 162 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 162 in timestep 9 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 9 (PID.TID 0000.0001) %MON seaice_time_sec = 1.6200000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.9840479235556E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.5110280382254E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2600030409539E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.4456879249817E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 2.0805057891168E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 2.0045466147737E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.4380274730277E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -7.7497253274533E-04 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.6826039379073E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 1.4783886621589E-04 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 1.6200000000000E+04 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.8935433356277E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.8964518073574E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9970915282703E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0163795777073E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0369620542949E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0014646949506E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 3.5317540530732E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0191951532146E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= Compute Stats, Diag. # 216 SI_Fract vol( 0 ): 2.780E+11 Parms: SM P M1 Compute Stats, Diag. # 217 SI_Thick vol( 0 ): 2.764E+11 Parms: SM PC M1 use Counter Mate # 216 SI_Fract vol( 0 ): 2.780E+11 integral 2.764E+11 Compute Stats, Diag. # 146 SIarea vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 149 SIheff vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 155 SIuice vol( 0 ): 2.760E+11 Parms: UU M1 Compute Stats, Diag. # 156 SIvice vol( 0 ): 2.700E+11 Parms: VV M1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 1801 0.99000E+00 0.34278E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 1801, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 1802 0.99000E+00 0.20692E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 1802, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 1803 0.52503E+00 0.13466E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 1803, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 1804 0.33229E+00 0.64604E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 1804, Nb. of FGMRES iterations = 7 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 1805 0.18844E+00 0.21235E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 1805, Nb. of FGMRES iterations = 15 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 1806 0.10000E+00 0.29975E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 1806, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 1807 0.10000E+00 0.22931E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 1807, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 1808 0.10000E+00 0.22111E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 1808, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 1809 0.10000E+00 0.19139E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 1809, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 1810 0.10000E+00 0.17183E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 1810, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 1811 0.10000E+00 0.15502E-09 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 1811, Nb. of FGMRES iterations = 22 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 1812 0.10000E+00 0.12070E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 1812, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 10 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 13 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 163 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 163 in timestep 10 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 10 (PID.TID 0000.0001) %MON seaice_time_sec = 1.8000000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.9921968015612E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.4075364327971E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2578908940800E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.5081396848136E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 2.1073040776791E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 2.0452365938622E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.4803614522496E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -6.9941682070351E-04 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.7125518165080E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 1.5427270284641E-04 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 1.8000000000000E+04 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.8873968993350E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.8906159160909E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9967809832441E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0181790309401E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0410564113693E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0016332856856E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 3.6366336775719E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0231510077699E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 2001 0.99000E+00 0.35506E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 2001, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 2002 0.99000E+00 0.19897E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 2002, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 2003 0.52034E+00 0.12872E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 2003, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 2004 0.35568E+00 0.64618E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 2004, Nb. of FGMRES iterations = 6 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 2005 0.23852E+00 0.24852E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 2005, Nb. of FGMRES iterations = 10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 2006 0.13111E+00 0.64140E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 2006, Nb. of FGMRES iterations = 12 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 2007 0.10000E+00 0.70708E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 2007, Nb. of FGMRES iterations = 17 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 2008 0.10000E+00 0.62690E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 2008, Nb. of FGMRES iterations = 18 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 2009 0.10000E+00 0.59871E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 2009, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 2010 0.10000E+00 0.57919E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 2010, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 2011 0.10000E+00 0.49959E-09 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 2011, Nb. of FGMRES iterations = 22 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 2012 0.10000E+00 0.41216E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 2012, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 13 2013 0.10000E+00 0.41124E-11 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 13 / 2013, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 11 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 14 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 171 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 171 in timestep 11 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 11 (PID.TID 0000.0001) %MON seaice_time_sec = 1.9800000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 7.0001186010923E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.3160136359025E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2558772475168E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.5675219731328E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 2.1179167117476E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 2.0802636000253E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.5147415929820E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -6.3680638268280E-04 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.7411336295285E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 1.5732890484456E-04 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 1.9800000000000E+04 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.8812670973149E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.8847966928169E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9964704044980E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0199768158140E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0451524191447E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0018041559724E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 3.7366857892521E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0273767499120E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 1 2201 0.99000E+00 0.36152E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 1 / 2201, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 2 2202 0.99000E+00 0.19225E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 2 / 2202, Nb. of FGMRES iterations = 1 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 3 2203 0.50855E+00 0.12249E-02 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 3 / 2203, Nb. of FGMRES iterations = 3 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 4 2204 0.36810E+00 0.62914E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 4 / 2204, Nb. of FGMRES iterations = 5 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 5 2205 0.20751E+00 0.22052E-03 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 5 / 2205, Nb. of FGMRES iterations = 13 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 6 2206 0.10000E+00 0.43783E-04 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 6 / 2206, Nb. of FGMRES iterations = 14 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 7 2207 0.10000E+00 0.38794E-05 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 7 / 2207, Nb. of FGMRES iterations = 16 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 8 2208 0.10000E+00 0.37026E-06 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 8 / 2208, Nb. of FGMRES iterations = 19 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 9 2209 0.10000E+00 0.36985E-07 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 9 / 2209, Nb. of FGMRES iterations = 20 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 10 2210 0.10000E+00 0.30344E-08 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 10 / 2210, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 11 2211 0.10000E+00 0.26320E-09 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 11 / 2211, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total, JFNKgamma_lin, initial norm = 12 2212 0.10000E+00 0.24141E-10 (PID.TID 0000.0001) S/R SEAICE_JFNK: Newton iterate / total = 12 / 2212, Nb. of FGMRES iterations = 21 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %JFNK_MON: time step = 12 (PID.TID 0000.0001) %JFNK_MON: Nb. of time steps = 1 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton steps = 13 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov steps = 155 (PID.TID 0000.0001) %JFNK_MON: Nb. of Newton failures = 0 (PID.TID 0000.0001) %JFNK_MON: Nb. of Krylov failures = 0 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End JFNK statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) S/R SEAICE_JFNK: Total number FGMRES iterations = 155 in timestep 12 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 12 (PID.TID 0000.0001) %MON seaice_time_sec = 2.1600000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 7.0078281779279E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.2345486022649E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 5.2539464056980E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.6243733195215E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 2.1248295056058E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 2.1105554438495E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.5416876645337E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -5.8084327230900E-04 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.7681648419713E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 1.5879136498135E-04 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON thSI_time_sec = 2.1600000000000E+04 (PID.TID 0000.0001) %MON thSI_Ice_Area_G = 6.8751528006476E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_S = 2.8789933711175E+10 (PID.TID 0000.0001) %MON thSI_Ice_Area_N = 3.9961594295302E+10 (PID.TID 0000.0001) %MON thSI_IceH_ave_G = 2.0217732467983E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_S = 2.0492508423542E-01 (PID.TID 0000.0001) %MON thSI_IceH_ave_N = 2.0019772859878E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_S = 3.8325483875023E-01 (PID.TID 0000.0001) %MON thSI_IceH_max_N = 2.0318509304844E-01 (PID.TID 0000.0001) %MON thSI_SnwH_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_SnwH_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tsrf_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic1_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_G = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_ave_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_min_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_S = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_Tic2_max_N = 0.0000000000000E+00 (PID.TID 0000.0001) %MON thSI_TotEnerg_G = -4.1574014390118E+18 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR Therm.SeaIce statistics (PID.TID 0000.0001) // ======================================================= Compute Stats, Diag. # 216 SI_Fract vol( 0 ): 2.085E+11 Parms: SM P M1 Compute Stats, Diag. # 217 SI_Thick vol( 0 ): 2.066E+11 Parms: SM PC M1 use Counter Mate # 216 SI_Fract vol( 0 ): 2.085E+11 integral 2.066E+11 Compute Stats, Diag. # 146 SIarea vol( 0 ): 2.085E+11 Parms: SM M1 Compute Stats, Diag. # 149 SIheff vol( 0 ): 2.085E+11 Parms: SM M1 Compute Stats, Diag. # 155 SIuice vol( 0 ): 2.070E+11 Parms: UU M1 Compute Stats, Diag. # 156 SIvice vol( 0 ): 2.025E+11 Parms: VV M1 (PID.TID 0000.0001) DIAGSTATS_CLOSE_IO: close file: iceStDiag.0000000000.txt , unit= 9 (PID.TID 0000.0001) %CHECKPOINT 12 ckptA (PID.TID 0000.0001) Seconds in section "ALL [THE_MODEL_MAIN]": (PID.TID 0000.0001) User time: 179.95764858298935 (PID.TID 0000.0001) System time: 2.89960000663995743E-002 (PID.TID 0000.0001) Wall clock time: 180.41772890090942 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "INITIALISE_FIXED [THE_MODEL_MAIN]": (PID.TID 0000.0001) User time: 4.59930005017668009E-002 (PID.TID 0000.0001) System time: 5.99899981170892715E-003 (PID.TID 0000.0001) Wall clock time: 5.15110492706298828E-002 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "THE_MAIN_LOOP [THE_MODEL_MAIN]": (PID.TID 0000.0001) User time: 179.91165558248758 (PID.TID 0000.0001) System time: 2.29970002546906471E-002 (PID.TID 0000.0001) Wall clock time: 180.36617183685303 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "INITIALISE_VARIA [THE_MAIN_LOOP]": (PID.TID 0000.0001) User time: 3.59949991106987000E-002 (PID.TID 0000.0001) System time: 4.99999988824129105E-003 (PID.TID 0000.0001) Wall clock time: 4.08878326416015625E-002 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "MAIN LOOP [THE_MAIN_LOOP]": (PID.TID 0000.0001) User time: 179.87566058337688 (PID.TID 0000.0001) System time: 1.79970003664493561E-002 (PID.TID 0000.0001) Wall clock time: 180.32525181770325 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "MAIN_DO_LOOP [THE_MAIN_LOOP]": (PID.TID 0000.0001) User time: 179.87466876208782 (PID.TID 0000.0001) System time: 1.79970003664493561E-002 (PID.TID 0000.0001) Wall clock time: 180.32511687278748 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "FORWARD_STEP [MAIN_DO_LOOP]": (PID.TID 0000.0001) User time: 179.87466876208782 (PID.TID 0000.0001) System time: 1.79970003664493561E-002 (PID.TID 0000.0001) Wall clock time: 180.32487082481384 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_STATEVARS_DIAGS [FORWARD_STEP]": (PID.TID 0000.0001) User time: 2.60144248604774475E-002 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 2.74360179901123047E-002 (PID.TID 0000.0001) No. starts: 36 (PID.TID 0000.0001) No. stops: 36 (PID.TID 0000.0001) Seconds in section "LOAD_FIELDS_DRIVER [FORWARD_STEP]": (PID.TID 0000.0001) User time: 9.59663093090057373E-002 (PID.TID 0000.0001) System time: 9.98999923467636108E-004 (PID.TID 0000.0001) Wall clock time: 9.51576232910156250E-002 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "EXF_GETFORCING [LOAD_FLDS_DRIVER]": (PID.TID 0000.0001) User time: 9.59663093090057373E-002 (PID.TID 0000.0001) System time: 9.98999923467636108E-004 (PID.TID 0000.0001) Wall clock time: 9.46581363677978516E-002 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "EXTERNAL_FLDS_LOAD [LOAD_FLDS_DRIVER]": (PID.TID 0000.0001) User time: 0.0000000000000000 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 1.28746032714843750E-004 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_ATMOSPHERIC_PHYS [FORWARD_STEP]": (PID.TID 0000.0001) User time: 0.0000000000000000 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 1.24216079711914063E-004 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_OCEANIC_PHYS [FORWARD_STEP]": (PID.TID 0000.0001) User time: 179.65369472652674 (PID.TID 0000.0001) System time: 1.39979999512434006E-002 (PID.TID 0000.0001) Wall clock time: 180.09847068786621 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "THSICE_MAIN [DO_OCEANIC_PHYS]": (PID.TID 0000.0001) User time: 2.30056345462799072E-002 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 2.18927860260009766E-002 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "SEAICE_MODEL [DO_OCEANIC_PHYS]": (PID.TID 0000.0001) User time: 179.61368889361620 (PID.TID 0000.0001) System time: 1.39979999512434006E-002 (PID.TID 0000.0001) Wall clock time: 180.06203103065491 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "SEAICE_DYNSOLVER [SEAICE_MODEL]": (PID.TID 0000.0001) User time: 179.46969551593065 (PID.TID 0000.0001) System time: 1.39979999512434006E-002 (PID.TID 0000.0001) Wall clock time: 179.91331291198730 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "BLOCKING_EXCHANGES [FORWARD_STEP]": (PID.TID 0000.0001) User time: 4.98962402343750000E-003 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 4.81390953063964844E-003 (PID.TID 0000.0001) No. starts: 24 (PID.TID 0000.0001) No. stops: 24 (PID.TID 0000.0001) Seconds in section "THERMODYNAMICS [FORWARD_STEP]": (PID.TID 0000.0001) User time: 4.00543212890625000E-003 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 5.15174865722656250E-003 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "TRC_CORRECTION_STEP [FORWARD_STEP]": (PID.TID 0000.0001) User time: 0.0000000000000000 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 1.32799148559570313E-004 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "MONITOR [FORWARD_STEP]": (PID.TID 0000.0001) User time: 0.0000000000000000 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 1.37805938720703125E-004 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_THE_MODEL_IO [FORWARD_STEP]": (PID.TID 0000.0001) User time: 8.09726715087890625E-002 (PID.TID 0000.0001) System time: 3.00000049173831940E-003 (PID.TID 0000.0001) Wall clock time: 8.50868225097656250E-002 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_WRITE_PICKUP [FORWARD_STEP]": (PID.TID 0000.0001) User time: 6.01196289062500000E-003 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 6.57391548156738281E-003 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // Tile <-> Tile communication statistics (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // o Tile number: 000001 (PID.TID 0000.0001) // No. X exchanges = 0 (PID.TID 0000.0001) // Max. X spins = 0 (PID.TID 0000.0001) // Min. X spins = 1000000000 (PID.TID 0000.0001) // Total. X spins = 0 (PID.TID 0000.0001) // Avg. X spins = 0.00E+00 (PID.TID 0000.0001) // No. Y exchanges = 0 (PID.TID 0000.0001) // Max. Y spins = 0 (PID.TID 0000.0001) // Min. Y spins = 1000000000 (PID.TID 0000.0001) // Total. Y spins = 0 (PID.TID 0000.0001) // Avg. Y spins = 0.00E+00 (PID.TID 0000.0001) // o Tile number: 000002 (PID.TID 0000.0001) // No. X exchanges = 0 (PID.TID 0000.0001) // Max. X spins = 0 (PID.TID 0000.0001) // Min. X spins = 1000000000 (PID.TID 0000.0001) // Total. X spins = 0 (PID.TID 0000.0001) // Avg. X spins = 0.00E+00 (PID.TID 0000.0001) // No. Y exchanges = 0 (PID.TID 0000.0001) // Max. Y spins = 0 (PID.TID 0000.0001) // Min. Y spins = 1000000000 (PID.TID 0000.0001) // Total. Y spins = 0 (PID.TID 0000.0001) // Avg. Y spins = 0.00E+00 (PID.TID 0000.0001) // o Tile number: 000003 (PID.TID 0000.0001) // No. X exchanges = 0 (PID.TID 0000.0001) // Max. X spins = 0 (PID.TID 0000.0001) // Min. X spins = 1000000000 (PID.TID 0000.0001) // Total. X spins = 0 (PID.TID 0000.0001) // Avg. X spins = 0.00E+00 (PID.TID 0000.0001) // No. Y exchanges = 0 (PID.TID 0000.0001) // Max. Y spins = 0 (PID.TID 0000.0001) // Min. Y spins = 1000000000 (PID.TID 0000.0001) // Total. Y spins = 0 (PID.TID 0000.0001) // Avg. Y spins = 0.00E+00 (PID.TID 0000.0001) // o Tile number: 000004 (PID.TID 0000.0001) // No. X exchanges = 0 (PID.TID 0000.0001) // Max. X spins = 0 (PID.TID 0000.0001) // Min. X spins = 1000000000 (PID.TID 0000.0001) // Total. X spins = 0 (PID.TID 0000.0001) // Avg. X spins = 0.00E+00 (PID.TID 0000.0001) // No. Y exchanges = 0 (PID.TID 0000.0001) // Max. Y spins = 0 (PID.TID 0000.0001) // Min. Y spins = 1000000000 (PID.TID 0000.0001) // Total. Y spins = 0 (PID.TID 0000.0001) // Avg. Y spins = 0.00E+00 (PID.TID 0000.0001) // o Thread number: 000001 (PID.TID 0000.0001) // No. barriers = 44328 (PID.TID 0000.0001) // Max. barrier spins = 1 (PID.TID 0000.0001) // Min. barrier spins = 1 (PID.TID 0000.0001) // Total barrier spins = 44328 (PID.TID 0000.0001) // Avg. barrier spins = 1.00E+00 PROGRAM MAIN: Execution ended Normally