(PID.TID 0000.0001) (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // MITgcm UV (PID.TID 0000.0001) // ========= (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // execution environment starting up... (PID.TID 0000.0001) (PID.TID 0000.0001) // MITgcmUV version: checkpoint67t (PID.TID 0000.0001) // Build user: jm_c (PID.TID 0000.0001) // Build host: villon (PID.TID 0000.0001) // Build date: Fri Dec 11 09:34:37 EST 2020 (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Execution Environment parameter file "eedata" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># Example "eedata" file (PID.TID 0000.0001) ># Lines beginning "#" are comments (PID.TID 0000.0001) ># nTx - No. threads per process in X (PID.TID 0000.0001) ># nTy - No. threads per process in Y (PID.TID 0000.0001) > &EEPARMS (PID.TID 0000.0001) > nTx=1, (PID.TID 0000.0001) > nTy=1, (PID.TID 0000.0001) > / (PID.TID 0000.0001) ># Note: Some systems use & as the namelist terminator (as shown here). (PID.TID 0000.0001) ># Other systems use a / character. (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Computational Grid Specification ( see files "SIZE.h" ) (PID.TID 0000.0001) // ( and "eedata" ) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) nPx = 1 ; /* No. processes in X */ (PID.TID 0000.0001) nPy = 1 ; /* No. processes in Y */ (PID.TID 0000.0001) nSx = 2 ; /* No. tiles in X per process */ (PID.TID 0000.0001) nSy = 2 ; /* No. tiles in Y per process */ (PID.TID 0000.0001) sNx = 40 ; /* Tile size in X */ (PID.TID 0000.0001) sNy = 21 ; /* Tile size in Y */ (PID.TID 0000.0001) OLx = 3 ; /* Tile overlap distance in X */ (PID.TID 0000.0001) OLy = 3 ; /* Tile overlap distance in Y */ (PID.TID 0000.0001) nTx = 1 ; /* No. threads in X per process */ (PID.TID 0000.0001) nTy = 1 ; /* No. threads in Y per process */ (PID.TID 0000.0001) Nr = 1 ; /* No. levels in the vertical */ (PID.TID 0000.0001) Nx = 80 ; /* Total domain size in X ( = nPx*nSx*sNx ) */ (PID.TID 0000.0001) Ny = 42 ; /* Total domain size in Y ( = nPy*nSy*sNy ) */ (PID.TID 0000.0001) nTiles = 4 ; /* Total no. tiles per process ( = nSx*nSy ) */ (PID.TID 0000.0001) nProcs = 1 ; /* Total no. processes ( = nPx*nPy ) */ (PID.TID 0000.0001) nThreads = 1 ; /* Total no. threads per process ( = nTx*nTy ) */ (PID.TID 0000.0001) usingMPI = F ; /* Flag used to control whether MPI is in use */ (PID.TID 0000.0001) /* note: To execute a program with MPI calls */ (PID.TID 0000.0001) /* it must be launched appropriately e.g */ (PID.TID 0000.0001) /* "mpirun -np 64 ......" */ (PID.TID 0000.0001) useCoupler= F ; /* Flag used to control communications with */ (PID.TID 0000.0001) /* other model components, through a coupler */ (PID.TID 0000.0001) useNest2W_parent = F ;/* Control 2-W Nesting comm */ (PID.TID 0000.0001) useNest2W_child = F ;/* Control 2-W Nesting comm */ (PID.TID 0000.0001) debugMode = F ; /* print debug msg. (sequence of S/R calls) */ (PID.TID 0000.0001) printMapIncludesZeros= F ; /* print zeros in Std.Output maps */ (PID.TID 0000.0001) maxLengthPrt1D= 65 /* maxLength of 1D array printed to StdOut */ (PID.TID 0000.0001) (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // Mapping of tiles to threads (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // -o- Thread 1, tiles ( 1: 2, 1: 2) (PID.TID 0000.0001) (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // Tile <-> Tile connectvity table (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // Tile number: 000001 (process no. = 000000) (PID.TID 0000.0001) // WEST: Tile = 000002, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000001 (PID.TID 0000.0001) // EAST: Tile = 000002, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000001 (PID.TID 0000.0001) // SOUTH: Tile = 000003, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000002 (PID.TID 0000.0001) // NORTH: Tile = 000003, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000002 (PID.TID 0000.0001) // Tile number: 000002 (process no. = 000000) (PID.TID 0000.0001) // WEST: Tile = 000001, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000001 (PID.TID 0000.0001) // EAST: Tile = 000001, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000001 (PID.TID 0000.0001) // SOUTH: Tile = 000004, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000002 (PID.TID 0000.0001) // NORTH: Tile = 000004, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000002 (PID.TID 0000.0001) // Tile number: 000003 (process no. = 000000) (PID.TID 0000.0001) // WEST: Tile = 000004, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000002 (PID.TID 0000.0001) // EAST: Tile = 000004, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000002 (PID.TID 0000.0001) // SOUTH: Tile = 000001, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000001 (PID.TID 0000.0001) // NORTH: Tile = 000001, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000001 (PID.TID 0000.0001) // Tile number: 000004 (process no. = 000000) (PID.TID 0000.0001) // WEST: Tile = 000003, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000002 (PID.TID 0000.0001) // EAST: Tile = 000003, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000001, bj = 000002 (PID.TID 0000.0001) // SOUTH: Tile = 000002, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000001 (PID.TID 0000.0001) // NORTH: Tile = 000002, Process = 000000, Comm = put (PID.TID 0000.0001) // bi = 000002, bj = 000001 (PID.TID 0000.0001) (PID.TID 0000.0001) INI_PARMS: opening model parameter file "data" (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># ==================== (PID.TID 0000.0001) ># | Model parameters | (PID.TID 0000.0001) ># ==================== (PID.TID 0000.0001) ># (PID.TID 0000.0001) > &PARM01 (PID.TID 0000.0001) > tRef= -1.62, (PID.TID 0000.0001) > sRef= 30., (PID.TID 0000.0001) > no_slip_sides=.FALSE., (PID.TID 0000.0001) > no_slip_bottom=.TRUE., (PID.TID 0000.0001) >#bottomDragLinear=1.E-3, (PID.TID 0000.0001) > bottomDragQuadratic=5.E-3, (PID.TID 0000.0001) > viscAr=3.E-2, (PID.TID 0000.0001) > viscAh=3.E+2, (PID.TID 0000.0001) > HeatCapacity_Cp = 3986., (PID.TID 0000.0001) > rhoNil = 1030., (PID.TID 0000.0001) > rhoConstFresh = 1000., (PID.TID 0000.0001) > eosType='LINEAR', (PID.TID 0000.0001) > tAlpha=2.E-4, (PID.TID 0000.0001) > sBeta= 0., (PID.TID 0000.0001) > staggerTimeStep=.TRUE., (PID.TID 0000.0001) > saltStepping=.FALSE., (PID.TID 0000.0001) >#tempStepping=.FALSE., (PID.TID 0000.0001) > tempAdvection=.FALSE., (PID.TID 0000.0001) > momStepping=.FALSE., (PID.TID 0000.0001) >#f0=1.e-4, (PID.TID 0000.0001) > f0=0.e-4, (PID.TID 0000.0001) > beta=0., (PID.TID 0000.0001) > useJamartWetPoints=.TRUE., (PID.TID 0000.0001) > rigidLid=.FALSE., (PID.TID 0000.0001) > implicitFreeSurface=.TRUE., (PID.TID 0000.0001) >#exactConserv=.TRUE., (PID.TID 0000.0001) > convertFW2Salt=-1, (PID.TID 0000.0001) > readBinaryPrec=64, (PID.TID 0000.0001) > writeBinaryPrec=64, (PID.TID 0000.0001) >#globalFiles=.TRUE., (PID.TID 0000.0001) > useSingleCpuIO=.TRUE., (PID.TID 0000.0001) >#debugLevel=4, (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># Elliptic solver parameters (PID.TID 0000.0001) > &PARM02 (PID.TID 0000.0001) > cg2dMaxIters=500, (PID.TID 0000.0001) > cg2dTargetResidual=1.E-12, (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># Time stepping parameters (PID.TID 0000.0001) > &PARM03 (PID.TID 0000.0001) > startTime=0.0, (PID.TID 0000.0001) >#endTime=432000., (PID.TID 0000.0001) > deltaT=1800.0, (PID.TID 0000.0001) > abEps=0.1, (PID.TID 0000.0001) > forcing_In_AB = .FALSE., (PID.TID 0000.0001) > pChkptFreq=3600000., (PID.TID 0000.0001) > dumpFreq = 864000., (PID.TID 0000.0001) > monitorSelect=2, (PID.TID 0000.0001) > nTimeSteps=12, (PID.TID 0000.0001) > monitorFreq=21600., (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># Gridding parameters (PID.TID 0000.0001) > &PARM04 (PID.TID 0000.0001) > usingCartesianGrid=.TRUE., (PID.TID 0000.0001) > delX=80*5.E3, (PID.TID 0000.0001) > delY=42*5.E3, (PID.TID 0000.0001) > ygOrigin=-110.E3, (PID.TID 0000.0001) >#delR= 20., 30., 50., (PID.TID 0000.0001) > delR= 10., (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># Input datasets (PID.TID 0000.0001) > &PARM05 (PID.TID 0000.0001) > bathyFile = 'bathy_3c.bin', (PID.TID 0000.0001) > uVelInitFile = 'uVel_3c0.bin', (PID.TID 0000.0001) > vVelInitFile = 'vVel_3c0.bin', (PID.TID 0000.0001) > pSurfInitFile = 'eta_3c0.bin', (PID.TID 0000.0001) >#uVelInitFile = 'uVel_3c1.bin', (PID.TID 0000.0001) >#vVelInitFile = 'vVel_3c1.bin', (PID.TID 0000.0001) >#pSurfInitFile = 'eta_3c1.bin', (PID.TID 0000.0001) >#bathyFile = 'channel.bin', (PID.TID 0000.0001) >#uVelInitFile = 'const+40.bin', (PID.TID 0000.0001) >#vVelInitFile = 'const-10.bin', (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) INI_PARMS ; starts to read PARM01 (PID.TID 0000.0001) INI_PARMS ; read PARM01 : OK (PID.TID 0000.0001) INI_PARMS ; starts to read PARM02 (PID.TID 0000.0001) INI_PARMS ; read PARM02 : OK (PID.TID 0000.0001) INI_PARMS ; starts to read PARM03 (PID.TID 0000.0001) INI_PARMS ; read PARM03 : OK (PID.TID 0000.0001) INI_PARMS ; starts to read PARM04 (PID.TID 0000.0001) INI_PARMS ; read PARM04 : OK (PID.TID 0000.0001) INI_PARMS ; starts to read PARM05 (PID.TID 0000.0001) INI_PARMS ; read PARM05 : OK (PID.TID 0000.0001) INI_PARMS: finished reading file "data" (PID.TID 0000.0001) PACKAGES_BOOT: opening data.pkg (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.pkg (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.pkg" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># Packages (PID.TID 0000.0001) > &PACKAGES (PID.TID 0000.0001) > useEXF = .TRUE., (PID.TID 0000.0001) > useSEAICE = .TRUE., (PID.TID 0000.0001) ># useThSIce = .TRUE., (PID.TID 0000.0001) > useDiagnostics=.TRUE., (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) PACKAGES_BOOT: finished reading data.pkg (PID.TID 0000.0001) ** WARNING ** PACKAGES_BOOT: useCAL no longer set to T when using EXF (useEXF=T) (PID.TID 0000.0001) ** WARNING ** PACKAGES_BOOT: as it used to be before checkpoint66d (2017/02/13) (PID.TID 0000.0001) PACKAGES_BOOT: On/Off package Summary -------- pkgs with a standard "usePKG" On/Off switch in "data.pkg": -------- pkg/cal compiled but not used ( useCAL = F ) pkg/exf compiled and used ( useEXF = T ) pkg/seaice compiled and used ( useSEAICE = T ) pkg/diagnostics compiled and used ( useDiagnostics = T ) -------- pkgs without standard "usePKG" On/Off switch in "data.pkg": -------- pkg/generic_advdiff compiled and used ( useGAD = T ) pkg/mom_common compiled but not used ( momStepping = F ) pkg/mom_vecinv compiled but not used ( +vectorInvariantMomentum = F ) pkg/mom_fluxform compiled but not used ( & not vectorInvariantMom = F ) pkg/monitor compiled and used ( monitorFreq > 0. = T ) pkg/debug compiled but not used ( debugMode = F ) pkg/rw compiled and used pkg/mdsio compiled and used (PID.TID 0000.0001) PACKAGES_BOOT: End of package Summary (PID.TID 0000.0001) (PID.TID 0000.0001) EXF_READPARMS: opening data.exf (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.exf (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.exf" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) ># External Forcing Data (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) > &EXF_NML_01 (PID.TID 0000.0001) ># (PID.TID 0000.0001) > useExfCheckRange = .TRUE., (PID.TID 0000.0001) >#repeatPeriod = 2635200.0, (PID.TID 0000.0001) > exf_iprec = 64, (PID.TID 0000.0001) > exf_monFreq = 86400000., (PID.TID 0000.0001) >#useRelativeWind = .TRUE., (PID.TID 0000.0001) ># (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) > &EXF_NML_02 (PID.TID 0000.0001) ># (PID.TID 0000.0001) > atempperiod = 0.0, (PID.TID 0000.0001) > aqhperiod = 0.0, (PID.TID 0000.0001) ># (PID.TID 0000.0001) > uwindperiod = 0.0, (PID.TID 0000.0001) > vwindperiod = 0.0, (PID.TID 0000.0001) ># (PID.TID 0000.0001) > precipperiod = 0.0, (PID.TID 0000.0001) > swdownperiod = 0.0, (PID.TID 0000.0001) > lwdownperiod = 0.0, (PID.TID 0000.0001) ># (PID.TID 0000.0001) > climsstperiod = 0.0, (PID.TID 0000.0001) > climsstTauRelax = 2592000., (PID.TID 0000.0001) ># (PID.TID 0000.0001) > climsssperiod = 0.0, (PID.TID 0000.0001) >#climsssTauRelax = 2592000., (PID.TID 0000.0001) ># (PID.TID 0000.0001) > atempfile = 'tair_4x.bin', (PID.TID 0000.0001) > aqhfile = 'qa70_4x.bin', (PID.TID 0000.0001) > uwindfile = 'windx.bin', (PID.TID 0000.0001) >#vwindfile = 'windy.bin', (PID.TID 0000.0001) > precipfile = 'const_00.bin', (PID.TID 0000.0001) > lwdownfile = 'dlw_250.bin', (PID.TID 0000.0001) > swdownfile = 'dsw_100.bin', (PID.TID 0000.0001) > runoffFile = ' ' (PID.TID 0000.0001) > climsstfile = 'tocn.bin', (PID.TID 0000.0001) >#climsssfile = 'socn.bin', (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) > &EXF_NML_03 (PID.TID 0000.0001) >#exf_offset_atemp=5; (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) ># old open64 compiler (4.2.1) cannot skip this namelist to read in the next one; (PID.TID 0000.0001) ># comment out this namelist (not read). (PID.TID 0000.0001) >#&EXF_NML_04 (PID.TID 0000.0001) >#& (PID.TID 0000.0001) > (PID.TID 0000.0001) ># ********************* (PID.TID 0000.0001) > &EXF_NML_OBCS (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) EXF_READPARMS: reading EXF_NML_01 (PID.TID 0000.0001) EXF_READPARMS: reading EXF_NML_02 (PID.TID 0000.0001) EXF_READPARMS: reading EXF_NML_03 (PID.TID 0000.0001) EXF_READPARMS: finished reading data.exf (PID.TID 0000.0001) (PID.TID 0000.0001) SEAICE_READPARMS: opening data.seaice (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.seaice (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.seaice" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># SEAICE parameters (PID.TID 0000.0001) > &SEAICE_PARM01 (PID.TID 0000.0001) >#usePW79thermodynamics=.FALSE., (PID.TID 0000.0001) > SEAICErestoreUnderIce=.TRUE., (PID.TID 0000.0001) > SEAICE_no_Slip = .FALSE., (PID.TID 0000.0001) > LSR_ERROR = 1.E-12, (PID.TID 0000.0001) > SEAICElinearIterMax= 1500, (PID.TID 0000.0001) > LSR_mixIniGuess = 1, (PID.TID 0000.0001) > SEAICEadvScheme = 77, (PID.TID 0000.0001) > AreaFile = 'const100.bin', (PID.TID 0000.0001) > HeffFile = 'heff_quartic.bin', (PID.TID 0000.0001) > HsnowFile = 'const_00.bin', (PID.TID 0000.0001) > SEAICEwriteState = .TRUE., (PID.TID 0000.0001) > SEAICE_monFreq = 1800., (PID.TID 0000.0001) ># ridging (PID.TID 0000.0001) > SEAICEsimpleRidging = .FALSE., (PID.TID 0000.0001) > useHibler79IceStrength = .FALSE., (PID.TID 0000.0001) > SEAICE_cf = 2., (PID.TID 0000.0001) > SEAICEredistFunc = 0, (PID.TID 0000.0001) > SEAICEpartFunc = 0, (PID.TID 0000.0001) ># old defaults (PID.TID 0000.0001) > SEAICEscaleSurfStress = .FALSE., (PID.TID 0000.0001) > SEAICEetaZmethod = 0, (PID.TID 0000.0001) > SEAICE_drag = 0.002, (PID.TID 0000.0001) > SEAICE_waterDrag = 0.005339805825242718, (PID.TID 0000.0001) > SEAICE_Olx = 0, (PID.TID 0000.0001) > SEAICE_Oly = 0, (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) > &SEAICE_PARM03 (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) SEAICE_READPARMS: finished reading data.seaice (PID.TID 0000.0001) DIAGNOSTICS_READPARMS: opening data.diagnostics (PID.TID 0000.0001) OPEN_COPY_DATA_FILE: opening file data.diagnostics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Parameter file "data.diagnostics" (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) ># Diagnostic Package Choices (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) ># dumpAtLast (logical): always write output at the end of simulation (default=F) (PID.TID 0000.0001) ># diag_mnc (logical): write to NetCDF files (default=useMNC) (PID.TID 0000.0001) >#--for each output-stream: (PID.TID 0000.0001) ># fileName(n) : prefix of the output file name (max 80c long) for outp.stream n (PID.TID 0000.0001) ># frequency(n):< 0 : write snap-shot output every |frequency| seconds (PID.TID 0000.0001) ># > 0 : write time-average output every frequency seconds (PID.TID 0000.0001) ># timePhase(n) : write at time = timePhase + multiple of |frequency| (PID.TID 0000.0001) ># averagingFreq : frequency (in s) for periodic averaging interval (PID.TID 0000.0001) ># averagingPhase : phase (in s) for periodic averaging interval (PID.TID 0000.0001) ># repeatCycle : number of averaging intervals in 1 cycle (PID.TID 0000.0001) ># levels(:,n) : list of levels to write to file (Notes: declared as REAL) (PID.TID 0000.0001) ># when this entry is missing, select all common levels of this list (PID.TID 0000.0001) ># fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n (PID.TID 0000.0001) ># (see "available_diagnostics.log" file for the full list of diags) (PID.TID 0000.0001) ># missing_value(n) : missing value for real-type fields in output file "n" (PID.TID 0000.0001) ># fileFlags(n) : specific code (8c string) for output file "n" (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) ># This example dumps EXF diagnostics as snapshot after 10 time-steps (PID.TID 0000.0001) ># Note: EXF air-sea fluxes over Sea-Ice are wrong (PID.TID 0000.0001) > &DIAGNOSTICS_LIST (PID.TID 0000.0001) > dumpAtLast = .TRUE., (PID.TID 0000.0001) >#-- (PID.TID 0000.0001) > fields(1:11,1) = 'EXFtaux ','EXFtauy ','EXFqnet ','EXFempmr', (PID.TID 0000.0001) > 'EXFhl ','EXFhs ','EXFswnet','EXFlwnet', (PID.TID 0000.0001) > 'EXFuwind','EXFvwind','EXFatemp', (PID.TID 0000.0001) ># fileName(1) = 'exfDiag', (PID.TID 0000.0001) > frequency(1) = 86400., (PID.TID 0000.0001) > (PID.TID 0000.0001) > fields(1:4,2) = 'SIuice ','SIvice ','SIheff ', (PID.TID 0000.0001) > 'SIarea ', (PID.TID 0000.0001) ># fileName(2) = 'iceDiag', (PID.TID 0000.0001) > frequency(2) = 86400., (PID.TID 0000.0001) > missing_value(2) = -999., (PID.TID 0000.0001) > (PID.TID 0000.0001) > fields(1:4,3) = 'SIuice ','SIvice ','SIheff ', (PID.TID 0000.0001) > 'SIarea ', (PID.TID 0000.0001) > fileName(3) = 'snapshot', (PID.TID 0000.0001) > frequency(3) = -86400., (PID.TID 0000.0001) > timePhase(3) = 3600., (PID.TID 0000.0001) > missing_value(3) = -999., (PID.TID 0000.0001) > / (PID.TID 0000.0001) > (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) ># Parameter for Diagnostics of per level statistics: (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) ># diagSt_mnc (logical): write stat-diags to NetCDF files (default=diag_mnc) (PID.TID 0000.0001) ># diagSt_regMaskFile : file containing the region-mask to read-in (PID.TID 0000.0001) ># nSetRegMskFile : number of region-mask sets within the region-mask file (PID.TID 0000.0001) ># set_regMask(i) : region-mask set-index that identifies the region "i" (PID.TID 0000.0001) ># val_regMask(i) : region "i" identifier value in the region mask (PID.TID 0000.0001) >#--for each output-stream: (PID.TID 0000.0001) ># stat_fName(n) : prefix of the output file name (max 80c long) for outp.stream n (PID.TID 0000.0001) ># stat_freq(n):< 0 : write snap-shot output every |stat_freq| seconds (PID.TID 0000.0001) ># > 0 : write time-average output every stat_freq seconds (PID.TID 0000.0001) ># stat_phase(n) : write at time = stat_phase + multiple of |stat_freq| (PID.TID 0000.0001) ># stat_region(:,n) : list of "regions" (default: 1 region only=global) (PID.TID 0000.0001) ># stat_fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n (PID.TID 0000.0001) ># (see "available_diagnostics.log" file for the full list of diags) (PID.TID 0000.0001) >#-------------------- (PID.TID 0000.0001) > &DIAG_STATIS_PARMS (PID.TID 0000.0001) > stat_fields(1:5,1) = 'SIarea ','SIheff ','SIhsnow ', (PID.TID 0000.0001) > 'SIuice ','SIvice ', (PID.TID 0000.0001) > stat_fName(1) = 'iceStDiag', (PID.TID 0000.0001) > stat_freq(1) = 7200., (PID.TID 0000.0001) > stat_phase(1) = 1800., (PID.TID 0000.0001) > / (PID.TID 0000.0001) (PID.TID 0000.0001) S/R DIAGNOSTICS_READPARMS, read namelist "diagnostics_list": start (PID.TID 0000.0001) S/R DIAGNOSTICS_READPARMS, read namelist "diagnostics_list": OK (PID.TID 0000.0001) S/R DIAGNOSTICS_READPARMS, read namelist "DIAG_STATIS_PARMS": start (PID.TID 0000.0001) S/R DIAGNOSTICS_READPARMS, read namelist "DIAG_STATIS_PARMS": OK (PID.TID 0000.0001) DIAGNOSTICS_READPARMS: global parameter summary: (PID.TID 0000.0001) dumpAtLast = /* always write time-ave diags at the end */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) diag_mnc = /* write NetCDF output files */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useMissingValue = /* put MissingValue where mask = 0 */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) diagCG_maxIters = /* max number of iters in diag_cg2d */ (PID.TID 0000.0001) 500 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diagCG_resTarget = /* residual target for diag_cg2d */ (PID.TID 0000.0001) 1.000000000000000E-12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diagCG_pcOffDFac = /* preconditioner off-diagonal factor */ (PID.TID 0000.0001) 9.611687812379854E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ----------------------------------------------------- (PID.TID 0000.0001) DIAGNOSTICS_READPARMS: active diagnostics summary: (PID.TID 0000.0001) ----------------------------------------------------- (PID.TID 0000.0001) Creating Output Stream: snapshot (PID.TID 0000.0001) Output Frequency: -86400.000000 ; Phase: 3600.000000 (PID.TID 0000.0001) Averaging Freq.: 0.000000 , Phase: 0.000000 , Cycle: 1 (PID.TID 0000.0001) missing value: -9.990000000000E+02 (PID.TID 0000.0001) Levels: will be set later (PID.TID 0000.0001) Fields: SIuice SIvice SIheff SIarea (PID.TID 0000.0001) ----------------------------------------------------- (PID.TID 0000.0001) DIAGNOSTICS_READPARMS: statistics diags. summary: (PID.TID 0000.0001) Creating Stats. Output Stream: iceStDiag (PID.TID 0000.0001) Output Frequency: 7200.000000 ; Phase: 1800.000000 (PID.TID 0000.0001) Regions: 0 (PID.TID 0000.0001) Fields: SIarea SIheff SIhsnow SIuice SIvice (PID.TID 0000.0001) ----------------------------------------------------- (PID.TID 0000.0001) (PID.TID 0000.0001) SET_PARMS: done (PID.TID 0000.0001) Enter INI_VERTICAL_GRID: setInterFDr= T ; setCenterDr= F (PID.TID 0000.0001) %MON XC_max = 3.9750000000000E+05 (PID.TID 0000.0001) %MON XC_min = 2.5000000000000E+03 (PID.TID 0000.0001) %MON XC_mean = 2.0000000000000E+05 (PID.TID 0000.0001) %MON XC_sd = 1.1546103238755E+05 (PID.TID 0000.0001) %MON XG_max = 3.9500000000000E+05 (PID.TID 0000.0001) %MON XG_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON XG_mean = 1.9750000000000E+05 (PID.TID 0000.0001) %MON XG_sd = 1.1546103238755E+05 (PID.TID 0000.0001) %MON DXC_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXC_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXC_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXC_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DXF_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXF_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXF_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXF_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DXG_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXG_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXG_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXG_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DXV_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXV_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXV_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DXV_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON YC_max = 9.7500000000000E+04 (PID.TID 0000.0001) %MON YC_min = -1.0750000000000E+05 (PID.TID 0000.0001) %MON YC_mean = -5.0000000000000E+03 (PID.TID 0000.0001) %MON YC_sd = 6.0604592785256E+04 (PID.TID 0000.0001) %MON YG_max = 9.5000000000000E+04 (PID.TID 0000.0001) %MON YG_min = -1.1000000000000E+05 (PID.TID 0000.0001) %MON YG_mean = -7.5000000000000E+03 (PID.TID 0000.0001) %MON YG_sd = 6.0604592785256E+04 (PID.TID 0000.0001) %MON DYC_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYC_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYC_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYC_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DYF_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYF_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYF_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYF_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DYG_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYG_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYG_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYG_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON DYU_max = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYU_min = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYU_mean = 5.0000000000000E+03 (PID.TID 0000.0001) %MON DYU_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON RA_max = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RA_min = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RA_mean = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RA_sd = 3.7252902984619E-09 (PID.TID 0000.0001) %MON RAW_max = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAW_min = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAW_mean = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAW_sd = 3.7252902984619E-09 (PID.TID 0000.0001) %MON RAS_max = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAS_min = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAS_mean = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAS_sd = 3.7252902984619E-09 (PID.TID 0000.0001) %MON RAZ_max = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAZ_min = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAZ_mean = 2.5000000000000E+07 (PID.TID 0000.0001) %MON RAZ_sd = 3.7252902984619E-09 (PID.TID 0000.0001) %MON AngleCS_max = 1.0000000000000E+00 (PID.TID 0000.0001) %MON AngleCS_min = 1.0000000000000E+00 (PID.TID 0000.0001) %MON AngleCS_mean = 1.0000000000000E+00 (PID.TID 0000.0001) %MON AngleCS_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON AngleSN_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON AngleSN_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON AngleSN_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON AngleSN_sd = 0.0000000000000E+00 (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: bathy_3c.bin (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field Model R_low (ini_masks_etc) (PID.TID 0000.0001) // CMIN = -1.000000000000000E+01 (PID.TID 0000.0001) // CMAX = -1.000000000000000E+01 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field Model Ro_surf (ini_masks_etc) (PID.TID 0000.0001) // CMIN = 1.000000000000000E+32 (PID.TID 0000.0001) // CMAX = -1.000000000000000E+32 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field hFacC at iteration 0 (PID.TID 0000.0001) // CMIN = 1.000000000000000E+00 (PID.TID 0000.0001) // CMAX = 1.000000000000000E+00 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field hFacW at iteration 0 (PID.TID 0000.0001) // CMIN = 1.000000000000000E+00 (PID.TID 0000.0001) // CMAX = 1.000000000000000E+00 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Field hFacS at iteration 0 (PID.TID 0000.0001) // CMIN = 1.000000000000000E+00 (PID.TID 0000.0001) // CMAX = 1.000000000000000E+00 (PID.TID 0000.0001) // CINT = 0.000000000000000E+00 (PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+ (PID.TID 0000.0001) // 0.0: . (PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):( -2: 83: 1) (PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):( 45: -2: -1) (PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):( 1: 1: 1) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // END OF FIELD = (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) GAD_INIT_FIXED: GAD_OlMinSize= 0 0 1 (PID.TID 0000.0001) (PID.TID 0000.0001) // =================================== (PID.TID 0000.0001) // GAD parameters : (PID.TID 0000.0001) // =================================== (PID.TID 0000.0001) tempAdvScheme = /* Temp. Horiz.Advection scheme selector */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempVertAdvScheme = /* Temp. Vert. Advection scheme selector */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempMultiDimAdvec = /* use Muti-Dim Advec method for Temp */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempSOM_Advection = /* use 2nd Order Moment Advection for Temp */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) AdamsBashforthGt = /* apply Adams-Bashforth extrapolation on Gt */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) AdamsBashforth_T = /* apply Adams-Bashforth extrapolation on Temp */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltAdvScheme = /* Salt. Horiz.advection scheme selector */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltVertAdvScheme = /* Salt. Vert. Advection scheme selector */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltMultiDimAdvec = /* use Muti-Dim Advec method for Salt */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltSOM_Advection = /* use 2nd Order Moment Advection for Salt */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) AdamsBashforthGs = /* apply Adams-Bashforth extrapolation on Gs */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) AdamsBashforth_S = /* apply Adams-Bashforth extrapolation on Salt */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) // =================================== (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // External forcing (EXF) configuration >>> START <<< (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) EXF general parameters: (PID.TID 0000.0001) (PID.TID 0000.0001) exf_iprec = /* exf file precision */ (PID.TID 0000.0001) 64 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useExfYearlyFields = /* add extension _YEAR to input file names */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) twoDigitYear = /* use 2-digit year extension */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useExfCheckRange = /* check for fields range */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) diags_opOceWeighted = /* weight flux diags by open-ocean fraction */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_debugLev = /* select EXF-debug printing level */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_monFreq = /* EXF monitor frequency [ s ] */ (PID.TID 0000.0001) 8.640000000000000E+07 (PID.TID 0000.0001) ; (PID.TID 0000.0001) repeatPeriod = /* period for cycling forcing dataset [ s ] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) climTempFreeze= /* Minimum climatological temperature [deg.C] */ (PID.TID 0000.0001) -1.900000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) windStressMax = /* Maximum absolute windstress [ Pa ] */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) stressIsOnCgrid = /* set u,v_stress on Arakawa C-grid */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) rotateStressOnAgrid = /* rotate u,v_stress on Arakawa A-grid */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) cen2kel = /* conversion of deg. Centigrade to Kelvin [K] */ (PID.TID 0000.0001) 2.731500000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravity_mks= /* gravitational acceleration [m/s^2] */ (PID.TID 0000.0001) 9.810000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) atmrho = /* mean atmospheric density [kg/m^3] */ (PID.TID 0000.0001) 1.200000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) atmcp = /* mean atmospheric specific heat [J/kg/K] */ (PID.TID 0000.0001) 1.005000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) flamb = /* latent heat of evaporation [J/kg] */ (PID.TID 0000.0001) 2.500000000000000E+06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) flami = /* latent heat of pure-ice melting [J/kg] */ (PID.TID 0000.0001) 3.340000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cvapor_fac = /* const. for Saturation calculation [?] */ (PID.TID 0000.0001) 6.403800000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cvapor_exp = /* const. for Saturation calculation [?] */ (PID.TID 0000.0001) 5.107400000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cvapor_fac_ice= /* const. for Saturation calculation [?] */ (PID.TID 0000.0001) 1.163780000000000E+07 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cvapor_exp_ice= /* const. for Saturation calculation [?] */ (PID.TID 0000.0001) 5.897800000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) humid_fac = /* humidity coef. in virtual temp. [(kg/kg)^-1] */ (PID.TID 0000.0001) 6.060000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gamma_blk = /* adiabatic lapse rate [?] */ (PID.TID 0000.0001) 1.000000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltsat = /* reduction of Qsat over salty water [-] */ (PID.TID 0000.0001) 9.800000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) noNegativeEvap = /* prevent negative Evaporation */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) sstExtrapol = /* extrapolation coeff from lev. 1 & 2 to surf [-] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cDrag_1 = /* coef used in drag calculation [?] */ (PID.TID 0000.0001) 2.700000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cDrag_2 = /* coef used in drag calculation [?] */ (PID.TID 0000.0001) 1.420000000000000E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cDrag_3 = /* coef used in drag calculation [?] */ (PID.TID 0000.0001) 7.640000000000000E-05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cStanton_1 = /* coef used in Stanton number calculation [?] */ (PID.TID 0000.0001) 3.270000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cStanton_2 = /* coef used in Stanton number calculation [?] */ (PID.TID 0000.0001) 1.800000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cDalton = /* coef used in Dalton number calculation [?] */ (PID.TID 0000.0001) 3.460000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_scal_BulkCdn= /* Drag coefficient scaling factor [-] */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) zolmin = /* minimum stability parameter [?] */ (PID.TID 0000.0001) -1.000000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) psim_fac = /* coef used in turbulent fluxes calculation [-] */ (PID.TID 0000.0001) 5.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) zref = /* reference height [ m ] */ (PID.TID 0000.0001) 1.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hu = /* height of mean wind [ m ] */ (PID.TID 0000.0001) 1.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ht = /* height of mean temperature [ m ] */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hq = /* height of mean spec.humidity [ m ] */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) uMin = /* minimum wind speed [m/s] */ (PID.TID 0000.0001) 5.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useStabilityFct_overIce= /* transfert Coeffs over sea-ice depend on stability */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_iceCd = /* drag coefficient over sea-ice (fixed) [-] */ (PID.TID 0000.0001) 1.630000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_iceCe = /* transfert coeff. over sea-ice, for Evap (fixed) [-] */ (PID.TID 0000.0001) 1.630000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_iceCh = /* transfert coeff. over sea-ice, Sens.Heat.(fixed)[-] */ (PID.TID 0000.0001) 1.630000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exf_albedo = /* Sea-water albedo [-] */ (PID.TID 0000.0001) 1.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useExfZenAlbedo = /* Sea-water albedo varies with zenith angle */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) select_ZenAlbedo = /* Sea-water albedo computation method */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useExfZenIncoming = /* compute incoming solar radiation */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) ocean_emissivity = /* longwave ocean-surface emissivity [-] */ (PID.TID 0000.0001) 9.700176366843034E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ice_emissivity = /* longwave seaice emissivity [-] */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) snow_emissivity = /* longwave snow emissivity [-] */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) EXF main CPP flags: (PID.TID 0000.0001) (PID.TID 0000.0001) // USE_EXF_INTERPOLATION: NOT defined (PID.TID 0000.0001) // ALLOW_ATM_TEMP: defined (PID.TID 0000.0001) // ALLOW_ATM_WIND (useAtmWind): defined (PID.TID 0000.0001) // ALLOW_DOWNWARD_RADIATION: defined (PID.TID 0000.0001) // ALLOW_BULKFORMULAE: defined (PID.TID 0000.0001) (PID.TID 0000.0001) Zonal wind forcing period is 0. (PID.TID 0000.0001) Zonal wind forcing is read from file: (PID.TID 0000.0001) >> windx.bin << (PID.TID 0000.0001) (PID.TID 0000.0001) Atmospheric temperature period is 0. (PID.TID 0000.0001) Atmospheric temperature is read from file: (PID.TID 0000.0001) >> tair_4x.bin << (PID.TID 0000.0001) (PID.TID 0000.0001) Atmospheric specific humidity period is 0. (PID.TID 0000.0001) Atmospheric specific humidity is read from file: (PID.TID 0000.0001) >> qa70_4x.bin << (PID.TID 0000.0001) (PID.TID 0000.0001) // ALLOW_READ_TURBFLUXES: NOT defined (PID.TID 0000.0001) // EXF_READ_EVAP: NOT defined (PID.TID 0000.0001) (PID.TID 0000.0001) Precipitation data period is 0. (PID.TID 0000.0001) Precipitation data is read from file: (PID.TID 0000.0001) >> const_00.bin << (PID.TID 0000.0001) (PID.TID 0000.0001) // ALLOW_RUNOFF: defined (PID.TID 0000.0001) // ALLOW_RUNOFTEMP: NOT defined (PID.TID 0000.0001) // ALLOW_SALTFLX: defined (PID.TID 0000.0001) (PID.TID 0000.0001) Downward shortwave flux period is 0. (PID.TID 0000.0001) Downward shortwave flux is read from file: (PID.TID 0000.0001) >> dsw_100.bin << (PID.TID 0000.0001) (PID.TID 0000.0001) Downward longwave flux period is 0. (PID.TID 0000.0001) Downward longwave flux is read from file: (PID.TID 0000.0001) >> dlw_250.bin << (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // External forcing (EXF) climatology configuration : (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ALLOW_CLIMSST_RELAXATION: defined (PID.TID 0000.0001) Climatological SST period is 0. (PID.TID 0000.0001) Climatological SST is read from file: (PID.TID 0000.0001) >> tocn.bin << (PID.TID 0000.0001) (PID.TID 0000.0001) // ALLOW_CLIMSSS_RELAXATION: defined (PID.TID 0000.0001) climsss relaxation is NOT used (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // External forcing (EXF) configuration >>> END <<< (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) SEAICE_INIT_FIXED: Computing 7 thickness category limits with (PID.TID 0000.0001) Hlimit_c1 = /* ITD bin parameter */ (PID.TID 0000.0001) 3.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) Hlimit_c2 = /* ITD bin parameter */ (PID.TID 0000.0001) 1.500000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) Hlimit_c3 = /* ITD bin parameter */ (PID.TID 0000.0001) 3.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Seaice configuration (SEAICE_PARM01) >>> START <<< (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice time stepping configuration > START < (PID.TID 0000.0001) ---------------------------------------------- (PID.TID 0000.0001) SEAICE_deltaTtherm= /* thermodynamic timestep */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_deltaTdyn = /* dynamic timestep */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_deltaTevp = /* EVP timestep */ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseBDF2 = /* use backw. differencing for mom. eq. */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEupdateOceanStress= /* update Ocean surf. stress */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICErestoreUnderIce = /* restore T and S under ice */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice dynamics configuration > START < (PID.TID 0000.0001) ------------------------------------------ (PID.TID 0000.0001) SEAICEuseDYNAMICS = /* use dynamics */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) model grid type = /* type of sea ice model grid */ (PID.TID 0000.0001) 'C-GRID' (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseStrImpCpl = /* use strongly implicit coupling */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEusePicardAsPrecon = /* Picard as preconditioner */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseLSR = /* use default Picard-LSR solver */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseKrylov = /* use Picard-Krylov solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseEVP = /* use EVP solver rather than LSR */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseJFNK = /* use JFNK solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseFREEDRIFT = /* use free drift solution */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) OCEAN_drag = /* air-ocean drag coefficient */ (PID.TID 0000.0001) 1.000000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_drag = /* air-ice drag coefficient */ (PID.TID 0000.0001) 2.000000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_drag_south = /* Southern Ocean SEAICE_drag */ (PID.TID 0000.0001) 2.000000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_waterDrag = /* water-ice drag (no units) */ (PID.TID 0000.0001) 5.339805825242718E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_waterDrag_south = /* Southern Ocean waterDrag (no units) */ (PID.TID 0000.0001) 5.339805825242718E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEdWatMin = /* minimum linear water-ice drag (in m/s) */ (PID.TID 0000.0001) 2.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseTilt = /* include surface tilt in dyna. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseTEM = /* use truncated ellipse rheology */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_strength = /* sea-ice strength Pstar */ (PID.TID 0000.0001) 2.750000000000000E+04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_cStar = /* sea-ice strength parameter cStar */ (PID.TID 0000.0001) 2.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpressReplFac= /* press. replacement method factor */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_tensilFac = /* sea-ice tensile strength factor */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_tensilDepth= /* crit. depth for tensile strength */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpresH0 = /* sea-ice strength Heff threshold */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpresPow0 = /* exponent for HeffSEAICEpresH0 */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEetaZmethod = /* method computing eta at Z-point */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_zetaMaxFac = /* factor for upper viscosity bound */ (PID.TID 0000.0001) 2.500000000000000E+08 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_zetaMin = /* lower bound for viscosity */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_eccen = /* elliptical yield curve eccent */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEstressFactor = /* wind stress scaling factor */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_airTurnAngle = /* air-ice turning angle */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_waterTurnAngle = /* ice-water turning angle */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseMetricTerms = /* use metric terms */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_no_slip = /* no slip boundary conditions */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_2ndOrderBC = /* 2nd order no slip boundary conditions */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_clipVeloctities = /* impose max. vels. */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useHB87stressCoupling = /* altern. ice-ocean stress */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEscaleSurfStress = /* scale atm. and ocean-surface stress with AREA */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_maskRHS = /* mask RHS of solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEaddSnowMass = /* add snow mass to seaiceMassC/U/V */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) LSR_mixIniGuess = /* mix free-drift sol. into LSR initial Guess */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_LSRrelaxU = /* LSR solver: relaxation parameter */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_LSRrelaxV = /* LSR solver: relaxation parameter */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) LSR_ERROR = /* sets accuracy of LSR solver */ (PID.TID 0000.0001) 1.000000000000000E-12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SOLV_NCHECK = /* test interval for LSR solver */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseMultiTileSolver = /* use full domain tri-diag solver */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_OLx = /* overlap for LSR/preconditioner */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_OLy = /* overlap for LSR/preconditioner */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEnonLinIterMax = /* max. number of nonlinear solver steps */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICElinearIterMax = /* max. number of linear solver steps */ (PID.TID 0000.0001) 1500 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEnonLinTol = /* non-linear solver tolerance */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice advection diffusion config, > START < (PID.TID 0000.0001) ----------------------------------------------- (PID.TID 0000.0001) SEAICEmomAdvection = /* advect sea ice momentum */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEadvHeff = /* advect effective ice thickness */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEadvArea = /* advect fractional ice area */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEadvSnow = /* advect snow layer together with ice */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEadvScheme = /* advection scheme for ice */ (PID.TID 0000.0001) 77 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEadvSchArea = /* advection scheme for area */ (PID.TID 0000.0001) 77 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEadvSchHeff = /* advection scheme for thickness */ (PID.TID 0000.0001) 77 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEadvSchSnow = /* advection scheme for snow */ (PID.TID 0000.0001) 77 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEdiffKhArea = /* diffusivity (m^2/s) for area */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEdiffKhHeff = /* diffusivity (m^2/s) for heff */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEdiffKhSnow = /* diffusivity (m^2/s) for snow */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) DIFF1 = /* parameter used in advect.F [m/s] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice ice thickness distribution configuration > START < (PID.TID 0000.0001) ----------------------------------------------------------- (PID.TID 0000.0001) nITD = /* number of ice thickness categories */ (PID.TID 0000.0001) 7 (PID.TID 0000.0001) ; (PID.TID 0000.0001) Hlimit = /* seaice thickness category bin limits ( m ), Hlimit(0)=0 */ (PID.TID 0000.0001) 4.603622977281613E-01, /* K = 1 */ (PID.TID 0000.0001) 9.635959063244672E-01, /* K = 2 */ (PID.TID 0000.0001) 1.566727695601180E+00, /* K = 3 */ (PID.TID 0000.0001) 2.399198180292796E+00, /* K = 4 */ (PID.TID 0000.0001) 3.740626997945927E+00, /* K = 5 */ (PID.TID 0000.0001) 6.131309831636896E+00, /* K = 6 */ (PID.TID 0000.0001) 9.999000000000000E+02 /* K = 7 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseLinRemapITD = /* select linear remapping scheme for ITD */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) useHibler79IceStrength = /* select ice strength parameterizationd */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEsimpleRidging = /* select ridging scheme */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEpartFunc = /* select ridging participation function */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEredistFunc = /* select ridging redistribution function */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_cf = /* ice strength parameter */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEshearParm = /* amount of energy lost to shear */ (PID.TID 0000.0001) 5.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEgStar = /* ridging parameter */ (PID.TID 0000.0001) 1.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEhStar = /* ridging parameter */ (PID.TID 0000.0001) 2.500000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEaStar = /* ridging parameter */ (PID.TID 0000.0001) 5.000000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEmuRidging = /* ridging parameter */ (PID.TID 0000.0001) 3.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEmaxRaft = /* ridging parameter */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEsnowFracRidge = /* fraction of snow remaining on ridges */ (PID.TID 0000.0001) 5.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice thermodynamics configuration > START < (PID.TID 0000.0001) ----------------------------------------------- (PID.TID 0000.0001) SEAICE_rhoIce = /* density of sea ice (kg/m3) */ (PID.TID 0000.0001) 9.100000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_rhoSnow = /* density of snow (kg/m3) */ (PID.TID 0000.0001) 3.300000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_rhoAir = /* density of air (kg/m3) */ (PID.TID 0000.0001) 1.200000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) usePW79thermodynamics = /* default 0-layer TD */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_lhEvap = /* latent heat of evaporation */ (PID.TID 0000.0001) 2.500000000000000E+06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_lhFusion = /* latent heat of fusion */ (PID.TID 0000.0001) 3.340000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_mcPheePiston = /* turbulent flux "piston velocity" a la McPhee (m/s) */ (PID.TID 0000.0001) 8.749999999999999E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_mcPheeTaper = /* tapering of turbulent flux (0.< <1.) for AREA=1. */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_mcPheeStepFunc = /* replace linear tapering with step funct. */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_frazilFrac = /* frazil (T0 by ATM and OCN (PID.TID 0000.0001) 3=from predicted melt by ATM (PID.TID 0000.0001) ; (PID.TID 0000.0001) HO = /* nominal thickness of new ice */ (PID.TID 0000.0001) 5.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) HO_south = /* Southern Ocean HO */ (PID.TID 0000.0001) 5.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_area_max = /* set to les than 1. to mimic open leads */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_salt0 = /* constant sea ice salinity */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_salinityTracer = /* test SITR varia. salinity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEuseFlooding = /* turn submerged snow into ice */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice air-sea fluxes configuration, > START < (PID.TID 0000.0001) ----------------------------------------------- (PID.TID 0000.0001) SEAICEheatConsFix = /* accound for ocn<->seaice advect. heat flux */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_PDF = /* sea-ice distribution (-) */ (PID.TID 0000.0001) 1.000000000000000E+00, /* K = 1 */ (PID.TID 0000.0001) 6 @ 0.000000000000000E+00 /* K = 2: 7 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) IMAX_TICE = /* iterations for ice surface temp */ (PID.TID 0000.0001) 10 (PID.TID 0000.0001) ; (PID.TID 0000.0001) postSolvTempIter= /* flux calculation after surf. temp iter */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_dryIceAlb = /* winter albedo */ (PID.TID 0000.0001) 7.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_wetIceAlb = /* summer albedo */ (PID.TID 0000.0001) 6.600000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_drySnowAlb = /* dry snow albedo */ (PID.TID 0000.0001) 8.400000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_wetSnowAlb = /* wet snow albedo */ (PID.TID 0000.0001) 7.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_dryIceAlb_south = /* Southern Ocean dryIceAlb */ (PID.TID 0000.0001) 7.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_wetIceAlb_south = /* Southern Ocean wetIceAlb */ (PID.TID 0000.0001) 6.600000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_drySnowAlb_south= /* Southern Ocean drySnowAlb */ (PID.TID 0000.0001) 8.400000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_wetSnowAlb_south= /* Southern Ocean wetSnowAlb */ (PID.TID 0000.0001) 7.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_wetAlbTemp= /* Temp (o.C) threshold for wet-albedo */ (PID.TID 0000.0001) -1.000000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_snow_emiss = /* snow emissivity */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_ice_emiss = /* seaice emissivity */ (PID.TID 0000.0001) 9.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_cpAir = /* heat capacity of air */ (PID.TID 0000.0001) 1.005000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_dalton = /* constant dalton number */ (PID.TID 0000.0001) 1.750000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_iceConduct = /* sea-ice conductivity */ (PID.TID 0000.0001) 2.165600000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_snowConduct= /* snow conductivity */ (PID.TID 0000.0001) 3.100000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_snowThick = /* cutoff snow thickness (for albedo) */ (PID.TID 0000.0001) 1.500000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_shortwave = /* penetration shortwave radiation */ (PID.TID 0000.0001) 3.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useMaykutSatVapPoly = /* use Maykut Polynomial for Sat.Vap.Pr */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) MIN_ATEMP = /* minimum air temperature */ (PID.TID 0000.0001) -5.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) MIN_LWDOWN = /* minimum downward longwave */ (PID.TID 0000.0001) 6.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) MIN_TICE = /* minimum ice temperature */ (PID.TID 0000.0001) -5.000000000000000E+01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice initialization and IO config., > START < (PID.TID 0000.0001) ------------------------------------------------- (PID.TID 0000.0001) SEAICE_initialHEFF= /* initial sea-ice thickness */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) AreaFile = /* Initial ice concentration File */ (PID.TID 0000.0001) 'const100.bin' (PID.TID 0000.0001) ; (PID.TID 0000.0001) HeffFile = /* Initial effective ice thickness File */ (PID.TID 0000.0001) 'heff_quartic.bin' (PID.TID 0000.0001) ; (PID.TID 0000.0001) HsnowFile = /* Initial snow thickness File */ (PID.TID 0000.0001) 'const_00.bin' (PID.TID 0000.0001) ; (PID.TID 0000.0001) uIceFile = /* Initial U-ice velocity File */ (PID.TID 0000.0001) '' (PID.TID 0000.0001) ; (PID.TID 0000.0001) vIceFile = /* Initial V-ice velocity File */ (PID.TID 0000.0001) '' (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICEwriteState = /* write sea ice state to file */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_monFreq = /* monitor frequency */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_dumpFreq = /* dump frequency */ (PID.TID 0000.0001) 8.640000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_taveFreq = /* time-averaging frequency */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_mon_stdio = /* write monitor to std-outp */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_dump_mdsio = /* write snap-shot using MDSIO */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_tave_mdsio = /* write TimeAverage using MDSIO */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) Seaice regularization numbers, > START < (PID.TID 0000.0001) ----------------------------------------------- (PID.TID 0000.0001) SEAICE_deltaMin = /* reduce singularities in Delta */ (PID.TID 0000.0001) 1.000000000000000E-10 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_EPS = /* small number */ (PID.TID 0000.0001) 1.000000000000000E-10 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_EPS_SQ = /* small number squared */ (PID.TID 0000.0001) 1.000000000000000E-20 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_area_reg = /* reduce derivative singularities */ (PID.TID 0000.0001) 1.000000000000000E-05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_hice_reg = /* reduce derivative singularities */ (PID.TID 0000.0001) 5.000000000000000E-02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) SEAICE_area_floor = /* reduce derivative singularities */ (PID.TID 0000.0001) 1.000000000000000E-05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Seaice configuration (SEAICE_PARM01) >>> END <<< (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) ------------------------------------------------------------ (PID.TID 0000.0001) DIAGNOSTICS_SET_LEVELS: done (PID.TID 0000.0001) Total Nb of available Diagnostics: ndiagt= 226 (PID.TID 0000.0001) write list of available Diagnostics to file: available_diagnostics.log (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 163 SIuice (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 164 SIvice (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 149 SIheff (PID.TID 0000.0001) SETDIAG: Allocate 1 x 1 Levels for Diagnostic # 146 SIarea (PID.TID 0000.0001) space allocated for all diagnostics: 4 levels (PID.TID 0000.0001) set mate pointer for diag # 163 SIuice , Parms: UU M1 , mate: 164 (PID.TID 0000.0001) set mate pointer for diag # 164 SIvice , Parms: VV M1 , mate: 163 (PID.TID 0000.0001) DIAGNOSTICS_SET_POINTERS: Set levels for Outp.Stream: snapshot (PID.TID 0000.0001) Levels: 1. (PID.TID 0000.0001) DIAGNOSTICS_SET_POINTERS: done (PID.TID 0000.0001) ------------------------------------------------------------ (PID.TID 0000.0001) DIAGSTATS_SET_REGIONS: define no region (PID.TID 0000.0001) ------------------------------------------------------------ (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 146 SIarea (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 149 SIheff (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 151 SIhsnow (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 163 SIuice (PID.TID 0000.0001) SETDIAG: Allocate 1 Levels for Stats-Diag # 164 SIvice (PID.TID 0000.0001) space allocated for all stats-diags: 5 levels (PID.TID 0000.0001) DIAGSTATS_SET_POINTERS: done (PID.TID 0000.0001) ------------------------------------------------------------ (PID.TID 0000.0001) DIAGSTATS_INI_IO: open file: iceStDiag.0000000000.txt , unit= 9 (PID.TID 0000.0001) %MON fCori_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCori_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCori_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCori_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriG_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriG_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriG_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriG_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriCos_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriCos_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriCos_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON fCoriCos_sd = 0.0000000000000E+00 (PID.TID 0000.0001) INI_CG2D: CG2D normalisation factor = 1.0000000000000001E-01 (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Model configuration (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // (PID.TID 0000.0001) // "Physical" paramters ( PARM01 in namelist ) (PID.TID 0000.0001) // (PID.TID 0000.0001) buoyancyRelation = /* Type of relation to get Buoyancy */ (PID.TID 0000.0001) 'OCEANIC' (PID.TID 0000.0001) ; (PID.TID 0000.0001) fluidIsAir = /* fluid major constituent is Air */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) fluidIsWater = /* fluid major constituent is Water */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingPCoords = /* use p (or p*) vertical coordinate */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingZCoords = /* use z (or z*) vertical coordinate */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) tRef = /* Reference temperature profile ( oC or K ) */ (PID.TID 0000.0001) -1.620000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) sRef = /* Reference salinity profile ( psu ) */ (PID.TID 0000.0001) 3.000000000000000E+01 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) useStrainTensionVisc= /* Use StrainTension Form of Viscous Operator */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useVariableVisc = /* Use variable horizontal viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useHarmonicVisc = /* Use harmonic horizontal viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useBiharmonicVisc= /* Use biharmonic horiz. viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useSmag3D = /* Use isotropic 3-D Smagorinsky viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) viscAh = /* Lateral harmonic viscosity ( m^2/s ) */ (PID.TID 0000.0001) 3.000000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) viscA4 = /* Lateral biharmonic viscosity ( m^4/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) no_slip_sides = /* Viscous BCs: No-slip sides */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) sideDragFactor = /* side-drag scaling factor (non-dim) */ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) viscArNr = /* vertical profile of vertical viscosity ( m^2/s )*/ (PID.TID 0000.0001) 3.000000000000000E-02 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) no_slip_bottom = /* Viscous BCs: No-slip bottom */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) bottomVisc_pCell = /* Partial-cell in bottom Visc. BC */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) bottomDragLinear = /* linear bottom-drag coefficient ( m/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) bottomDragQuadratic = /* quadratic bottom-drag coefficient (-) */ (PID.TID 0000.0001) 5.000000000000000E-03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectBotDragQuadr = /* select quadratic bottom drag options */ (PID.TID 0000.0001) -1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKhT = /* Laplacian diffusion of heat laterally ( m^2/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffK4T = /* Biharmonic diffusion of heat laterally ( m^4/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKhS = /* Laplacian diffusion of salt laterally ( m^2/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffK4S = /* Biharmonic diffusion of salt laterally ( m^4/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrNrT = /* vertical profile of vertical diffusion of Temp ( m^2/s )*/ (PID.TID 0000.0001) 0.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrNrS = /* vertical profile of vertical diffusion of Salt ( m^2/s )*/ (PID.TID 0000.0001) 0.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrBL79surf = /* Surface diffusion for Bryan and Lewis 79 ( m^2/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrBL79deep = /* Deep diffusion for Bryan and Lewis 1979 ( m^2/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrBL79scl = /* Depth scale for Bryan and Lewis 1979 ( m ) */ (PID.TID 0000.0001) 2.000000000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) diffKrBL79Ho = /* Turning depth for Bryan and Lewis 1979 ( m ) */ (PID.TID 0000.0001) -2.000000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ivdc_kappa = /* Implicit Vertical Diffusivity for Convection ( m^2/s) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hMixCriteria= /* Criteria for mixed-layer diagnostic */ (PID.TID 0000.0001) -8.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) dRhoSmall = /* Parameter for mixed-layer diagnostic */ (PID.TID 0000.0001) 1.000000000000000E-06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hMixSmooth= /* Smoothing parameter for mixed-layer diagnostic */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) eosType = /* Type of Equation of State */ (PID.TID 0000.0001) 'LINEAR' (PID.TID 0000.0001) ; (PID.TID 0000.0001) tAlpha = /* Linear EOS thermal expansion coefficient ( 1/oC ) */ (PID.TID 0000.0001) 2.000000000000000E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) sBeta = /* Linear EOS haline contraction coefficient ( 1/psu ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoNil = /* Reference density for Linear EOS ( kg/m^3 ) */ (PID.TID 0000.0001) 1.030000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectP_inEOS_Zc = /* select pressure to use in EOS (0,1,2,3) */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) 0= -g*rhoConst*z ; 1= pRef (from tRef,sRef); 2= Hyd P ; 3= Hyd+NH P (PID.TID 0000.0001) ; (PID.TID 0000.0001) surf_pRef = /* Surface reference pressure ( Pa ) */ (PID.TID 0000.0001) 1.013250000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) HeatCapacity_Cp = /* Specific heat capacity ( J/kg/K ) */ (PID.TID 0000.0001) 3.986000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) celsius2K = /* 0 degree Celsius converted to Kelvin ( K ) */ (PID.TID 0000.0001) 2.731500000000000E+02 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoConst = /* Reference density (Boussinesq) ( kg/m^3 ) */ (PID.TID 0000.0001) 1.030000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoFacC = /* normalized Reference density @ cell-Center (-) */ (PID.TID 0000.0001) 1.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoFacF = /* normalized Reference density @ W-Interface (-) */ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rhoConstFresh = /* Fresh-water reference density ( kg/m^3 ) */ (PID.TID 0000.0001) 1.000000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravity = /* Gravitational acceleration ( m/s^2 ) */ (PID.TID 0000.0001) 9.810000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gBaro = /* Barotropic gravity ( m/s^2 ) */ (PID.TID 0000.0001) 9.810000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravFacC = /* gravity factor (vs surf.) @ cell-Center (-) */ (PID.TID 0000.0001) 1.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravFacF = /* gravity factor (vs surf.) @ W-Interface (-) */ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rotationPeriod = /* Rotation Period ( s ) */ (PID.TID 0000.0001) 8.616400000000000E+04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) omega = /* Angular velocity ( rad/s ) */ (PID.TID 0000.0001) 7.292123516990375E-05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) f0 = /* Reference coriolis parameter ( 1/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) beta = /* Beta ( 1/(m.s) ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) fPrime = /* Second coriolis parameter ( 1/s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rigidLid = /* Rigid lid on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitFreeSurface = /* Implicit free surface on/off flag */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) freeSurfFac = /* Implicit free surface factor */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicSurfPress = /* Surface Pressure implicit factor (0-1)*/ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicDiv2DFlow = /* Barot. Flow Div. implicit factor (0-1)*/ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) uniformLin_PhiSurf = /* use uniform Bo_surf on/off flag*/ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) uniformFreeSurfLev = /* free-surface level-index is uniform */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) hFacMin = /* minimum partial cell factor (hFac) */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hFacMinDr = /* minimum partial cell thickness ( m) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) exactConserv = /* Exact Volume Conservation on/off flag*/ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) linFSConserveTr = /* Tracer correction for Lin Free Surface on/off flag*/ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) nonlinFreeSurf = /* Non-linear Free Surf. options (-1,0,1,2,3)*/ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) -1,0= Off ; 1,2,3= On, 2=+rescale gU,gV, 3=+update cg2d solv. (PID.TID 0000.0001) ; (PID.TID 0000.0001) hFacInf = /* lower threshold for hFac (nonlinFreeSurf only)*/ (PID.TID 0000.0001) 2.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) hFacSup = /* upper threshold for hFac (nonlinFreeSurf only)*/ (PID.TID 0000.0001) 2.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) select_rStar = /* r* Vertical coord. options (=0 r coord.; >0 uses r*)*/ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useRealFreshWaterFlux = /* Real Fresh Water Flux on/off flag*/ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) temp_EvPrRn = /* Temp. of Evap/Prec/R (UNSET=use local T)(oC)*/ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) salt_EvPrRn = /* Salin. of Evap/Prec/R (UNSET=use local S)(psu)*/ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectAddFluid = /* option for mass source/sink of fluid (=0: off) */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) temp_addMass = /* Temp. of addMass array (UNSET=use local T)(oC)*/ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) salt_addMass = /* Salin. of addMass array (UNSET=use local S)(psu)*/ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) convertFW2Salt = /* convert F.W. Flux to Salt Flux (-1=use local S)(psu)*/ (PID.TID 0000.0001) -1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) use3Dsolver = /* use 3-D pressure solver on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) nonHydrostatic = /* Non-Hydrostatic on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) nh_Am2 = /* Non-Hydrostatic terms scaling factor */ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitNHPress = /* Non-Hyd Pressure implicit factor (0-1)*/ (PID.TID 0000.0001) 1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectNHfreeSurf = /* Non-Hyd (free-)Surface option */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) quasiHydrostatic = /* Quasi-Hydrostatic on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) calc_wVelocity = /* vertical velocity calculation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momStepping = /* Momentum equation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) vectorInvariantMomentum= /* Vector-Invariant Momentum on/off */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momAdvection = /* Momentum advection on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momViscosity = /* Momentum viscosity on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momImplVertAdv= /* Momentum implicit vert. advection on/off*/ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitViscosity = /* Implicit viscosity on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectImplicitDrag= /* Implicit bot Drag options (0,1,2)*/ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) 0= Expl. ; 1= Impl. on provis. Vel ; 2= Fully Impl (with surf.P) (PID.TID 0000.0001) ; (PID.TID 0000.0001) metricTerms = /* metric-Terms on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useNHMTerms = /* Non-Hydrostatic Metric-Terms on/off */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectCoriMap = /* Coriolis Map options (0,1,2,3)*/ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) 0= f-Plane ; 1= Beta-Plane ; 2= Spherical ; 3= read from file (PID.TID 0000.0001) ; (PID.TID 0000.0001) use3dCoriolis = /* 3-D Coriolis on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useCoriolis = /* Coriolis on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useCDscheme = /* CD scheme on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectCoriScheme= /* Scheme selector for Coriolis-Term */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) = 0 : original discretization (simple averaging, no hFac) (PID.TID 0000.0001) = 1 : Wet-point averaging (Jamar & Ozer 1986) (PID.TID 0000.0001) = 2 : energy conserving scheme (no hFac weight) (PID.TID 0000.0001) = 3 : energy conserving scheme using Wet-point averaging (PID.TID 0000.0001) ; (PID.TID 0000.0001) momForcing = /* Momentum forcing on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) momPressureForcing = /* Momentum pressure term on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitIntGravWave= /* Implicit Internal Gravity Wave flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) staggerTimeStep = /* Stagger time stepping on/off flag */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) doResetHFactors = /* reset thickness factors @ each time-step */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) multiDimAdvection = /* enable/disable Multi-Dim Advection */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) useMultiDimAdvec = /* Multi-Dim Advection is/is-not used */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) implicitDiffusion = /* Implicit Diffusion on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempStepping = /* Temperature equation on/off flag */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempAdvection = /* Temperature advection on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempImplVertAdv = /* Temp. implicit vert. advection on/off */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempForcing = /* Temperature forcing on/off flag */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) doThetaClimRelax = /* apply SST relaxation on/off flag */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) tempIsActiveTr = /* Temp. is a dynamically Active Tracer */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltStepping = /* Salinity equation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltAdvection = /* Salinity advection on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltImplVertAdv = /* Sali. implicit vert. advection on/off */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltForcing = /* Salinity forcing on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) doSaltClimRelax = /* apply SSS relaxation on/off flag */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) saltIsActiveTr = /* Salt is a dynamically Active Tracer */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) readBinaryPrec = /* Precision used for reading binary files */ (PID.TID 0000.0001) 64 (PID.TID 0000.0001) ; (PID.TID 0000.0001) writeBinaryPrec = /* Precision used for writing binary files */ (PID.TID 0000.0001) 64 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rwSuffixType = /* select format of mds file suffix */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) = 0 : myIter (I10.10) ; = 1 : 100*myTime (100th sec) ; (PID.TID 0000.0001) = 2 : myTime (seconds); = 3 : myTime/360 (10th of hr); (PID.TID 0000.0001) = 4 : myTime/3600 (hours) (PID.TID 0000.0001) ; (PID.TID 0000.0001) globalFiles = /* write "global" (=not per tile) files */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useSingleCpuIO = /* only master MPI process does I/O */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) useSingleCpuInput = /* only master process reads input */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) /* debLev[*] : level of debug & auxiliary message printing */ (PID.TID 0000.0001) debLevZero = 0 ; /* level of disabled aux. msg printing */ (PID.TID 0000.0001) debLevA = 1 ; /* level of minimum aux. msg printing */ (PID.TID 0000.0001) debLevB = 2 ; /* level of low aux. print (report read-file opening)*/ (PID.TID 0000.0001) debLevC = 3 ; /* level of moderate debug prt (most pkgs debug msg) */ (PID.TID 0000.0001) debLevD = 4 ; /* level of enhanced debug prt (add DEBUG_STATS prt) */ (PID.TID 0000.0001) debLevE = 5 ; /* level of extensive debug printing */ (PID.TID 0000.0001) debugLevel = /* select debug printing level */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) plotLevel = /* select PLOT_FIELD printing level */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) // (PID.TID 0000.0001) // Elliptic solver(s) paramters ( PARM02 in namelist ) (PID.TID 0000.0001) // (PID.TID 0000.0001) cg2dMaxIters = /* Upper limit on 2d con. grad iterations */ (PID.TID 0000.0001) 500 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dChkResFreq = /* 2d con. grad convergence test frequency */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dUseMinResSol= /* use cg2d last-iter(=0) / min-resid.(=1) solution */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dTargetResidual = /* 2d con. grad target residual */ (PID.TID 0000.0001) 1.000000000000000E-12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dTargetResWunit = /* CG2d target residual [W units] */ (PID.TID 0000.0001) -1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cg2dPreCondFreq = /* Freq. for updating cg2d preconditioner */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) useSRCGSolver = /* use single reduction CG solver(s) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) printResidualFreq = /* Freq. for printing CG residual */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) // (PID.TID 0000.0001) // Time stepping paramters ( PARM03 in namelist ) (PID.TID 0000.0001) // (PID.TID 0000.0001) deltaTMom = /* Momentum equation timestep ( s ) */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) deltaTFreeSurf = /* FreeSurface equation timestep ( s ) */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) dTtracerLev = /* Tracer equation timestep ( s ) */ (PID.TID 0000.0001) 1.800000000000000E+03 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) deltaTClock = /* Model clock timestep ( s ) */ (PID.TID 0000.0001) 1.800000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) cAdjFreq = /* Convective adjustment interval ( s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) momForcingOutAB = /* =1: take Momentum Forcing out of Adams-Bash. stepping */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tracForcingOutAB = /* =1: take T,S,pTr Forcing out of Adams-Bash. stepping */ (PID.TID 0000.0001) 1 (PID.TID 0000.0001) ; (PID.TID 0000.0001) momDissip_In_AB = /* put Dissipation Tendency in Adams-Bash. stepping */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) doAB_onGtGs = /* apply AB on Tendencies (rather than on T,S)*/ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) abEps = /* Adams-Bashforth-2 stabilizing weight */ (PID.TID 0000.0001) 1.000000000000000E-01 (PID.TID 0000.0001) ; (PID.TID 0000.0001) applyExchUV_early = /* Apply EXCH to U,V earlier in time-step */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) pickupStrictlyMatch= /* stop if pickup do not strictly match */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) nIter0 = /* Run starting timestep number */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) nTimeSteps = /* Number of timesteps */ (PID.TID 0000.0001) 12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) nEndIter = /* Run ending timestep number */ (PID.TID 0000.0001) 12 (PID.TID 0000.0001) ; (PID.TID 0000.0001) baseTime = /* Model base time ( s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) startTime = /* Run start time ( s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) endTime = /* Integration ending time ( s ) */ (PID.TID 0000.0001) 2.160000000000000E+04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) pChkPtFreq = /* Permanent restart/pickup file interval ( s ) */ (PID.TID 0000.0001) 3.600000000000000E+06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) chkPtFreq = /* Rolling restart/pickup file interval ( s ) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) pickup_write_mdsio = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) pickup_read_mdsio = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) writePickupAtEnd = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) dumpFreq = /* Model state write out interval ( s ). */ (PID.TID 0000.0001) 8.640000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) dumpInitAndLast= /* write out Initial & Last iter. model state */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) snapshot_mdsio = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) monitorFreq = /* Monitor output interval ( s ). */ (PID.TID 0000.0001) 2.160000000000000E+04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) monitorSelect = /* select group of variables to monitor */ (PID.TID 0000.0001) 2 (PID.TID 0000.0001) ; (PID.TID 0000.0001) monitor_stdio = /* Model IO flag. */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) externForcingPeriod = /* forcing period (s) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) externForcingCycle = /* period of the cyle (s). */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tauThetaClimRelax = /* relaxation time scale (s) */ (PID.TID 0000.0001) 2.592000000000000E+06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) tauSaltClimRelax = /* relaxation time scale (s) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) latBandClimRelax = /* max. Lat. where relaxation */ (PID.TID 0000.0001) 6.300000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) // (PID.TID 0000.0001) // Gridding paramters ( PARM04 in namelist ) (PID.TID 0000.0001) // (PID.TID 0000.0001) usingCartesianGrid = /* Cartesian coordinates flag ( True/False ) */ (PID.TID 0000.0001) T (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingCylindricalGrid = /* Cylindrical coordinates flag ( True/False ) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingSphericalPolarGrid = /* Spherical coordinates flag ( True/False ) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) usingCurvilinearGrid = /* Curvilinear coordinates flag ( True/False ) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) useMin4hFacEdges = /* set hFacW,S as minimum of adjacent hFacC factor */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) interViscAr_pCell = /* account for partial-cell in interior vert. viscosity */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) interDiffKr_pCell = /* account for partial-cell in interior vert. diffusion */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) pCellMix_select = /* option to enhance mixing near surface & bottom */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) selectSigmaCoord = /* Hybrid-Sigma Vert. Coordinate option */ (PID.TID 0000.0001) 0 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rSigmaBnd = /* r/sigma transition ( units of r == m ) */ (PID.TID 0000.0001) 1.234567000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rkSign = /* index orientation relative to vertical coordinate */ (PID.TID 0000.0001) -1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) gravitySign = /* gravity orientation relative to vertical coordinate */ (PID.TID 0000.0001) -1.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) seaLev_Z = /* reference height of sea-level [m] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) top_Pres = /* reference pressure at the top [Pa] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) mass2rUnit = /* convert mass per unit area [kg/m2] to r-units [m] */ (PID.TID 0000.0001) 9.708737864077669E-04 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rUnit2mass = /* convert r-units [m] to mass per unit area [kg/m2] */ (PID.TID 0000.0001) 1.030000000000000E+03 (PID.TID 0000.0001) ; (PID.TID 0000.0001) drC = /* C spacing ( units of r ) */ (PID.TID 0000.0001) 2 @ 5.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) drF = /* W spacing ( units of r ) */ (PID.TID 0000.0001) 1.000000000000000E+01 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) delX = /* U spacing ( m - cartesian, degrees - spherical ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) delY = /* V spacing ( m - cartesian, degrees - spherical ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) xgOrigin = /* X-axis origin of West edge (cartesian: m, lat-lon: deg) */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) ygOrigin = /* Y-axis origin of South edge (cartesian: m, lat-lon: deg) */ (PID.TID 0000.0001) -1.100000000000000E+05 (PID.TID 0000.0001) ; (PID.TID 0000.0001) rSphere = /* Radius ( ignored - cartesian, m - spherical ) */ (PID.TID 0000.0001) 6.370000000000000E+06 (PID.TID 0000.0001) ; (PID.TID 0000.0001) deepAtmosphere = /* Deep/Shallow Atmosphere flag (True/False) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) xC = /* xC(:,1,:,1) : P-point X coord ( deg. or m if cartesian) */ (PID.TID 0000.0001) 2.500000000000000E+03, /* I = 1 */ (PID.TID 0000.0001) 7.500000000000000E+03, /* I = 2 */ (PID.TID 0000.0001) 1.250000000000000E+04, /* I = 3 */ (PID.TID 0000.0001) . . . (PID.TID 0000.0001) 8.750000000000000E+04, /* I = 18 */ (PID.TID 0000.0001) 9.250000000000000E+04, /* I = 19 */ (PID.TID 0000.0001) 9.750000000000000E+04, /* I = 20 */ (PID.TID 0000.0001) 1.025000000000000E+05, /* I = 21 */ (PID.TID 0000.0001) 1.075000000000000E+05, /* I = 22 */ (PID.TID 0000.0001) 1.125000000000000E+05, /* I = 23 */ (PID.TID 0000.0001) . . . (PID.TID 0000.0001) 1.875000000000000E+05, /* I = 38 */ (PID.TID 0000.0001) 1.925000000000000E+05, /* I = 39 */ (PID.TID 0000.0001) 1.975000000000000E+05, /* I = 40 */ (PID.TID 0000.0001) 2.025000000000000E+05, /* I = 41 */ (PID.TID 0000.0001) 2.075000000000000E+05, /* I = 42 */ (PID.TID 0000.0001) 2.125000000000000E+05, /* I = 43 */ (PID.TID 0000.0001) . . . (PID.TID 0000.0001) 2.875000000000000E+05, /* I = 58 */ (PID.TID 0000.0001) 2.925000000000000E+05, /* I = 59 */ (PID.TID 0000.0001) 2.975000000000000E+05, /* I = 60 */ (PID.TID 0000.0001) 3.025000000000000E+05, /* I = 61 */ (PID.TID 0000.0001) 3.075000000000000E+05, /* I = 62 */ (PID.TID 0000.0001) 3.125000000000000E+05, /* I = 63 */ (PID.TID 0000.0001) . . . (PID.TID 0000.0001) 3.875000000000000E+05, /* I = 78 */ (PID.TID 0000.0001) 3.925000000000000E+05, /* I = 79 */ (PID.TID 0000.0001) 3.975000000000000E+05 /* I = 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) yC = /* yC(1,:,1,:) : P-point Y coord ( deg. or m if cartesian) */ (PID.TID 0000.0001) -1.075000000000000E+05, /* J = 1 */ (PID.TID 0000.0001) -1.025000000000000E+05, /* J = 2 */ (PID.TID 0000.0001) -9.750000000000000E+04, /* J = 3 */ (PID.TID 0000.0001) -9.250000000000000E+04, /* J = 4 */ (PID.TID 0000.0001) -8.750000000000000E+04, /* J = 5 */ (PID.TID 0000.0001) -8.250000000000000E+04, /* J = 6 */ (PID.TID 0000.0001) -7.750000000000000E+04, /* J = 7 */ (PID.TID 0000.0001) -7.250000000000000E+04, /* J = 8 */ (PID.TID 0000.0001) -6.750000000000000E+04, /* J = 9 */ (PID.TID 0000.0001) -6.250000000000000E+04, /* J = 10 */ (PID.TID 0000.0001) -5.750000000000000E+04, /* J = 11 */ (PID.TID 0000.0001) -5.250000000000000E+04, /* J = 12 */ (PID.TID 0000.0001) -4.750000000000000E+04, /* J = 13 */ (PID.TID 0000.0001) -4.250000000000000E+04, /* J = 14 */ (PID.TID 0000.0001) -3.750000000000000E+04, /* J = 15 */ (PID.TID 0000.0001) -3.250000000000000E+04, /* J = 16 */ (PID.TID 0000.0001) -2.750000000000000E+04, /* J = 17 */ (PID.TID 0000.0001) -2.250000000000000E+04, /* J = 18 */ (PID.TID 0000.0001) -1.750000000000000E+04, /* J = 19 */ (PID.TID 0000.0001) -1.250000000000000E+04, /* J = 20 */ (PID.TID 0000.0001) -7.500000000000000E+03, /* J = 21 */ (PID.TID 0000.0001) -2.500000000000000E+03, /* J = 22 */ (PID.TID 0000.0001) 2.500000000000000E+03, /* J = 23 */ (PID.TID 0000.0001) 7.500000000000000E+03, /* J = 24 */ (PID.TID 0000.0001) 1.250000000000000E+04, /* J = 25 */ (PID.TID 0000.0001) 1.750000000000000E+04, /* J = 26 */ (PID.TID 0000.0001) 2.250000000000000E+04, /* J = 27 */ (PID.TID 0000.0001) 2.750000000000000E+04, /* J = 28 */ (PID.TID 0000.0001) 3.250000000000000E+04, /* J = 29 */ (PID.TID 0000.0001) 3.750000000000000E+04, /* J = 30 */ (PID.TID 0000.0001) 4.250000000000000E+04, /* J = 31 */ (PID.TID 0000.0001) 4.750000000000000E+04, /* J = 32 */ (PID.TID 0000.0001) 5.250000000000000E+04, /* J = 33 */ (PID.TID 0000.0001) 5.750000000000000E+04, /* J = 34 */ (PID.TID 0000.0001) 6.250000000000000E+04, /* J = 35 */ (PID.TID 0000.0001) 6.750000000000000E+04, /* J = 36 */ (PID.TID 0000.0001) 7.250000000000000E+04, /* J = 37 */ (PID.TID 0000.0001) 7.750000000000000E+04, /* J = 38 */ (PID.TID 0000.0001) 8.250000000000000E+04, /* J = 39 */ (PID.TID 0000.0001) 8.750000000000000E+04, /* J = 40 */ (PID.TID 0000.0001) 9.250000000000000E+04, /* J = 41 */ (PID.TID 0000.0001) 9.750000000000000E+04 /* J = 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rcoord = /* P-point R coordinate ( units of r ) */ (PID.TID 0000.0001) -5.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rF = /* W-Interf. R coordinate ( units of r ) */ (PID.TID 0000.0001) 0.000000000000000E+00, /* K = 1 */ (PID.TID 0000.0001) -1.000000000000000E+01 /* K = 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) deepFacC = /* deep-model grid factor @ cell-Center (-) */ (PID.TID 0000.0001) 1.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) deepFacF = /* deep-model grid factor @ W-Interface (-) */ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rVel2wUnit = /* convert units: rVel -> wSpeed (=1 if z-coord)*/ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) wUnit2rVel = /* convert units: wSpeed -> rVel (=1 if z-coord)*/ (PID.TID 0000.0001) 2 @ 1.000000000000000E+00 /* K = 1: 2 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dBdrRef = /* Vertical grad. of reference buoyancy [(m/s/r)^2] */ (PID.TID 0000.0001) 0.000000000000000E+00 /* K = 1 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rotateGrid = /* use rotated grid ( True/False ) */ (PID.TID 0000.0001) F (PID.TID 0000.0001) ; (PID.TID 0000.0001) phiEuler = /* Euler angle, rotation about original z-coordinate [rad] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) thetaEuler = /* Euler angle, rotation about new x-coordinate [rad] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) psiEuler = /* Euler angle, rotation about new z-coordinate [rad] */ (PID.TID 0000.0001) 0.000000000000000E+00 (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxF = /* dxF(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxF = /* dxF(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyF = /* dyF(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyF = /* dyF(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxG = /* dxG(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxG = /* dxG(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyG = /* dyG(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyG = /* dyG(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxC = /* dxC(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxC = /* dxC(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyC = /* dyC(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyC = /* dyC(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxV = /* dxV(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dxV = /* dxV(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyU = /* dyU(:,1,:,1) ( units: m ) */ (PID.TID 0000.0001) 80 @ 5.000000000000000E+03 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) dyU = /* dyU(1,:,1,:) ( units: m ) */ (PID.TID 0000.0001) 42 @ 5.000000000000000E+03 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rA = /* rA (:,1,:,1) ( units: m^2 ) */ (PID.TID 0000.0001) 80 @ 2.500000000000000E+07 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rA = /* rA (1,:,1,:) ( units: m^2 ) */ (PID.TID 0000.0001) 42 @ 2.500000000000000E+07 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rAw = /* rAw(:,1,:,1) ( units: m^2 ) */ (PID.TID 0000.0001) 80 @ 2.500000000000000E+07 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rAw = /* rAw(1,:,1,:) ( units: m^2 ) */ (PID.TID 0000.0001) 42 @ 2.500000000000000E+07 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rAs = /* rAs(:,1,:,1) ( units: m^2 ) */ (PID.TID 0000.0001) 80 @ 2.500000000000000E+07 /* I = 1: 80 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) rAs = /* rAs(1,:,1,:) ( units: m^2 ) */ (PID.TID 0000.0001) 42 @ 2.500000000000000E+07 /* J = 1: 42 */ (PID.TID 0000.0001) ; (PID.TID 0000.0001) globalArea = /* Integrated horizontal Area (m^2) */ (PID.TID 0000.0001) 6.950000000000000E+10 (PID.TID 0000.0001) ; (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End of Model config. summary (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) == Packages configuration : Check & print summary == (PID.TID 0000.0001) (PID.TID 0000.0001) EXF_CHECK: #define ALLOW_EXF (PID.TID 0000.0001) SEAICE_CHECK: #define ALLOW_SEAICE (PID.TID 0000.0001) GAD_CHECK: #define ALLOW_GENERIC_ADVDIFF (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Check Model config. (CONFIG_CHECK): (PID.TID 0000.0001) // CONFIG_CHECK : Normal End (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: uVel_3c0.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: vVel_3c0.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: eta_3c0.bin (PID.TID 0000.0001) Start initial hydrostatic pressure computation (PID.TID 0000.0001) Pressure is predetermined for buoyancyRelation OCEANIC (PID.TID 0000.0001) (PID.TID 0000.0001) write diagnostics summary to file ioUnit: 6 Iter.Nb: 0 ; Time(s): 0.0000000000000E+00 ------------------------------------------------------------------------ 2D/3D diagnostics: Number of lists: 1 ------------------------------------------------------------------------ listId= 1 ; file name: snapshot nFlds, nActive, freq & phase , nLev 4 | 4 | -86400.000000 3600.000000 | 1 levels: 1 diag# | name | ipt | iMate | kLev| count | mate.C| 163 |SIuice | 1 | 2 | 1 | 0 | 0 | 164 |SIvice | 2 | 1 | 1 | 0 | 0 | 149 |SIheff | 3 | 0 | 1 | 0 | 146 |SIarea | 4 | 0 | 1 | 0 | ------------------------------------------------------------------------ Global & Regional Statistics diagnostics: Number of lists: 1 ------------------------------------------------------------------------ listId= 1 ; file name: iceStDiag nFlds, nActive, freq & phase | 5 | 5 | 7200.000000 1800.000000 | Regions: 0 diag# | name | ipt | iMate | Volume | mate-Vol. | 146 |SIarea | 1 | 0 | 0.00000E+00 | 149 |SIheff | 2 | 0 | 0.00000E+00 | 151 |SIhsnow | 3 | 0 | 0.00000E+00 | 163 |SIuice | 4 | 0 | 0.00000E+00 | 164 |SIvice | 5 | 0 | 0.00000E+00 | ------------------------------------------------------------------------ (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: windx.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: tair_4x.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: qa70_4x.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: const_00.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: dsw_100.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: dlw_250.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: tocn.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: heff_quartic.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: const100.bin (PID.TID 0000.0001) MDS_READ_FIELD: opening global file: const_00.bin (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Model current state (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR dynamic field statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON time_tsnumber = 0 (PID.TID 0000.0001) %MON time_secondsf = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_eta_max = 1.4855271423662E-02 (PID.TID 0000.0001) %MON dynstat_eta_min = -1.5547625271979E-02 (PID.TID 0000.0001) %MON dynstat_eta_mean = -6.8609663050809E-19 (PID.TID 0000.0001) %MON dynstat_eta_sd = 5.6185276903544E-03 (PID.TID 0000.0001) %MON dynstat_eta_del2 = 3.4210904025025E-06 (PID.TID 0000.0001) %MON dynstat_uvel_max = 5.4694595665363E-01 (PID.TID 0000.0001) %MON dynstat_uvel_min = 8.1797628424127E-02 (PID.TID 0000.0001) %MON dynstat_uvel_mean = 3.2603530929361E-01 (PID.TID 0000.0001) %MON dynstat_uvel_sd = 8.4661197148990E-02 (PID.TID 0000.0001) %MON dynstat_uvel_del2 = 1.3392731599312E-04 (PID.TID 0000.0001) %MON dynstat_vvel_max = 2.2780617104059E-01 (PID.TID 0000.0001) %MON dynstat_vvel_min = -1.4793000868950E-01 (PID.TID 0000.0001) %MON dynstat_vvel_mean = -3.2450632095700E-04 (PID.TID 0000.0001) %MON dynstat_vvel_sd = 6.0970835295293E-02 (PID.TID 0000.0001) %MON dynstat_vvel_del2 = 8.1836652323282E-05 (PID.TID 0000.0001) %MON dynstat_wvel_max = 1.6555698845343E-04 (PID.TID 0000.0001) %MON dynstat_wvel_min = -2.4393468746960E-04 (PID.TID 0000.0001) %MON dynstat_wvel_mean = -1.8006686469634E-21 (PID.TID 0000.0001) %MON dynstat_wvel_sd = 1.8006622332191E-05 (PID.TID 0000.0001) %MON dynstat_wvel_del2 = 3.4047422448573E-07 (PID.TID 0000.0001) %MON dynstat_theta_max = -1.6200000000000E+00 (PID.TID 0000.0001) %MON dynstat_theta_min = -1.6200000000000E+00 (PID.TID 0000.0001) %MON dynstat_theta_mean = -1.6200000000000E+00 (PID.TID 0000.0001) %MON dynstat_theta_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_theta_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_salt_max = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_min = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_mean = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_salt_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON trAdv_CFL_u_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON trAdv_CFL_v_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON trAdv_CFL_w_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON advcfl_uvel_max = 1.9690054439531E-01 (PID.TID 0000.0001) %MON advcfl_vvel_max = 8.2010221574612E-02 (PID.TID 0000.0001) %MON advcfl_wvel_max = 8.7816487489057E-02 (PID.TID 0000.0001) %MON advcfl_W_hf_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON pe_b_mean = 1.5484032096270E-05 (PID.TID 0000.0001) %MON ke_max = 1.4564487757410E-01 (PID.TID 0000.0001) %MON ke_mean = 5.8130401708830E-02 (PID.TID 0000.0001) %MON ke_vol = 6.9500000000000E+11 (PID.TID 0000.0001) %MON vort_r_min = -1.4191202448594E-04 (PID.TID 0000.0001) %MON vort_r_max = 8.9657385579761E-05 (PID.TID 0000.0001) %MON vort_a_mean = -6.5586096803907E-22 (PID.TID 0000.0001) %MON vort_a_sd = 1.5889649807104E-05 (PID.TID 0000.0001) %MON vort_p_mean = -6.8228760045090E-22 (PID.TID 0000.0001) %MON vort_p_sd = 3.0669223294758E-05 (PID.TID 0000.0001) %MON surfExpan_theta_mean = -1.4394880171946E-21 (PID.TID 0000.0001) %MON surfExpan_salt_mean = 1.6750406018264E-20 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR dynamic field statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 0 (PID.TID 0000.0001) %MON seaice_time_sec = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_uice_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_vice_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_max = 1.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_min = 1.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 1.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6257965109702E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 1.3015410245731E-05 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9238269172251E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2084104540500E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 4.7611843052501E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR EXF statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON exf_tsnumber = 0 (PID.TID 0000.0001) %MON exf_time_sec = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_ustress_max = 1.5090582345178E-01 (PID.TID 0000.0001) %MON exf_ustress_min = 1.2184383176727E-01 (PID.TID 0000.0001) %MON exf_ustress_mean = 1.3639677841392E-01 (PID.TID 0000.0001) %MON exf_ustress_sd = 1.0660482943078E-02 (PID.TID 0000.0001) %MON exf_ustress_del2 = 5.0007679327149E-06 (PID.TID 0000.0001) %MON exf_vstress_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vstress_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_hflux_max = 6.5891206537299E+01 (PID.TID 0000.0001) %MON exf_hflux_min = -8.1404237426772E+01 (PID.TID 0000.0001) %MON exf_hflux_mean = -1.2615253864378E+01 (PID.TID 0000.0001) %MON exf_hflux_sd = 5.2562085706909E+01 (PID.TID 0000.0001) %MON exf_hflux_del2 = 2.4884597814969E-01 (PID.TID 0000.0001) %MON exf_sflux_max = 2.4349220321116E-08 (PID.TID 0000.0001) %MON exf_sflux_min = -2.4559554123212E-09 (PID.TID 0000.0001) %MON exf_sflux_mean = 1.1240274785629E-08 (PID.TID 0000.0001) %MON exf_sflux_sd = 9.7326718386416E-09 (PID.TID 0000.0001) %MON exf_sflux_del2 = 7.9927232086011E-11 (PID.TID 0000.0001) %MON exf_uwind_max = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_uwind_min = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_uwind_mean = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_uwind_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_uwind_del2 = 5.9106750809910E-02 (PID.TID 0000.0001) %MON exf_vwind_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vwind_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vwind_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vwind_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_vwind_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_wspeed_max = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_wspeed_min = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_wspeed_mean = 1.0000000000000E+01 (PID.TID 0000.0001) %MON exf_wspeed_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_wspeed_del2 = 5.9106750809910E-02 (PID.TID 0000.0001) %MON exf_atemp_max = 2.7714691614496E+02 (PID.TID 0000.0001) %MON exf_atemp_min = 2.6915308385504E+02 (PID.TID 0000.0001) %MON exf_atemp_mean = 2.7315000000000E+02 (PID.TID 0000.0001) %MON exf_atemp_sd = 2.9037718208063E+00 (PID.TID 0000.0001) %MON exf_atemp_del2 = 1.2859997507300E-02 (PID.TID 0000.0001) %MON exf_aqh_max = 3.7064806789606E-03 (PID.TID 0000.0001) %MON exf_aqh_min = 2.1441807824757E-03 (PID.TID 0000.0001) %MON exf_aqh_mean = 2.8804761552935E-03 (PID.TID 0000.0001) %MON exf_aqh_sd = 5.6734393616353E-04 (PID.TID 0000.0001) %MON exf_aqh_del2 = 1.7078962742152E-05 (PID.TID 0000.0001) %MON exf_lwflux_max = 5.6469966707287E+01 (PID.TID 0000.0001) %MON exf_lwflux_min = 5.6469966707287E+01 (PID.TID 0000.0001) %MON exf_lwflux_mean = 5.6469966707288E+01 (PID.TID 0000.0001) %MON exf_lwflux_sd = 7.6028072726331E-13 (PID.TID 0000.0001) %MON exf_lwflux_del2 = 3.3377562504116E-01 (PID.TID 0000.0001) %MON exf_evap_max = 2.4349220321116E-08 (PID.TID 0000.0001) %MON exf_evap_min = -2.4559554123212E-09 (PID.TID 0000.0001) %MON exf_evap_mean = 1.1240274785629E-08 (PID.TID 0000.0001) %MON exf_evap_sd = 9.7326718386416E-09 (PID.TID 0000.0001) %MON exf_evap_del2 = 7.9927232086011E-11 (PID.TID 0000.0001) %MON exf_precip_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_precip_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_precip_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_precip_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_precip_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_swflux_max = -9.0000000000000E+01 (PID.TID 0000.0001) %MON exf_swflux_min = -9.0000000000000E+01 (PID.TID 0000.0001) %MON exf_swflux_mean = -9.0000000000000E+01 (PID.TID 0000.0001) %MON exf_swflux_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_swflux_del2 = 5.3196075728919E-01 (PID.TID 0000.0001) %MON exf_swdown_max = 1.0000000000000E+02 (PID.TID 0000.0001) %MON exf_swdown_min = 1.0000000000000E+02 (PID.TID 0000.0001) %MON exf_swdown_mean = 1.0000000000000E+02 (PID.TID 0000.0001) %MON exf_swdown_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_swdown_del2 = 5.9106750809910E-01 (PID.TID 0000.0001) %MON exf_lwdown_max = 2.5000000000000E+02 (PID.TID 0000.0001) %MON exf_lwdown_min = 2.5000000000000E+02 (PID.TID 0000.0001) %MON exf_lwdown_mean = 2.5000000000000E+02 (PID.TID 0000.0001) %MON exf_lwdown_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON exf_lwdown_del2 = 1.4776687702478E+00 (PID.TID 0000.0001) %MON exf_climsst_max = -1.1200000000000E+00 (PID.TID 0000.0001) %MON exf_climsst_min = -1.9000000000000E+00 (PID.TID 0000.0001) %MON exf_climsst_mean = -1.4758380996034E+00 (PID.TID 0000.0001) %MON exf_climsst_sd = 2.7690286535789E-01 (PID.TID 0000.0001) %MON exf_climsst_del2 = 1.0615551600389E-04 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR EXF statistics (PID.TID 0000.0001) // ======================================================= SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 9.24106196E-01 1.17296801E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 8.85662486E+02 2.08251541E+02 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 6.32371401E-06 1.43573007E+00 SEAICE_LSR (ipass= 1) iters,dV,Resid= 272 9.57417739E-13 6.31107157E-09 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 1.07958570E+00 4.14679524E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 7.79521472E+02 1.26524975E+02 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 8.80342310E-06 1.85071944E+00 SEAICE_LSR (ipass= 2) iters,dV,Resid= 144 8.10294540E-13 2.33810200E-09 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 1 (PID.TID 0000.0001) %MON seaice_time_sec = 1.8000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 4.5501172010391E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.8320915382542E-02 (PID.TID 0000.0001) %MON seaice_uice_mean = 1.1783918135520E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.5174085220464E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.3648672953237E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 6.5669958021762E-02 (PID.TID 0000.0001) %MON seaice_vice_min = -5.8329612802282E-02 (PID.TID 0000.0001) %MON seaice_vice_mean = -8.6151447920027E-04 (PID.TID 0000.0001) %MON seaice_vice_sd = 1.4520275861260E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 2.4610735448366E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9999985023495E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.6524932912375E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 1.6182614455150E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.2065961966255E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6254861823847E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9235072729840E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2083682848396E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 4.7613380554169E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= Compute Stats, Diag. # 146 SIarea vol( 0 ): 6.950E+10 Parms: SM M1 Compute Stats, Diag. # 149 SIheff vol( 0 ): 6.950E+10 Parms: SM M1 Compute Stats, Diag. # 151 SIhsnow vol( 0 ): 6.950E+10 Parms: SM M1 Compute Stats, Diag. # 163 SIuice vol( 0 ): 6.900E+10 Parms: UU M1 Compute Stats, Diag. # 164 SIvice vol( 0 ): 6.750E+10 Parms: VV M1 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 1.24575219E+00 5.65574080E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 6.98968798E+02 1.59233563E+02 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 1.20886598E-05 2.01173847E+00 SEAICE_LSR (ipass= 1) iters,dV,Resid= 96 8.19677659E-13 1.30024085E-10 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 1.22796014E+00 4.91202394E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 6.42332623E+02 1.75612999E+02 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 1.29511562E-05 1.89993829E+00 SEAICE_LSR (ipass= 2) iters,dV,Resid= 96 8.43818071E-13 6.07003562E-12 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 1 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 2 (PID.TID 0000.0001) %MON seaice_time_sec = 3.6000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.5738545184736E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 4.7655276683295E-02 (PID.TID 0000.0001) %MON seaice_uice_mean = 2.4300349613666E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.8992634701850E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 4.4358596016640E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.0968690029464E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.1684368787448E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -8.2359995954803E-03 (PID.TID 0000.0001) %MON seaice_vice_sd = 3.5584913789692E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 5.5259111065158E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9999973409823E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.5592095131220E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 1.7829650333387E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.2720303759741E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6252332313723E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9232275589035E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2082378933471E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 4.7953010548024E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 1.18112490E+00 4.36067762E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 5.14915068E+02 1.78353453E+02 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 1.46513630E-05 1.72670357E+00 SEAICE_LSR (ipass= 1) iters,dV,Resid= 104 7.75407516E-13 6.39167648E-13 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 1.12940782E+00 4.14228430E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 4.94198666E+02 1.81598400E+02 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 1.44197849E-05 1.51485787E+00 SEAICE_LSR (ipass= 2) iters,dV,Resid= 136 7.44349027E-13 1.00710889E-12 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 2 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 3 (PID.TID 0000.0001) %MON seaice_time_sec = 5.4000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.1531385250657E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 8.2028144595619E-02 (PID.TID 0000.0001) %MON seaice_uice_mean = 3.0077928673361E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.7282187429730E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.6933238011124E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.1699495889048E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.5426137886543E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -1.7770078339897E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 4.7436132705440E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 6.3438647961208E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9999860558161E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.4934826974180E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 1.8770710235892E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.3389489709644E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6250359076917E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9229869404420E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2078109192560E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 4.9820803046719E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= Computing Diagnostic # 163 SIuice Counter: 1 Parms: UU M1 Vector Mate for SIuice Diagnostic # 164 SIvice exists Computing Diagnostic # 164 SIvice Counter: 1 Parms: VV M1 Vector Mate for SIvice Diagnostic # 163 SIuice exists Computing Diagnostic # 149 SIheff Counter: 1 Parms: SM M1 Computing Diagnostic # 146 SIarea Counter: 1 Parms: SM M1 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 1.06731930E+00 4.01043367E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 4.44095285E+02 1.84282709E+02 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 1.51266169E-05 1.27063009E+00 SEAICE_LSR (ipass= 1) iters,dV,Resid= 288 9.37694367E-13 6.54072385E-12 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 1.01719225E+00 4.01763341E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 4.44089278E+02 1.82525006E+02 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 1.42146860E-05 1.07118516E+00 SEAICE_LSR (ipass= 2) iters,dV,Resid= 332 9.58094715E-13 9.26520130E-12 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 3 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 3 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 4 (PID.TID 0000.0001) %MON seaice_time_sec = 7.2000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.7823170463799E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.1686696853561E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 3.3819234814838E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.6308192722722E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.5588554075202E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.1575851556318E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.7901253481097E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -2.4980831416111E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.4095082955701E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 6.2077615628916E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9999618698801E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.4390187514123E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 1.9451841809443E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.3958733342904E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6248772087685E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9227783636900E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2070505356732E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 5.3743449596156E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 9.30565922E-01 3.81663010E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 3.95327049E+02 1.58858520E+02 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 1.43143283E-05 9.20058095E-01 SEAICE_LSR (ipass= 1) iters,dV,Resid= 466 9.77162795E-13 1.67612503E-11 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 8.67937459E-01 3.45982301E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 3.69549715E+02 1.36777310E+02 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 1.37767852E-05 8.08443990E-01 SEAICE_LSR (ipass= 2) iters,dV,Resid= 488 9.58413904E-13 1.84418533E-11 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 4 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 5) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 6) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 6) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 7) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 7) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 7) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 8) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 8) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 8) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 8) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 8) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 8) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 8) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 9) in timestep 4 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 9) in timestep 4 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 5 (PID.TID 0000.0001) %MON seaice_time_sec = 9.0000000000000E+03 (PID.TID 0000.0001) %MON seaice_uice_max = 6.8420100115673E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.5034743597109E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 3.6276968026684E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.5074970861256E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.5977928408406E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.1639655838579E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.8879456840451E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -2.8653271088081E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.7089022163774E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 6.2524138269790E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9999606121869E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.3900970346375E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 2.0070281841584E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.4798110884318E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6247439950128E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9225963118004E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2060522572403E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 5.9641814855643E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= Compute Stats, Diag. # 146 SIarea vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 149 SIheff vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 151 SIhsnow vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 163 SIuice vol( 0 ): 2.760E+11 Parms: UU M1 Compute Stats, Diag. # 164 SIvice vol( 0 ): 2.700E+11 Parms: VV M1 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 7.45091590E-01 3.35291470E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 3.06811178E+02 1.07191932E+02 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 1.47161602E-05 7.45103601E-01 SEAICE_LSR (ipass= 1) iters,dV,Resid= 570 9.54139545E-13 2.46840311E-11 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 6.98098795E-01 2.98015186E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.88782642E+02 9.59597214E+01 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 1.41196470E-05 6.68024527E-01 SEAICE_LSR (ipass= 2) iters,dV,Resid= 594 9.89028304E-13 2.82407426E-11 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 5 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 4) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 5) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 6) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 7) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 8) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 9) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 11) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 11) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 12) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 12) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 12) in timestep 5 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 12) in timestep 5 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 6 (PID.TID 0000.0001) %MON seaice_time_sec = 1.0800000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.8006199803456E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 1.8513653867067E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 3.8249642631729E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.3762185327402E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.6751680909510E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.1707230095253E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.8960684604735E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -3.0127180004765E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.8105176492401E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 7.7356159829783E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9999516274166E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.3483552483658E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 2.0511418797442E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.4826573895740E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6245826413930E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9224370847005E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2049143336432E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 6.6759479918914E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 6.52994273E-01 2.69804133E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.45986258E+02 8.14558848E+01 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 1.47039805E-05 6.46512752E-01 SEAICE_LSR (ipass= 1) iters,dV,Resid= 678 9.96175364E-13 3.77884268E-11 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 6.42938244E-01 2.27519422E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.40090512E+02 7.68048751E+01 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 1.34928442E-05 5.94829059E-01 SEAICE_LSR (ipass= 2) iters,dV,Resid= 700 9.87446236E-13 4.23844466E-11 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 6 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 3) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 5) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 5) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 5) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 5) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 5) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 5) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 5) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 5) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 6) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 7) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 13 8) in timestep 6 0.1979E-04 0.4679E+00 0.4679E+00 0.2522E-04 0.4787E+00 0.4487E+00 0.4721E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 8) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 9) in timestep 6 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 12) in timestep 6 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 7 (PID.TID 0000.0001) %MON seaice_time_sec = 1.2600000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.7647792592897E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 2.1924912243453E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 3.9908917415814E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.2504799299929E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.7416572003942E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.1768454550770E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.8697965637756E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -3.0236929820826E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.8110767908527E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 9.4547800883335E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9999339675307E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.3108694151116E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 2.0880881668223E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.4888729383884E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6243768951951E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9222966998908E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2037187517493E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 7.4453142764657E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 6.47549513E-01 1.96333553E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.20813127E+02 7.18284536E+01 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 1.31980526E-05 6.29943980E-01 SEAICE_LSR (ipass= 1) iters,dV,Resid= 952 9.89652804E-13 5.92590968E-11 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 6.41729906E-01 2.01797699E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.22690524E+02 7.06612830E+01 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 1.18845977E-05 5.83147770E-01 SEAICE_LSR (ipass= 2) iters,dV,Resid= 1000 9.76524417E-13 6.69839080E-11 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 7 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 34 1) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 4) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 5) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 6) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 14 7) in timestep 7 0.3221E-04 0.4775E+00 0.4775E+00 0.2464E-04 0.4802E+00 0.4545E+00 0.4795E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 7) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 7 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 11 8) in timestep 7 0.2575E-04 0.4752E+00 0.4753E+00 0.2335E-04 0.4786E+00 0.4499E+00 0.4772E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 27 8) in timestep 7 0.2967E-04 0.4730E+00 0.4731E+00 0.2875E-04 0.4803E+00 0.4543E+00 0.4780E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 28 8) in timestep 7 0.2482E-04 0.4759E+00 0.4760E+00 0.2906E-04 0.4773E+00 0.4528E+00 0.4768E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 8) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 7 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 12 9) in timestep 7 0.2756E-04 0.4745E+00 0.4745E+00 0.3023E-04 0.4805E+00 0.4545E+00 0.4787E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 13 9) in timestep 7 0.2658E-04 0.4775E+00 0.4776E+00 0.3606E-04 0.4796E+00 0.4571E+00 0.4792E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 25 9) in timestep 7 0.2953E-04 0.4750E+00 0.4750E+00 0.3418E-04 0.4832E+00 0.4600E+00 0.4831E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 26 9) in timestep 7 0.2489E-04 0.4757E+00 0.4757E+00 0.3495E-04 0.4813E+00 0.4598E+00 0.4811E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 9) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 10) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 11 10) in timestep 7 0.2229E-04 0.4718E+00 0.4719E+00 0.2913E-04 0.4782E+00 0.4504E+00 0.4752E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 10) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 17 10) in timestep 7 0.2691E-04 0.4729E+00 0.4729E+00 0.4495E-04 0.4729E+00 0.4442E+00 0.4729E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 10) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 18 10) in timestep 7 0.2704E-04 0.4730E+00 0.4730E+00 0.4519E-04 0.4731E+00 0.4442E+00 0.4730E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 10) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 19 10) in timestep 7 0.2702E-04 0.4730E+00 0.4730E+00 0.4492E-04 0.4733E+00 0.4444E+00 0.4731E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 10) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 24 10) in timestep 7 0.2455E-04 0.4728E+00 0.4728E+00 0.3679E-04 0.4753E+00 0.4454E+00 0.4739E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 10) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 25 10) in timestep 7 0.2655E-04 0.4719E+00 0.4719E+00 0.3056E-04 0.4820E+00 0.4523E+00 0.4778E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 10) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 26 10) in timestep 7 0.2302E-04 0.4723E+00 0.4723E+00 0.3085E-04 0.4781E+00 0.4486E+00 0.4752E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 11) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 15 11) in timestep 7 0.2941E-04 0.4720E+00 0.4720E+00 0.3010E-04 0.4844E+00 0.4531E+00 0.4796E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 11) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 11) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 11) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 11) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 11) in timestep 7 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 20 11) in timestep 7 0.2814E-04 0.4723E+00 0.4723E+00 0.3138E-04 0.4828E+00 0.4513E+00 0.4783E+00 0.4604E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 8 (PID.TID 0000.0001) %MON seaice_time_sec = 1.4400000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.7439459229558E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 2.4952657807566E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 4.1271957722124E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.1438647387119E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.7800629549017E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.1829226838691E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.8289935175931E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -2.9577891522348E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.7608959505962E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 9.9795784030771E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9999100609788E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.2759194288882E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 2.1235674285611E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.5031158701423E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6242678683743E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9221719105387E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2025216914198E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 8.1663820353819E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 6.09136714E-01 2.11027205E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.16746423E+02 6.95977408E+01 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 1.14825411E-05 5.85098773E-01 SEAICE_LSR (ipass= 1) iters,dV,Resid= 1302 9.97903149E-13 1.02684761E-10 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 5.93106012E-01 2.05396688E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.20851265E+02 6.83696000E+01 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 1.03813179E-05 5.30719729E-01 SEAICE_LSR (ipass= 2) iters,dV,Resid= 1396 9.96307203E-13 1.24676895E-10 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 8 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 1) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 1) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 1) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 1) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 1) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 1) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 2) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 2) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 3) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 4) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 4) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 4) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 5) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 6) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 7) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 6 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 8) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 9 9) in timestep 8 0.2553E-04 0.4757E+00 0.4757E+00 0.2249E-04 0.4817E+00 0.4592E+00 0.4812E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 30 9) in timestep 8 0.2915E-04 0.4758E+00 0.4758E+00 0.2606E-04 0.4770E+00 0.4483E+00 0.4764E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 9) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 10) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 12 11) in timestep 8 0.2928E-04 0.4705E+00 0.4705E+00 0.4084E-04 0.4743E+00 0.4485E+00 0.4723E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 13 11) in timestep 8 0.3619E-04 0.4700E+00 0.4700E+00 0.3927E-04 0.4790E+00 0.4519E+00 0.4748E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 14 11) in timestep 8 0.4209E-04 0.4698E+00 0.4698E+00 0.3767E-04 0.4828E+00 0.4546E+00 0.4779E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 22 11) in timestep 8 0.3880E-04 0.4702E+00 0.4702E+00 0.4010E-04 0.4807E+00 0.4531E+00 0.4762E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 23 11) in timestep 8 0.3404E-04 0.4704E+00 0.4704E+00 0.4164E-04 0.4774E+00 0.4506E+00 0.4739E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 24 11) in timestep 8 0.2935E-04 0.4708E+00 0.4708E+00 0.4253E-04 0.4742E+00 0.4481E+00 0.4723E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 25 11) in timestep 8 0.2534E-04 0.4712E+00 0.4712E+00 0.4252E-04 0.4712E+00 0.4455E+00 0.4712E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 11) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 27 11) in timestep 8 0.2555E-04 0.4705E+00 0.4705E+00 0.3173E-04 0.4759E+00 0.4482E+00 0.4729E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 12) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 14 12) in timestep 8 0.2532E-04 0.4713E+00 0.4713E+00 0.4169E-04 0.4719E+00 0.4457E+00 0.4716E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 12) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 15 12) in timestep 8 0.2600E-04 0.4714E+00 0.4714E+00 0.4301E-04 0.4721E+00 0.4459E+00 0.4717E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 12) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 16 12) in timestep 8 0.2699E-04 0.4713E+00 0.4713E+00 0.4335E-04 0.4727E+00 0.4465E+00 0.4719E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 12) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 17 12) in timestep 8 0.2718E-04 0.4713E+00 0.4713E+00 0.4348E-04 0.4728E+00 0.4466E+00 0.4720E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 12) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 18 12) in timestep 8 0.2676E-04 0.4713E+00 0.4713E+00 0.4355E-04 0.4725E+00 0.4462E+00 0.4718E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 12) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 22 12) in timestep 8 0.2595E-04 0.4709E+00 0.4709E+00 0.3556E-04 0.4759E+00 0.4491E+00 0.4733E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 12) in timestep 8 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 25 12) in timestep 8 0.2055E-04 0.4712E+00 0.4712E+00 0.3051E-04 0.4732E+00 0.4457E+00 0.4720E+00 0.4604E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 9 (PID.TID 0000.0001) %MON seaice_time_sec = 1.6200000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.7330113993649E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 2.7578879871184E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 4.2400032890917E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 1.0562783766312E-01 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.8136434389677E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.1901481644885E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.7913695067768E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -2.8547247838630E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.6910024273437E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 9.8483202600961E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9998862335943E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.2430856497082E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 2.1588044417322E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.5140237072094E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6241798921269E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9220601304366E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2013544930330E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 8.8348433710035E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= Compute Stats, Diag. # 146 SIarea vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 149 SIheff vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 151 SIhsnow vol( 0 ): 2.780E+11 Parms: SM M1 Compute Stats, Diag. # 163 SIuice vol( 0 ): 2.760E+11 Parms: UU M1 Compute Stats, Diag. # 164 SIvice vol( 0 ): 2.700E+11 Parms: VV M1 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 5.54926457E-01 1.72691859E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.21168498E+02 6.68872813E+01 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 9.97760509E-06 5.18064758E-01 SEAICE_LSR (ipass= 1) iters,dV,Resid= 1500 1.11697387E-11 1.98288649E-09 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 5.42968453E-01 1.66631934E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.27250679E+02 6.57590632E+01 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 9.04052485E-06 4.74575606E-01 SEAICE_LSR (ipass= 2) iters,dV,Resid= 1500 1.50034221E-11 2.89309241E-09 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 9 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 7 1) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 1) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 2) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 3) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 3) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 3) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 3) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 4) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 4) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 4) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 4) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 5) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 6) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 7) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 8) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 9) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 10) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 10) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 10) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 10) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 10) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 10) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 10) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 10) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 11) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 12) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 10 12) in timestep 9 0.2313E-04 0.4697E+00 0.4697E+00 0.3940E-04 0.4699E+00 0.4472E+00 0.4698E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 12) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 12) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 12) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 12) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 12) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 12) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 13) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 14 13) in timestep 9 0.2709E-04 0.4696E+00 0.4696E+00 0.4088E-04 0.4715E+00 0.4479E+00 0.4704E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 13) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 15 13) in timestep 9 0.2919E-04 0.4694E+00 0.4694E+00 0.4064E-04 0.4728E+00 0.4490E+00 0.4709E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 13) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 16 13) in timestep 9 0.3010E-04 0.4693E+00 0.4693E+00 0.4053E-04 0.4733E+00 0.4494E+00 0.4711E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 13) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 17 13) in timestep 9 0.2991E-04 0.4693E+00 0.4693E+00 0.4062E-04 0.4732E+00 0.4494E+00 0.4711E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 13) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 18 13) in timestep 9 0.2891E-04 0.4694E+00 0.4694E+00 0.4083E-04 0.4726E+00 0.4490E+00 0.4708E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 13) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 19 13) in timestep 9 0.2705E-04 0.4695E+00 0.4695E+00 0.4113E-04 0.4715E+00 0.4484E+00 0.4704E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 13) in timestep 9 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 20 13) in timestep 9 0.2487E-04 0.4697E+00 0.4697E+00 0.4125E-04 0.4697E+00 0.4469E+00 0.4697E+00 0.4604E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 10 (PID.TID 0000.0001) %MON seaice_time_sec = 1.8000000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.7299217759958E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 2.9846278270342E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 4.3340885265237E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 9.8500666707424E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.8543677570023E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.1969853117209E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.7611370983055E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -2.7355475114559E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.6176565057413E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 9.6259655195999E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9998658897306E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.2132317089598E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 2.1887123036721E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.5095898819718E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6241073903120E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9219597283562E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.2002333693714E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 9.4827533208206E-04 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 5.14003468E-01 1.46717073E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.31140554E+02 6.40347154E+01 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 8.62493665E-06 4.67567814E-01 SEAICE_LSR (ipass= 1) iters,dV,Resid= 1500 2.00340175E-10 5.26389754E-08 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 5.04617086E-01 1.43862717E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.37672046E+02 6.28745518E+01 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 7.84928074E-06 4.33878153E-01 SEAICE_LSR (ipass= 2) iters,dV,Resid= 1500 2.55308399E-10 7.51401209E-08 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 10 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 21) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 7 1) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 1) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 2) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 3) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 3) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 3) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 4) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 4) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 4) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 4) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 4) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 34 4) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 5) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 6 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 6) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 35 7) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 8) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 30 9) in timestep 10 0.5829E-04 0.4748E+00 0.4748E+00 0.3148E-04 0.4818E+00 0.4591E+00 0.4813E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 9) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 26 10) in timestep 10 0.7660E-04 0.4676E+00 0.4676E+00 0.5194E-04 0.4795E+00 0.4558E+00 0.4749E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 29 10) in timestep 10 0.6478E-04 0.4675E+00 0.4675E+00 0.3247E-04 0.4851E+00 0.4576E+00 0.4802E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 10) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 11) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 13) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 13) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 13) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 13) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 13) in timestep 10 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 13) in timestep 10 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 11 (PID.TID 0000.0001) %MON seaice_time_sec = 1.9800000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.7321629191521E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 3.1289310016742E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 4.4130726213752E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 9.2772315456347E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.8990782156707E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.2034845668412E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.7334529944150E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -2.6123136143020E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.5485935827896E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 9.3983522880382E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9998493898273E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.1854087621309E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 2.2156004513772E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.5155469510755E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6240488913442E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9218688025146E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.1991663013731E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 1.0081125651861E-03 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= SEAICE_LSR: Residual Initial ipass,Uice,Vice= 1 4.81923212E-01 1.37544208E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.44784762E+02 6.07526285E+01 SEAICE_LSR (ipass= 1) iters,dU,Resid= 1500 7.43371858E-06 4.30400896E-01 SEAICE_LSR (ipass= 1) iters,dV,Resid= 1500 1.13592202E-09 4.02489514E-07 SEAICE_LSR: Residual Initial ipass,Uice,Vice= 2 4.73413931E-01 1.38900070E-01 SEAICE_LSR: Residual FrDrift U_fd,V_fd= 2.52370664E+02 5.94195483E+01 SEAICE_LSR (ipass= 2) iters,dU,Resid= 1500 6.79935390E-06 4.03361492E-01 SEAICE_LSR (ipass= 2) iters,dV,Resid= 1500 1.02788430E-09 3.82535427E-07 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 1 in timestep 11 (PID.TID 0000.0001) SEAICE_DO_RIDGING: Repeat ridging after iteration 2 in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 21) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 21) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 1) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 2) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 2) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 3) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 3) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 3) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 3) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 3) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 7 4) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 4) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 4) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 5) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 34 6) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 7 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 7) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 8) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 7 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 8 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 31 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 32 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 33 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 34 9) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 9 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 9 10) in timestep 11 0.4001E-04 0.4659E+00 0.4659E+00 0.4644E-04 0.4702E+00 0.4529E+00 0.4677E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 10 10) in timestep 11 0.5588E-04 0.4659E+00 0.4659E+00 0.5203E-04 0.4729E+00 0.4551E+00 0.4695E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 10) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 10 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 28 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 29 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 30 11) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 30 11) in timestep 11 0.4030E-04 0.4661E+00 0.4661E+00 0.5394E-04 0.4679E+00 0.4506E+00 0.4667E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 11 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 12 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 13 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 14 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 22 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 22 12) in timestep 11 0.8381E-04 0.4675E+00 0.4675E+00 0.5893E-04 0.4791E+00 0.4558E+00 0.4746E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 23 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 23 12) in timestep 11 0.7746E-04 0.4666E+00 0.4666E+00 0.5942E-04 0.4779E+00 0.4561E+00 0.4734E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 24 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 25 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 26 12) in timestep 11 0.6645E-04 0.4673E+00 0.4673E+00 0.4354E-04 0.4802E+00 0.4564E+00 0.4755E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 27 12) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 27 12) in timestep 11 0.6709E-04 0.4666E+00 0.4666E+00 0.3374E-04 0.4846E+00 0.4574E+00 0.4787E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 15 13) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 16 13) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 17 13) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 18 13) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 19 13) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 20 13) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 20 13) in timestep 11 0.6390E-04 0.4661E+00 0.4661E+00 0.4840E-04 0.4778E+00 0.4554E+00 0.4723E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 21 13) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 21 13) in timestep 11 0.5019E-04 0.4668E+00 0.4668E+00 0.5724E-04 0.4722E+00 0.4530E+00 0.4693E+00 0.4604E+00 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k) >= hLimitNew(k) for category 1 at ( 26 13) in timestep 11 (PID.TID 0000.0001) SEAICE_ITD_REMAP: hActual(k+1) <= hLimitNew(k) for category 1 at ( 26 13) in timestep 11 0.3431E-04 0.4668E+00 0.4668E+00 0.4208E-04 0.4704E+00 0.4520E+00 0.4683E+00 0.4604E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR dynamic field statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON time_tsnumber = 12 (PID.TID 0000.0001) %MON time_secondsf = 2.1600000000000E+04 (PID.TID 0000.0001) %MON dynstat_eta_max = 1.4855271423662E-02 (PID.TID 0000.0001) %MON dynstat_eta_min = -1.5547625271979E-02 (PID.TID 0000.0001) %MON dynstat_eta_mean = -6.8609663050809E-19 (PID.TID 0000.0001) %MON dynstat_eta_sd = 5.6185276903544E-03 (PID.TID 0000.0001) %MON dynstat_eta_del2 = 3.4210904025025E-06 (PID.TID 0000.0001) %MON dynstat_uvel_max = 5.4694595665363E-01 (PID.TID 0000.0001) %MON dynstat_uvel_min = 8.1797628424127E-02 (PID.TID 0000.0001) %MON dynstat_uvel_mean = 3.2603530929361E-01 (PID.TID 0000.0001) %MON dynstat_uvel_sd = 8.4661197148990E-02 (PID.TID 0000.0001) %MON dynstat_uvel_del2 = 1.3392731599312E-04 (PID.TID 0000.0001) %MON dynstat_vvel_max = 2.2780617104059E-01 (PID.TID 0000.0001) %MON dynstat_vvel_min = -1.4793000868950E-01 (PID.TID 0000.0001) %MON dynstat_vvel_mean = -3.2450632095700E-04 (PID.TID 0000.0001) %MON dynstat_vvel_sd = 6.0970835295293E-02 (PID.TID 0000.0001) %MON dynstat_vvel_del2 = 8.1836652323282E-05 (PID.TID 0000.0001) %MON dynstat_wvel_max = 1.6555698845343E-04 (PID.TID 0000.0001) %MON dynstat_wvel_min = -2.4393468746960E-04 (PID.TID 0000.0001) %MON dynstat_wvel_mean = -1.8006686469634E-21 (PID.TID 0000.0001) %MON dynstat_wvel_sd = 1.8006622332191E-05 (PID.TID 0000.0001) %MON dynstat_wvel_del2 = 3.4047422448573E-07 (PID.TID 0000.0001) %MON dynstat_theta_max = -1.5751098890513E+00 (PID.TID 0000.0001) %MON dynstat_theta_min = -1.6340295440875E+00 (PID.TID 0000.0001) %MON dynstat_theta_mean = -1.6300996407746E+00 (PID.TID 0000.0001) %MON dynstat_theta_sd = 7.9149536676971E-03 (PID.TID 0000.0001) %MON dynstat_theta_del2 = 2.7747256716343E-05 (PID.TID 0000.0001) %MON dynstat_salt_max = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_min = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_mean = 3.0000000000000E+01 (PID.TID 0000.0001) %MON dynstat_salt_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON dynstat_salt_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) %MON trAdv_CFL_u_max = 1.9690054439531E-01 (PID.TID 0000.0001) %MON trAdv_CFL_v_max = 8.2010221574612E-02 (PID.TID 0000.0001) %MON trAdv_CFL_w_max = 2.9800257921617E-02 (PID.TID 0000.0001) %MON advcfl_uvel_max = 1.9690054439531E-01 (PID.TID 0000.0001) %MON advcfl_vvel_max = 8.2010221574612E-02 (PID.TID 0000.0001) %MON advcfl_wvel_max = 8.7816487489057E-02 (PID.TID 0000.0001) %MON advcfl_W_hf_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON pe_b_mean = 1.5484032096270E-05 (PID.TID 0000.0001) %MON ke_max = 1.4564487757410E-01 (PID.TID 0000.0001) %MON ke_mean = 5.8130401708830E-02 (PID.TID 0000.0001) %MON ke_vol = 6.9500000000000E+11 (PID.TID 0000.0001) %MON vort_r_min = -1.4191202448594E-04 (PID.TID 0000.0001) %MON vort_r_max = 8.9657385579761E-05 (PID.TID 0000.0001) %MON vort_a_mean = -6.5586096803907E-22 (PID.TID 0000.0001) %MON vort_a_sd = 1.5889649807104E-05 (PID.TID 0000.0001) %MON vort_p_mean = -6.8228760045090E-22 (PID.TID 0000.0001) %MON vort_p_sd = 3.0669223294758E-05 (PID.TID 0000.0001) %MON surfExpan_theta_mean = 2.0050663764520E-08 (PID.TID 0000.0001) %MON surfExpan_salt_mean = 1.6750406018264E-20 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR dynamic field statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // Begin MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) %MON seaice_tsnumber = 12 (PID.TID 0000.0001) %MON seaice_time_sec = 2.1600000000000E+04 (PID.TID 0000.0001) %MON seaice_uice_max = 6.7376158663174E-01 (PID.TID 0000.0001) %MON seaice_uice_min = 3.1281567902083E-01 (PID.TID 0000.0001) %MON seaice_uice_mean = 4.4795621668761E-01 (PID.TID 0000.0001) %MON seaice_uice_sd = 8.8205811669317E-02 (PID.TID 0000.0001) %MON seaice_uice_del2 = 1.9456733274743E-04 (PID.TID 0000.0001) %MON seaice_vice_max = 1.2096267141006E-01 (PID.TID 0000.0001) %MON seaice_vice_min = -1.7086775562559E-01 (PID.TID 0000.0001) %MON seaice_vice_mean = -2.4912457794878E-02 (PID.TID 0000.0001) %MON seaice_vice_sd = 5.4870949009937E-02 (PID.TID 0000.0001) %MON seaice_vice_del2 = 9.3260878634334E-05 (PID.TID 0000.0001) %MON seaice_area_max = 9.9998361535629E-01 (PID.TID 0000.0001) %MON seaice_area_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_area_mean = 9.1588808978220E-01 (PID.TID 0000.0001) %MON seaice_area_sd = 2.2416628337219E-01 (PID.TID 0000.0001) %MON seaice_area_del2 = 1.5373918821092E-03 (PID.TID 0000.0001) %MON seaice_heff_max = 7.6240023929793E+00 (PID.TID 0000.0001) %MON seaice_heff_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_heff_mean = 1.9217856601190E+00 (PID.TID 0000.0001) %MON seaice_heff_sd = 2.1981559481990E+00 (PID.TID 0000.0001) %MON seaice_heff_del2 = 1.0620776124093E-03 (PID.TID 0000.0001) %MON seaice_hsnow_max = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_min = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_mean = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_sd = 0.0000000000000E+00 (PID.TID 0000.0001) %MON seaice_hsnow_del2 = 0.0000000000000E+00 (PID.TID 0000.0001) // ======================================================= (PID.TID 0000.0001) // End MONITOR SEAICE statistics (PID.TID 0000.0001) // ======================================================= Compute Stats, Diag. # 146 SIarea vol( 0 ): 2.085E+11 Parms: SM M1 Compute Stats, Diag. # 149 SIheff vol( 0 ): 2.085E+11 Parms: SM M1 Compute Stats, Diag. # 151 SIhsnow vol( 0 ): 2.085E+11 Parms: SM M1 Compute Stats, Diag. # 163 SIuice vol( 0 ): 2.070E+11 Parms: UU M1 Compute Stats, Diag. # 164 SIvice vol( 0 ): 2.025E+11 Parms: VV M1 (PID.TID 0000.0001) DIAGSTATS_CLOSE_IO: close file: iceStDiag.0000000000.txt , unit= 9 (PID.TID 0000.0001) %CHECKPOINT 12 ckptA (PID.TID 0000.0001) Seconds in section "ALL [THE_MODEL_MAIN]": (PID.TID 0000.0001) User time: 30.714825600152835 (PID.TID 0000.0001) System time: 7.0687003200873733E-002 (PID.TID 0000.0001) Wall clock time: 31.406586170196533 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "INITIALISE_FIXED [THE_MODEL_MAIN]": (PID.TID 0000.0001) User time: 2.8110000188462436E-002 (PID.TID 0000.0001) System time: 5.2389999618753791E-003 (PID.TID 0000.0001) Wall clock time: 4.3164968490600586E-002 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "THE_MAIN_LOOP [THE_MODEL_MAIN]": (PID.TID 0000.0001) User time: 30.686679877340794 (PID.TID 0000.0001) System time: 6.5426003187894821E-002 (PID.TID 0000.0001) Wall clock time: 31.363374948501587 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "INITIALISE_VARIA [THE_MAIN_LOOP]": (PID.TID 0000.0001) User time: 6.1368998140096664E-002 (PID.TID 0000.0001) System time: 2.9780999291688204E-002 (PID.TID 0000.0001) Wall clock time: 0.69542980194091797 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "MAIN LOOP [THE_MAIN_LOOP]": (PID.TID 0000.0001) User time: 30.625275246798992 (PID.TID 0000.0001) System time: 3.5635001957416534E-002 (PID.TID 0000.0001) Wall clock time: 30.667905092239380 (PID.TID 0000.0001) No. starts: 1 (PID.TID 0000.0001) No. stops: 1 (PID.TID 0000.0001) Seconds in section "MAIN_DO_LOOP [THE_MAIN_LOOP]": (PID.TID 0000.0001) User time: 30.625183567404747 (PID.TID 0000.0001) System time: 3.5632003098726273E-002 (PID.TID 0000.0001) Wall clock time: 30.667811393737793 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "FORWARD_STEP [MAIN_DO_LOOP]": (PID.TID 0000.0001) User time: 30.625001713633537 (PID.TID 0000.0001) System time: 3.5628002136945724E-002 (PID.TID 0000.0001) Wall clock time: 30.667621612548828 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_STATEVARS_DIAGS [FORWARD_STEP]": (PID.TID 0000.0001) User time: 1.1797681450843811E-002 (PID.TID 0000.0001) System time: 1.1004507541656494E-005 (PID.TID 0000.0001) Wall clock time: 1.1827707290649414E-002 (PID.TID 0000.0001) No. starts: 36 (PID.TID 0000.0001) No. stops: 36 (PID.TID 0000.0001) Seconds in section "LOAD_FIELDS_DRIVER [FORWARD_STEP]": (PID.TID 0000.0001) User time: 5.3895257413387299E-002 (PID.TID 0000.0001) System time: 3.9950050413608551E-003 (PID.TID 0000.0001) Wall clock time: 5.7893753051757812E-002 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "EXF_GETFORCING [LOAD_FLDS_DRIVER]": (PID.TID 0000.0001) User time: 5.3537636995315552E-002 (PID.TID 0000.0001) System time: 3.9510056376457214E-003 (PID.TID 0000.0001) Wall clock time: 5.7507038116455078E-002 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "EXTERNAL_FLDS_LOAD [LOAD_FLDS_DRIVER]": (PID.TID 0000.0001) User time: 9.6499919891357422E-005 (PID.TID 0000.0001) System time: 1.1004507541656494E-005 (PID.TID 0000.0001) Wall clock time: 1.0085105895996094E-004 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_ATMOSPHERIC_PHYS [FORWARD_STEP]": (PID.TID 0000.0001) User time: 1.0074675083160400E-004 (PID.TID 0000.0001) System time: 1.1000782251358032E-005 (PID.TID 0000.0001) Wall clock time: 1.0728836059570312E-004 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_OCEANIC_PHYS [FORWARD_STEP]": (PID.TID 0000.0001) User time: 30.484348274767399 (PID.TID 0000.0001) System time: 2.7557998895645142E-002 (PID.TID 0000.0001) Wall clock time: 30.518909931182861 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "SEAICE_MODEL [DO_OCEANIC_PHYS]": (PID.TID 0000.0001) User time: 30.472625687718391 (PID.TID 0000.0001) System time: 2.7502000331878662E-002 (PID.TID 0000.0001) Wall clock time: 30.507157087326050 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "SEAICE_DYNSOLVER [SEAICE_MODEL]": (PID.TID 0000.0001) User time: 29.104806676506996 (PID.TID 0000.0001) System time: 2.7307000011205673E-002 (PID.TID 0000.0001) Wall clock time: 29.139119148254395 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "BLOCKING_EXCHANGES [FORWARD_STEP]": (PID.TID 0000.0001) User time: 2.6848316192626953E-003 (PID.TID 0000.0001) System time: 6.9998204708099365E-006 (PID.TID 0000.0001) Wall clock time: 2.6991367340087891E-003 (PID.TID 0000.0001) No. starts: 24 (PID.TID 0000.0001) No. stops: 24 (PID.TID 0000.0001) Seconds in section "THERMODYNAMICS [FORWARD_STEP]": (PID.TID 0000.0001) User time: 2.2188901901245117E-002 (PID.TID 0000.0001) System time: 2.1997839212417603E-005 (PID.TID 0000.0001) Wall clock time: 2.2220134735107422E-002 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "TRC_CORRECTION_STEP [FORWARD_STEP]": (PID.TID 0000.0001) User time: 1.0275840759277344E-004 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 1.0466575622558594E-004 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "MONITOR [FORWARD_STEP]": (PID.TID 0000.0001) User time: 4.9183368682861328E-003 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 4.9178600311279297E-003 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_THE_MODEL_IO [FORWARD_STEP]": (PID.TID 0000.0001) User time: 3.5763025283813477E-002 (PID.TID 0000.0001) System time: 3.9799995720386505E-003 (PID.TID 0000.0001) Wall clock time: 3.9755105972290039E-002 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) Seconds in section "DO_WRITE_PICKUP [FORWARD_STEP]": (PID.TID 0000.0001) User time: 7.7185630798339844E-003 (PID.TID 0000.0001) System time: 0.0000000000000000 (PID.TID 0000.0001) Wall clock time: 7.7202320098876953E-003 (PID.TID 0000.0001) No. starts: 12 (PID.TID 0000.0001) No. stops: 12 (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // Tile <-> Tile communication statistics (PID.TID 0000.0001) // ====================================================== (PID.TID 0000.0001) // o Tile number: 000001 (PID.TID 0000.0001) // No. X exchanges = 0 (PID.TID 0000.0001) // Max. X spins = 0 (PID.TID 0000.0001) // Min. X spins = 1000000000 (PID.TID 0000.0001) // Total. X spins = 0 (PID.TID 0000.0001) // Avg. X spins = 0.00E+00 (PID.TID 0000.0001) // No. Y exchanges = 0 (PID.TID 0000.0001) // Max. Y spins = 0 (PID.TID 0000.0001) // Min. Y spins = 1000000000 (PID.TID 0000.0001) // Total. Y spins = 0 (PID.TID 0000.0001) // Avg. Y spins = 0.00E+00 (PID.TID 0000.0001) // o Tile number: 000002 (PID.TID 0000.0001) // No. X exchanges = 0 (PID.TID 0000.0001) // Max. X spins = 0 (PID.TID 0000.0001) // Min. X spins = 1000000000 (PID.TID 0000.0001) // Total. X spins = 0 (PID.TID 0000.0001) // Avg. X spins = 0.00E+00 (PID.TID 0000.0001) // No. Y exchanges = 0 (PID.TID 0000.0001) // Max. Y spins = 0 (PID.TID 0000.0001) // Min. Y spins = 1000000000 (PID.TID 0000.0001) // Total. Y spins = 0 (PID.TID 0000.0001) // Avg. Y spins = 0.00E+00 (PID.TID 0000.0001) // o Tile number: 000003 (PID.TID 0000.0001) // No. X exchanges = 0 (PID.TID 0000.0001) // Max. X spins = 0 (PID.TID 0000.0001) // Min. X spins = 1000000000 (PID.TID 0000.0001) // Total. X spins = 0 (PID.TID 0000.0001) // Avg. X spins = 0.00E+00 (PID.TID 0000.0001) // No. Y exchanges = 0 (PID.TID 0000.0001) // Max. Y spins = 0 (PID.TID 0000.0001) // Min. Y spins = 1000000000 (PID.TID 0000.0001) // Total. Y spins = 0 (PID.TID 0000.0001) // Avg. Y spins = 0.00E+00 (PID.TID 0000.0001) // o Tile number: 000004 (PID.TID 0000.0001) // No. X exchanges = 0 (PID.TID 0000.0001) // Max. X spins = 0 (PID.TID 0000.0001) // Min. X spins = 1000000000 (PID.TID 0000.0001) // Total. X spins = 0 (PID.TID 0000.0001) // Avg. X spins = 0.00E+00 (PID.TID 0000.0001) // No. Y exchanges = 0 (PID.TID 0000.0001) // Max. Y spins = 0 (PID.TID 0000.0001) // Min. Y spins = 1000000000 (PID.TID 0000.0001) // Total. Y spins = 0 (PID.TID 0000.0001) // Avg. Y spins = 0.00E+00 (PID.TID 0000.0001) // o Thread number: 000001 (PID.TID 0000.0001) // No. barriers = 57106 (PID.TID 0000.0001) // Max. barrier spins = 1 (PID.TID 0000.0001) // Min. barrier spins = 1 (PID.TID 0000.0001) // Total barrier spins = 57106 (PID.TID 0000.0001) // Avg. barrier spins = 1.00E+00 PROGRAM MAIN: Execution ended Normally