
MITgcm User Manual

Alistair Adcroft Jean-Michel Campin Stephanie Dutkiewicz

Constantinos Evangelinos David Ferreira Gael Forget Baylor Fox-Kemper

Patrick Heimbach Chris Hill Ed Hill Helen Hill Oliver Jahn

Martin Losch John Marshall Guillaume Maze Dimitris Menemenlis

Andrea Molod

MIT Department of EAPS

77 Massachusetts Ave.

Cambridge, MA 02139-4307

January 14, 2018

2

Contents

1 Overview of MITgcm 9
1.1 Introduction . 9
1.2 Illustrations of the model in action . 13

1.2.1 Global atmosphere: ‘Held-Suarez’ benchmark . 13
1.2.2 Ocean gyres . 14
1.2.3 Global ocean circulation . 14
1.2.4 Convection and mixing over topography . 14
1.2.5 Boundary forced internal waves . 14
1.2.6 Parameter sensitivity using the adjoint of MITgcm 14
1.2.7 Global state estimation of the ocean . 20
1.2.8 Ocean biogeochemical cycles . 20
1.2.9 Simulations of laboratory experiments . 20

1.3 Continuous equations in ‘r’ coordinates . 23
1.3.1 Kinematic Boundary conditions . 26
1.3.2 Atmosphere . 26
1.3.3 Ocean . 27
1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms . 27
1.3.5 Solution strategy . 30
1.3.6 Finding the pressure field . 31
1.3.7 Forcing/dissipation . 33
1.3.8 Vector invariant form . 33
1.3.9 Adjoint . 33

1.4 Appendix ATMOSPHERE . 34
1.4.1 Hydrostatic Primitive Equations for the Atmosphere in pressure coordinates 34

1.5 Appendix OCEAN . 36
1.5.1 Equations of motion for the ocean . 36

1.6 Appendix:OPERATORS . 39
1.6.1 Coordinate systems . 39

2 Discretization and Algorithm 41
2.1 Notation . 41
2.2 Time-stepping . 41
2.3 Pressure method with rigid-lid . 42
2.4 Pressure method with implicit linear free-surface . 44
2.5 Explicit time-stepping: Adams-Bashforth . 44
2.6 Implicit time-stepping: backward method . 45
2.7 Synchronous time-stepping: variables co-located in time 47
2.8 Staggered baroclinic time-stepping . 49
2.9 Non-hydrostatic formulation . 51
2.10 Variants on the Free Surface . 53

2.10.1 Crank-Nicolson barotropic time stepping . 54
2.10.2 Non-linear free-surface . 55

2.11 Spatial discretization of the dynamical equations . 59
2.11.1 The finite volume method: finite volumes versus finite difference 59

3

4 CONTENTS

2.11.2 C grid staggering of variables . 60
2.11.3 Grid initialization and data . 60
2.11.4 Horizontal grid . 61
2.11.5 Vertical grid . 63
2.11.6 Topography: partially filled cells . 64

2.12 Continuity and horizontal pressure gradient terms . 65
2.13 Hydrostatic balance . 65
2.14 Flux-form momentum equations . 66

2.14.1 Advection of momentum . 66
2.14.2 Coriolis terms . 67
2.14.3 Curvature metric terms . 67
2.14.4 Non-hydrostatic metric terms . 68
2.14.5 Lateral dissipation . 68
2.14.6 Vertical dissipation . 69
2.14.7 Derivation of discrete energy conservation . 70
2.14.8 Mom Diagnostics . 70

2.15 Vector invariant momentum equations . 72
2.15.1 Relative vorticity . 72
2.15.2 Kinetic energy . 72
2.15.3 Coriolis terms . 73
2.15.4 Shear terms . 73
2.15.5 Gradient of Bernoulli function . 73
2.15.6 Horizontal divergence . 74
2.15.7 Horizontal dissipation . 74
2.15.8 Vertical dissipation . 74

2.16 Tracer equations . 75
2.16.1 Time-stepping of tracers: ABII . 75

2.17 Linear advection schemes . 76
2.17.1 Centered second order advection-diffusion . 78
2.17.2 Third order upwind bias advection . 78
2.17.3 Centered fourth order advection . 79
2.17.4 First order upwind advection . 79

2.18 Non-linear advection schemes . 80
2.18.1 Second order flux limiters . 80
2.18.2 Third order direct space time . 80
2.18.3 Third order direct space time with flux limiting . 81
2.18.4 Multi-dimensional advection . 85

2.19 Comparison of advection schemes . 85
2.20 Shapiro Filter . 87

2.20.1 SHAP Diagnostics . 88
2.21 Nonlinear Viscosities for Large Eddy Simulation . 88

2.21.1 Eddy Viscosity . 89
2.21.2 Mercator, Nondimensional Equations . 92

3 Getting Started with MITgcm 95
3.1 Where to find information . 95
3.2 Obtaining the code . 95

3.2.1 Method 1 - Checkout from CVS . 95
3.2.2 Method 2 - Tar file download . 97

3.3 Model and directory structure . 98
3.4 Building MITgcm . 98

3.4.1 Building/compiling the code elsewhere . 99
3.4.2 Using genmake2 . 101
3.4.3 Building with MPI . 103

3.5 Running MITgcm . 104
3.5.1 Output files . 104

CONTENTS 5

3.5.2 Looking at the output . 105
3.6 Customizing MITgcm . 107

3.6.1 Parameters: Computational domain, geometry and time-discretization 108
3.6.2 Parameters: Equation of state . 113
3.6.3 Parameters: Momentum equations . 114
3.6.4 Parameters: Tracer equations . 115
3.6.5 Parameters: Simulation controls . 116

3.7 Testing . 117
3.7.1 Using testreport . 117
3.7.2 Automated testing . 117

3.8 MITgcm Example Experiments . 118
3.8.1 Full list of model examples . 118
3.8.2 Directory structure of model examples . 122

3.9 Barotropic Gyre MITgcm Example . 124
3.9.1 Equations Solved . 124
3.9.2 Discrete Numerical Configuration . 124
3.9.3 Code Configuration . 126

3.10 Baroclinic Gyre MITgcm Example . 131
3.10.1 Overview . 131
3.10.2 Equations solved . 131
3.10.3 Discrete Numerical Configuration . 133
3.10.4 Code Configuration . 135
3.10.5 Running The Example . 140

3.11 Gyre Advection Example . 141
3.11.1 Advection and tracer transport . 141
3.11.2 Introducing a tracer into the flow . 141
3.11.3 Selecting an advection scheme . 142
3.11.4 Comparison of different advection schemes . 142
3.11.5 Code and Parameters files for this tutorial . 142

3.12 Global Ocean MITgcm Example . 143
3.12.1 Overview . 143
3.12.2 Discrete Numerical Configuration . 144
3.12.3 Experiment Configuration . 145

3.13 P coordinate Global Ocean MITgcm Example . 153
3.13.1 Overview . 153
3.13.2 Discrete Numerical Configuration . 153
3.13.3 Experiment Configuration . 155

3.14 Held-Suarez Atmosphere MITgcm Example . 169
3.14.1 Overview . 169
3.14.2 Forcing . 169
3.14.3 Set-up description . 170
3.14.4 Experiment Configuration . 171

3.15 Surface Driven Convection . 180
3.15.1 Overview . 180
3.15.2 Equations solved . 182
3.15.3 Discrete numerical configuration . 182
3.15.4 Numerical stability criteria and other considerations 182
3.15.5 Experiment configuration . 183
3.15.6 Running the example . 190

3.16 Gravity Plume On a Continental Slope . 191
3.16.1 Configuration . 192
3.16.2 Binary input data . 192
3.16.3 Code configuration . 194
3.16.4 Model parameters . 195
3.16.5 Build and run the model . 195

3.17 Biogeochemistry Tutorial . 196

6 CONTENTS

3.17.1 Overview . 196
3.17.2 Equations Solved . 197
3.17.3 Code configuration . 197
3.17.4 Running the example . 199

3.18 Global Ocean State Estimation Example . 200
3.18.1 Overview . 200
3.18.2 Implementation of the control variable and the cost function 201
3.18.3 Code Configuration . 202
3.18.4 Compiling . 203
3.18.5 Running the estimation . 204

3.19 Sensitivity of Air-Sea Exchange to Tracer Injection Site 205
3.19.1 Overview of the experiment . 205
3.19.2 Code configuration . 205
3.19.3 Compiling the model and its adjoint . 210

3.20 Offline Example . 212
3.20.1 Overview . 212
3.20.2 Time-stepping of tracers . 212
3.20.3 Code Configuration . 212
3.20.4 Running The Example . 219
3.20.5 A more complicated example . 220

3.21 A Rotating Tank in Cylindrical Coordinates . 225
3.21.1 Overview . 225
3.21.2 Equations Solved . 225
3.21.3 Discrete Numerical Configuration . 225
3.21.4 Code Configuration . 225

4 Software Architecture 231
4.1 Overall architectural goals . 231
4.2 WRAPPER . 232

4.2.1 Target hardware . 232
4.2.2 Supporting hardware neutrality . 232
4.2.3 WRAPPER machine model . 234
4.2.4 Machine model parallelism . 234
4.2.5 Communication mechanisms . 234
4.2.6 Shared memory communication . 236
4.2.7 Distributed memory communication . 237
4.2.8 Communication primitives . 238
4.2.9 Memory architecture . 239
4.2.10 Summary . 240

4.3 Using the WRAPPER . 240
4.3.1 Specifying a domain decomposition . 240
4.3.2 Starting the code . 245
4.3.3 Controlling communication . 248

4.4 MITgcm execution under WRAPPER . 252
4.4.1 Annotated call tree for MITgcm and WRAPPER 252
4.4.2 Measuring and Characterizing Performance . 257
4.4.3 Estimating Resource Requirements . 257

5 Automatic Differentiation 259
5.1 Some basic algebra . 259

5.1.1 Forward or direct sensitivity . 260
5.1.2 Reverse or adjoint sensitivity . 260
5.1.3 Storing vs. recomputation in reverse mode . 263

5.2 TLM and ADM generation in general . 264
5.2.1 General setup . 264
5.2.2 Building the AD code using TAF . 265

CONTENTS 7

5.2.3 The AD build process in detail . 266
5.2.4 The cost function (dependent variable) . 268
5.2.5 The control variables (independent variables) . 269

5.3 The gradient check package . 275
5.3.1 Code description . 275
5.3.2 Code configuration . 275

5.4 Adjoint dump & restart – divided adjoint (DIVA) . 276
5.4.1 Introduction . 276
5.4.2 Recipe 1: single processor . 277
5.4.3 Recipe 2: multi processor (MPI) . 278

5.5 Adjoint code generation using OpenAD . 279
5.5.1 Introduction . 279
5.5.2 Downloading and installing OpenAD . 279
5.5.3 Building MITgcm adjoint with OpenAD . 279

6 Physical Parameterizations - Packages I 281
6.1 Using MITgcm Packages . 283

6.1.1 Package Inclusion/Exclusion . 283
6.1.2 Package Activation . 283
6.1.3 Package Coding Standards . 283

6.2 Packages Related to Hydrodynamical Kernel . 287
6.2.1 Generic Advection/Diffusion . 287
6.2.2 Shapiro Filter . 288
6.2.3 FFT Filtering Code . 289
6.2.4 exch2: Extended Cubed Sphere Topology . 290
6.2.5 Gridalt - Alternate Grid Package . 297

6.3 General purpose numerical infrastructure packages . 301
6.3.1 OBCS: Open boundary conditions for regional modeling 301
6.3.2 RBCS Package . 307
6.3.3 PTRACERS Package . 309

6.4 Ocean Packages . 312
6.4.1 GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization 312
6.4.2 KPP: Nonlocal K-Profile Parameterization for Vertical Mixing 318
6.4.3 GGL90: a TKE vertical mixing scheme . 323
6.4.4 OPPS: Ocean Penetrative Plume Scheme . 324
6.4.5 KL10: Vertical Mixing Due to Breaking Internal Waves 325
6.4.6 BULK FORCE: Bulk Formula Package . 328
6.4.7 EXF: The external forcing package . 332
6.4.8 CAL: The calendar package . 338

6.5 Atmosphere Packages . 342
6.5.1 Atmospheric Intermediate Physics: AIM . 342
6.5.2 Land package . 343
6.5.3 Fizhi: High-end Atmospheric Physics . 345

6.6 Sea Ice Packages . 380
6.6.1 THSICE: The Thermodynamic Sea Ice Package . 380
6.6.2 SEAICE Package . 385
6.6.3 SHELFICE Package . 397
6.6.4 STREAMICE Package . 402

6.7 Packages Related to Coupled Model . 408
6.7.1 Coupling interface for Atmospheric Intermediate code 408
6.7.2 Coupler for mapping between Atmosphere and ocean 409
6.7.3 Toolkit for building couplers . 410

6.8 Biogeochemistry Packages . 411
6.8.1 GCHEM Package . 411
6.8.2 DIC Package . 413

8 CONTENTS

7 Diagnostics and I/O - Packages II, and Post–Processing Utilities 417
7.1 Diagnostics–A Flexible Infrastructure . 417

7.1.1 Introduction . 417
7.1.2 Equations . 417
7.1.3 Key Subroutines and Parameters . 417
7.1.4 Usage Notes . 421
7.1.5 Dos and Donts . 428
7.1.6 Diagnostics Reference . 428

7.2 NetCDF I/O: MNC . 429
7.2.1 Using MNC . 429
7.2.2 MNC Troubleshooting . 432
7.2.3 MNC Internals . 432

7.3 Fortran Native I/O: MDSIO and RW . 435
7.3.1 MDSIO . 435
7.3.2 RW Basic binary I/O utilities . 437

7.4 Monitor: Simulation state monitoring toolkit . 438
7.4.1 Introduction . 438
7.4.2 Using Monitor . 438

7.5 Grid Generation . 439
7.5.1 Using SPGrid . 439
7.5.2 Example Grids . 440

7.6 Pre– and Post–Processing Scripts and Utilities . 441
7.6.1 Utilities supplied with the model . 441
7.6.2 Pre-processing software . 441

7.7 Potential vorticity Matlab Toolbox . 442
7.7.1 Introduction . 442
7.7.2 Equations . 442
7.7.3 Key routines . 443
7.7.4 Technical details . 444
7.7.5 Notes on the flux form of the PV equation and vertical PV fluxes 445

8 Ocean State Estimation Packages 449
8.1 ECCO: model-data comparisons using gridded data sets 449

8.1.1 Generic Cost Function . 449
8.1.2 Generic Integral Function . 453
8.1.3 Custom Cost Functions . 453
8.1.4 Key Routines . 453
8.1.5 Compile Options . 453

8.2 PROFILES: model-data comparisons at observed locations 454
8.3 CTRL: Model Parameter Adjustment Capability . 457
8.4 SMOOTH: Smoothing And Covariance Model . 459
8.5 The line search optimisation algorithm . 460

8.5.1 General features . 460
8.5.2 The online vs. offline version . 460
8.5.3 Number of iterations vs. number of simulations . 460

9 Under development 465
9.1 Other Time-stepping Options . 465

9.1.1 Adams-Bashforth III . 465
9.1.2 Time-extrapolation of tracer (rather than tendency) 467

10 Previous Applications of MITgcm 469

BIBLIOGRAPHY 471

Chapter 1

Overview of MITgcm

This document provides the reader with the information necessary to carry out numerical experiments
using MITgcm. It gives a comprehensive description of the continuous equations on which the model is
based, the numerical algorithms the model employs and a description of the associated program code.
Along with the hydrodynamical kernel, physical and biogeochemical parameterizations of key atmospheric
and oceanic processes are available. A number of examples illustrating the use of the model in both process
and general circulation studies of the atmosphere and ocean are also presented.

1.1 Introduction

MITgcm has a number of novel aspects:

• it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is
used to drive forward both atmospheric and oceanic models - see fig 1.1

• it has a non-hydrostatic capability and so can be used to study both small-scale and large scale
processes - see fig 1.2

• finite volume techniques are employed yielding an intuitive discretization and support for the treat-
ment of irregular geometries using orthogonal curvilinear grids and shaved cells - see fig 1.3

• tangent linear and adjoint counterparts are automatically maintained along with the forward model,
permitting sensitivity and optimization studies.

• the model is developed to perform efficiently on a wide variety of computational platforms.

Key publications reporting on and charting the development of the model are Hill and Marshall
[1995]; Marshall et al. [1997b,a]; Adcroft et al. [1997]; Marshall et al. [1998]; Adcroft and Marshall [1999];
Chris Hill and Marshall [1999]; Marotzke et al. [1999]; Adcroft and Campin [2004]; Adcroft et al. [2004a];
Marshall et al. [2004] (an overview on the model formulation can also be found in Adcroft et al. [2004b]):

Hill, C. and J. Marshall, (1995)

Application of a Parallel Navier-Stokes Model to Ocean Circulation in

Parallel Computational Fluid Dynamics

In Proceedings of Parallel Computational Fluid Dynamics: Implementations

and Results Using Parallel Computers, 545-552.

Elsevier Science B.V.: New York

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)

Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling

J. Geophysical Res., 102(C3), 5733-5752.

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)

A finite-volume, incompressible Navier Stokes model for studies of the ocean

9

10 CHAPTER 1. OVERVIEW OF MITGCM

Atmospheric Ocean

Dynamical Kernel

Atmospheric
Physics

ModelModel

Ocean
Physics

Figure 1.1: MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric
simulations.

on parallel computers,

J. Geophysical Res., 102(C3), 5753-5766.

Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)

Representation of topography by shaved cells in a height coordinate ocean

model

Mon Wea Rev, vol 125, 2293-2315

Marshall, J., Jones, H. and C. Hill, (1998)

Efficient ocean modeling using non-hydrostatic algorithms

Journal of Marine Systems, 18, 115-134

Adcroft, A., Hill C. and J. Marshall: (1999)

A new treatment of the Coriolis terms in C-grid models at both high and low

resolutions,

Mon. Wea. Rev. Vol 127, pages 1928-1936

Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)

A Strategy for Terascale Climate Modeling.

In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors

in Meteorology, pages 406-425

World Scientific Publishing Co: UK

Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)

Construction of the adjoint MIT ocean general circulation model and

application to Atlantic heat transport variability

J. Geophysical Res., 104(C12), 29,529-29,547.

We begin by briefly showing some of the results of the model in action to give a feel for the wide range
of problems that can be addressed using it.

1.1. INTRODUCTION 11

~10 000km~1 000km~100km

~1km
~10km

~100m

Figure 1.2: MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of
phenomenon - from convection on the left, all the way through to global circulation patterns on the right.

12 CHAPTER 1. OVERVIEW OF MITGCM

nite Volume: Shaved cells

Figure 1.3: Finite volume techniques (bottom panel) are user, permitting a treatment of topography that
rivals σ (terrain following) coordinates.

1.2. ILLUSTRATIONS OF THE MODEL IN ACTION 13

Figure 1.4: Instantaneous plot of the temerature field at 500mb obtained using the atmospheric isomorph
of MITgcm

1.2 Illustrations of the model in action

MITgcm has been designed and used to model a wide range of phenomena, from convection on the scale
of meters in the ocean to the global pattern of atmospheric winds - see figure 1.2. To give a flavor
of the kinds of problems the model has been used to study, we briefly describe some of them here. A
more detailed description of the underlying formulation, numerical algorithm and implementation that
lie behind these calculations is given later. Indeed many of the illustrative examples shown below can be
easily reproduced: simply download the model (the minimum you need is a PC running Linux, together
with a FORTRAN 77 compiler) and follow the examples described in detail in the documentation.

1.2.1 Global atmosphere: ‘Held-Suarez’ benchmark

A novel feature of MITgcm is its ability to simulate, using one basic algorithm, both atmospheric and
oceanographic flows at both small and large scales.

Figure 1.4 shows an instantaneous plot of the 500mb temperature field obtained using the atmospheric
isomorph of MITgcm run at 2.8◦ resolution on the cubed sphere. We see cold air over the pole (blue)
and warm air along an equatorial band (red). Fully developed baroclinic eddies spawned in the northern
hemisphere storm track are evident. There are no mountains or land-sea contrast in this calculation, but
you can easily put them in. The model is driven by relaxation to a radiative-convective equilibrium profile,
following the description set out in Held and Suarez; 1994 designed to test atmospheric hydrodynamical
cores - there are no mountains or land-sea contrast.

As described in Adcroft (2001), a ‘cubed sphere’ is used to discretize the globe permitting a uniform
griding and obviated the need to Fourier filter. The ‘vector-invariant’ form of MITgcm supports any
orthogonal curvilinear grid, of which the cubed sphere is just one of many choices.

14 CHAPTER 1. OVERVIEW OF MITGCM

Figure 1.5 shows the 5-year mean, zonally averaged zonal wind from a 20-level configuration of the
model. It compares favorable with more conventional spatial discretization approaches. The two plots
show the field calculated using the cube-sphere grid and the flow calculated using a regular, spherical
polar latitude-longitude grid. Both grids are supported within the model.

1.2.2 Ocean gyres

Baroclinic instability is a ubiquitous process in the ocean, as well as the atmosphere. Ocean eddies play
an important role in modifying the hydrographic structure and current systems of the oceans. Coarse
resolution models of the oceans cannot resolve the eddy field and yield rather broad, diffusive patterns
of ocean currents. But if the resolution of our models is increased until the baroclinic instability process
is resolved, numerical solutions of a different and much more realistic kind, can be obtained.

Figure 1.6 shows the surface temperature and velocity field obtained from MITgcm run at 1
6

◦
horizontal

resolution on a lat-lon grid in which the pole has been rotated by 90◦ on to the equator (to avoid the
converging of meridian in northern latitudes). 21 vertical levels are used in the vertical with a ‘lopped
cell’ representation of topography. The development and propagation of anomalously warm and cold
eddies can be clearly seen in the Gulf Stream region. The transport of warm water northward by the
mean flow of the Gulf Stream is also clearly visible.

1.2.3 Global ocean circulation

Figure 1.7 (top) shows the pattern of ocean currents at the surface of a 4◦ global ocean model run with
15 vertical levels. Lopped cells are used to represent topography on a regular lat-lon grid extending
from 70◦N to 70◦S. The model is driven using monthly-mean winds with mixed boundary conditions on
temperature and salinity at the surface. The transfer properties of ocean eddies, convection and mixing
is parameterized in this model.

Figure 1.7 (bottom) shows the meridional overturning circulation of the global ocean in Sverdrups.

1.2.4 Convection and mixing over topography

Dense plumes generated by localized cooling on the continental shelf of the ocean may be influenced
by rotation when the deformation radius is smaller than the width of the cooling region. Rather than
gravity plumes, the mechanism for moving dense fluid down the shelf is then through geostrophic eddies.
The simulation shown in the figure 1.8 (blue is cold dense fluid, red is warmer, lighter fluid) employs the
non-hydrostatic capability of MITgcm to trigger convection by surface cooling. The cold, dense water
falls down the slope but is deflected along the slope by rotation. It is found that entrainment in the
vertical plane is reduced when rotational control is strong, and replaced by lateral entrainment due to
the baroclinic instability of the along-slope current.

1.2.5 Boundary forced internal waves

The unique ability of MITgcm to treat non-hydrostatic dynamics in the presence of complex geometry
makes it an ideal tool to study internal wave dynamics and mixing in oceanic canyons and ridges driven
by large amplitude barotropic tidal currents imposed through open boundary conditions.

Fig. 1.9 shows the influence of cross-slope topographic variations on internal wave breaking - the
cross-slope velocity is in color, the density contoured. The internal waves are excited by application
of open boundary conditions on the left. They propagate to the sloping boundary (represented using
MITgcm’s finite volume spatial discretization) where they break under nonhydrostatic dynamics.

1.2.6 Parameter sensitivity using the adjoint of MITgcm

Forward and tangent linear counterparts of MITgcm are supported using an ‘automatic adjoint compiler’.
These can be used in parameter sensitivity and data assimilation studies.

As one example of application of the MITgcm adjoint, Figure 1.10 maps the gradient ∂J
∂Hwhere J is

the magnitude of the overturning stream-function shown in figure 1.7 at 60◦N and H(λ, ϕ) is the mean,
local air-sea heat flux over a 100 year period. We see that J is sensitive to heat fluxes over the Labrador

1.2. ILLUSTRATIONS OF THE MODEL IN ACTION 15

Figure 1.5: Five year mean, zonally averaged zonal flow for latitude-longitude simulation (bottom) and
cube-sphere simulation(top) using Held-Suarez forcing. Note the difference in the solutions over the pole
- the cubed sphere is superior.

16 CHAPTER 1. OVERVIEW OF MITGCM

Figure 1.6: Instantaneous temperature map from a 1
6

◦
simulation of the North Atlantic. The figure shows

the temperature in the second layer (37.5m deep).

1.2. ILLUSTRATIONS OF THE MODEL IN ACTION 17

180W 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E
 90S

 60S

 30S

 0

 30N

 60N

 90N
Currents at 25M, t=1000 years

0.5 m/s

OCEAN

Figure 1.7: Pattern of surface ocean currents (top) and meridional overturning stream function (in
Sverdrups) from a global integration of the model at 4◦ horizontal resolution and with 15 vertical levels.

18 CHAPTER 1. OVERVIEW OF MITGCM

Figure 1.8: MITgcm run in a non-hydrostatic configuration to study convection over a slope.

1.2. ILLUSTRATIONS OF THE MODEL IN ACTION 19

Figure 1.9: Simulation of internal waves forced at an open boundary (on the left) impacting a sloping shelf.
The along slope velocity is shown colored, contour lines show density surfaces. The slope is represented
with high-fidelity using lopped cells.

20 CHAPTER 1. OVERVIEW OF MITGCM

180W 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180E
 90S

 60S

 30S

 0

 30N

 60N

 90N
Heat Flux (Min = −7.7 10 −4 Sv W−1 m2; Max = 42.9 10−4 Sv W−1 m2)

 −10 −5 0 5 10 15 20 25 30 35 40 45 50

10−4 Sv W−1 m2

Figure 1.10: Sensitivity of meridional overturning strength to surface heat flux changes. Contours show
the magnitude of the response (in Sv × 10−4) that a persistent +1Wm−2 heat flux anomaly at a given
gid point would produce.

Sea, one of the important sources of deep water for the thermohaline circulations. This calculation also
yields sensitivities to all other model parameters.

1.2.7 Global state estimation of the ocean

An important application of MITgcm is in state estimation of the global ocean circulation. An appropri-
ately defined ‘cost function’, which measures the departure of the model from observations (both remotely
sensed and in-situ) over an interval of time, is minimized by adjusting ‘control parameters’ such as air-sea
fluxes, the wind field, the initial conditions etc. Figure 1.11 shows the large scale planetary circulation
and a Hopf-Muller plot of Equatorial sea-surface height. Both are obtained from assimilation bringing
the model in to consistency with altimetric and in-situ observations over the period 1992-1997.

1.2.8 Ocean biogeochemical cycles

MITgcm is being used to study global biogeochemical cycles in the ocean. For example one can study
the effects of interannual changes in meteorological forcing and upper ocean circulation on the fluxes of
carbon dioxide and oxygen between the ocean and atmosphere. Figure 1.12 shows the annual air-sea
flux of oxygen and its relation to density outcrops in the southern oceans from a single year of a global,
interannually varying simulation. The simulation is run at 1◦ × 1◦ resolution telescoping to 1

3

◦ × 1
3

◦
in

the tropics (not shown).

1.2.9 Simulations of laboratory experiments

Figure 1.13 shows MITgcm being used to simulate a laboratory experiment inquiring into the dynamics
of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water (1m in diameter)
is driven from its free surface by a rotating heated disk. The combined action of mechanical and thermal

1.2. ILLUSTRATIONS OF THE MODEL IN ACTION 21

50 100 150 200 250
0

100

200

300

400

500

600

700

(a) Simulation

Longitude

D
ay

 (f
ro

m
 1

/1
/1

99
7)

50 100 150 200 250

(b) Assimilation

Longitude

−30

−20

−10

0

10

20

30

50 100 150 200 250
Longitude

(c) Observation (T/P) cm

Figure 1.11: Top panel shows circulation patterns from a multi-year, global circulation simulation con-
strained by Topex altimeter data and WOCE cruise observations. Bottom panel shows the equatorial
sea-surface height in unconstrained (left), constrained (middle) simulations and in observations. This
output is from a higher resolution, shorter duration experiment with equatorially enhanced grid spacing.

22 CHAPTER 1. OVERVIEW OF MITGCM

26.8

26.2

25.5

26.5

27

26.8

26.2

26

25.5

25.5

25.8

25

26

26.5

26.2

26.8

26.5

MITgcm air−sea O
2
 flux (mol/m2/yr) with contoured potential density

 150 o
W

 120 o
W

 6
0

o W

 30
o W

 0o

 30 o
E

 60 o
E

 90
oE

 1
20

o E

 150
o E

 180oW

 70oS

 60oS

 50oS

 40oS

−15 −10 −5 0 5 10 15

Figure 1.12: Annual air-sea flux of oxygen (shaded) plotted along with potential density outcrops of the

surface of the southern ocean from a global 1◦ × 1◦ integation with a telescoping grid (to 1
3

◦

) at the
equator.

1.3. CONTINUOUS EQUATIONS IN ‘R’ COORDINATES 23

20

22

24

26

28

30

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 1.13: A numerical simulation (left) of a 1m diameter laboratory experiment (right) using MITgcm.

forcing creates a lens of fluid which becomes baroclinically unstable. The stratification and depth of pen-
etration of the lens is arrested by its instability in a process analogous to that which sets the stratification
of the ACC.

1.3 Continuous equations in ‘r’ coordinates

To render atmosphere and ocean models from one dynamical core we exploit ‘isomorphisms’ between
equation sets that govern the evolution of the respective fluids - see figure 1.14. One system of hydro-
dynamical equations is written down and encoded. The model variables have different interpretations
depending on whether the atmosphere or ocean is being studied. Thus, for example, the vertical coordi-
nate ‘r’ is interpreted as pressure, p, if we are modeling the atmosphere (right hand side of figure 1.14)
and height, z, if we are modeling the ocean (left hand side of figure 1.14).

The state of the fluid at any time is characterized by the distribution of velocity ~v, active tracers θ
and S, a ‘geopotential’ φ and density ρ = ρ(θ, S, p) which may depend on θ, S, and p. The equations
that govern the evolution of these fields, obtained by applying the laws of classical mechanics and ther-
modynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of a generic vertical coordinate,
r, so that the appropriate kinematic boundary conditions can be applied isomorphically see figure 1.15.

D ~vh

Dt
+
(
2~Ω × ~v

)
h

+ ∇hφ = F ~vh
horizontal mtm (1.1)

Dṙ

Dt
+ k̂ ·

(
2~Ω × ~v

)
+
∂φ

∂r
+ b = Fṙ vertical mtm (1.2)

∇h · ~vh +
∂ṙ

∂r
= 0 continuity (1.3)

24 CHAPTER 1. OVERVIEW OF MITGCM

Figure 1.14: Isomorphic equation sets used for atmosphere (right) and ocean (left).

MIT Climate Modeling Initiative

Z-P Isomorphism

z

p

���

ω=0

� � � �� � ��� �� � �	�� �� � �	
� �
� � 	��� ��� � �� ��� � ��� ��� � ��� ��� � 	�� ��� � � ��

ω

w

Figure 1.15: Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean
(bottom).

1.3. CONTINUOUS EQUATIONS IN ‘R’ COORDINATES 25

b = b(θ, S, r) equation of state (1.4)

Dθ

Dt
= Qθ potential temperature (1.5)

DS

Dt
= QS humidity/salinity (1.6)

Here:

r is the vertical coordinate

D

Dt
=

∂

∂t
+ ~v · ∇ is the total derivative

∇ = ∇h + k̂
∂

∂r
is the ‘grad’ operator

with ∇h operating in the horizontal and k̂ ∂
∂r operating in the vertical, where k̂ is a unit vector in the

vertical

t is time

~v = (u, v, ṙ) = (~vh, ṙ) is the velocity

φ is the ‘pressure’/‘geopotential’

~Ω is the Earth’s rotation

b is the ‘buoyancy’

θ is potential temperature

S is specific humidity in the atmosphere; salinity in the ocean

F~v are forcing and dissipation of ~v

Qθ are forcing and dissipation of θ

QS are forcing and dissipation of S

The F ′s and Q′s are provided by ‘physics’ and forcing packages for atmosphere and ocean. These are
described in later chapters.

26 CHAPTER 1. OVERVIEW OF MITGCM

1.3.1 Kinematic Boundary conditions

1.3.1.1 vertical

at fixed and moving r surfaces we set (see figure 1.15):

ṙ = 0 at r = Rfixed(x, y) (ocean bottom, top of the atmosphere) (1.7)

ṙ =
Dr

Dt
at r = Rmoving (ocean surface,bottom of the atmosphere) (1.8)

Here

Rmoving = Ro + η

where Ro(x, y) is the ‘r−value’ (height or pressure, depending on whether we are in the atmosphere or
ocean) of the ‘moving surface’ in the resting fluid and η is the departure from Ro(x, y) in the presence of
motion.

1.3.1.2 horizontal

~v · ~n = 0 (1.9)

where ~n is the normal to a solid boundary.

1.3.2 Atmosphere

In the atmosphere, (see figure 1.15), we interpret:

r = p is the pressure (1.10)

ṙ =
Dp

Dt
= ω is the vertical velocity in p coordinates (1.11)

φ = g z is the geopotential height (1.12)

b =
∂Π

∂p
θ is the buoyancy (1.13)

θ = T (
pc

p
)κ is potential temperature (1.14)

S = q, is the specific humidity (1.15)

where

T is absolute temperature

p is the pressure

z is the height of the pressure surface

g is the acceleration due to gravity

In the above the ideal gas law, p = ρRT , has been expressed in terms of the Exner function Π(p)
given by (see Appendix Atmosphere)

Π(p) = cp(
p

pc
)κ (1.16)

where pc is a reference pressure and κ = R/cp with R the gas constant and cp the specific heat of air at
constant pressure.

At the top of the atmosphere (which is ‘fixed’ in our r coordinate):

1.3. CONTINUOUS EQUATIONS IN ‘R’ COORDINATES 27

Rfixed = ptop = 0

In a resting atmosphere the elevation of the mountains at the bottom is given by

Rmoving = Ro(x, y) = po(x, y)

i.e. the (hydrostatic) pressure at the top of the mountains in a resting atmosphere.
The boundary conditions at top and bottom are given by:

ω = 0 at r = Rfixed (top of the atmosphere) (1.17)

ω =
Dps

Dt
; at r = Rmoving (bottom of the atmosphere) (1.18)

Then the (hydrostatic form of) equations (1.1-1.6) yields a consistent set of atmospheric equations
which, for convenience, are written out in p coordinates in Appendix Atmosphere - see eqs(1.59).

1.3.3 Ocean

In the ocean we interpret:

r = z is the height (1.19)

ṙ =
Dz

Dt
= w is the vertical velocity (1.20)

φ =
p

ρc
is the pressure (1.21)

b(θ, S, r) =
g

ρc
(ρ(θ, S, r) − ρc) is the buoyancy (1.22)

where ρc is a fixed reference density of water and g is the acceleration due to gravity.
In the above
At the bottom of the ocean: Rfixed(x, y) = −H(x, y).
The surface of the ocean is given by: Rmoving = η
The position of the resting free surface of the ocean is given by Ro = Zo = 0.
Boundary conditions are:

w = 0 at r = Rfixed (ocean bottom) (1.23)

w =
Dη

Dt
at r = Rmoving = η (ocean surface) (1.24)

where η is the elevation of the free surface.
Then equations (1.1-1.6) yield a consistent set of oceanic equations which, for convenience, are written

out in z coordinates in Appendix Ocean - see eqs(1.99) to (1.104).

1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic
forms

Let us separate φ in to surface, hydrostatic and non-hydrostatic terms:

φ(x, y, r) = φs(x, y) + φhyd(x, y, r) + φnh(x, y, r) (1.25)

and write eq(1.1) in the form:

∂ ~vh

∂t
+ ∇hφs + ∇hφhyd + ǫnh∇hφnh = ~G~vh

(1.26)

∂φhyd

∂r
= −b (1.27)

28 CHAPTER 1. OVERVIEW OF MITGCM

ǫnh
∂ṙ

∂t
+
∂φnh

∂r
= Gṙ (1.28)

Here ǫnh is a non-hydrostatic parameter.

The
(
~G~v, Gṙ

)
in eq(1.26) and (1.28) represent advective, metric and Coriolis terms in the momentum

equations. In spherical coordinates they take the form 1 - see Marshall et al 1997a for a full discussion:

Gu = −~v.∇u
−
{

uṙ
r − uv tan ϕ

r

}

−
{
−2Ωv sinϕ+ 2Ωṙ cosϕ

}

+Fu

advection
metric
Coriolis
Forcing/Dissipation

(1.29)

Gv = −~v.∇v
−
{

vṙ
r − u2 tan ϕ

r

}

−{−2Ωu sinϕ}
+Fv

advection
metric
Coriolis
Forcing/Dissipation

(1.30)

Gṙ = −~v.∇ṙ
+
{

u2 +v2

r

}

+2Ωu cosϕ
Fṙ

advection
metric
Coriolis
Forcing/Dissipation

(1.31)

In the above ‘r’ is the distance from the center of the earth and ‘ϕ ’ is latitude.
Grad and div operators in spherical coordinates are defined in appendix OPERATORS.

1.3.4.1 Shallow atmosphere approximation

Most models are based on the ‘hydrostatic primitive equations’ (HPE’s) in which the vertical momentum
equation is reduced to a statement of hydrostatic balance and the ‘traditional approximation’ is made
in which the Coriolis force is treated approximately and the shallow atmosphere approximation is made.
MITgcm need not make the ‘traditional approximation’. To be able to support consistent non-hydrostatic
forms the shallow atmosphere approximation can be relaxed - when dividing through by r in, for example,
(1.29), we do not replace r by a, the radius of the earth.

1.3.4.2 Hydrostatic and quasi-hydrostatic forms

These are discussed at length in Marshall et al (1997a).
In the ‘hydrostatic primitive equations’ (HPE) all the underlined terms in Eqs. (1.29 → 1.31) are

neglected and ‘r’ is replaced by ‘a’, the mean radius of the earth. Once the pressure is found at one level
- e.g. by inverting a 2-d Elliptic equation for φs at r = Rmoving - the pressure can be computed at all
other levels by integration of the hydrostatic relation, eq(1.27).

In the ‘quasi-hydrostatic’ equations (QH) strict balance between gravity and vertical pressure gradi-
ents is not imposed. The 2Ωu cosϕ Coriolis term are not neglected and are balanced by a non-hydrostatic
contribution to the pressure field: only the terms underlined twice in Eqs. (1.29→ 1.31) are set to zero
and, simultaneously, the shallow atmosphere approximation is relaxed. In QH all the metric terms are
retained and the full variation of the radial position of a particle monitored. The QH vertical momentum
equation (1.28) becomes:

∂φnh

∂r
= 2Ωu cosϕ

making a small correction to the hydrostatic pressure.

1 In the hydrostatic primitive equations (HPE) all underlined terms in (1.29), (1.30) and (1.31) are omitted; the singly-
underlined terms are included in the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all
terms.

1.3. CONTINUOUS EQUATIONS IN ‘R’ COORDINATES 29

Figure 1.16: Spherical polar coordinates: longitude λ, latitude ϕ and r the distance from the center.

30 CHAPTER 1. OVERVIEW OF MITGCM

QH has good energetic credentials - they are the same as for HPE. Importantly, however, it has the
same angular momentum principle as the full non-hydrostatic model (NH) - see Marshall et.al., 1997a.
As in HPE only a 2-d elliptic problem need be solved.

1.3.4.3 Non-hydrostatic and quasi-nonhydrostatic forms

MITgcm presently supports a full non-hydrostatic ocean isomorph, but only a quasi-non-hydrostatic
atmospheric isomorph.

Non-hydrostatic Ocean In the non-hydrostatic ocean model all terms in equations Eqs.(1.29 →
1.31) are retained. A three dimensional elliptic equation must be solved subject to Neumann boundary
conditions (see below). It is important to note that use of the full NH does not admit any new ‘fast’
waves in to the system - the incompressible condition eq(1.3) has already filtered out acoustic modes. It
does, however, ensure that the gravity waves are treated accurately with an exact dispersion relation. The
NH set has a complete angular momentum principle and consistent energetics - see White and Bromley,
1995; Marshall et.al. 1997a.

Quasi-nonhydrostatic Atmosphere In the non-hydrostatic version of our atmospheric model we
approximate ṙ in the vertical momentum eqs(1.28) and (1.30) (but only here) by:

ṙ =
Dp

Dt
=

1

g

Dφ

Dt
(1.32)

where phy is the hydrostatic pressure.

1.3.4.4 Summary of equation sets supported by model

Atmosphere Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the compressible
non-Boussinesq equations in p−coordinates are supported.

Hydrostatic and quasi-hydrostatic The hydrostatic set is written out in p−coordinates in ap-
pendix Atmosphere - see eq(1.59).

Quasi-nonhydrostatic A quasi-nonhydrostatic form is also supported.

Ocean

Hydrostatic and quasi-hydrostatic Hydrostatic, and quasi-hydrostatic forms of the incompress-
ible Boussinesq equations in z−coordinates are supported.

Non-hydrostatic Non-hydrostatic forms of the incompressible Boussinesq equations in z− coordi-
nates are supported - see eqs(1.99) to (1.104).

1.3.5 Solution strategy

The method of solution employed in the HPE, QH and NH models is summarized in Figure 1.17. Under
all dynamics, a 2-d elliptic equation is first solved to find the surface pressure and the hydrostatic pressure
at any level computed from the weight of fluid above. Under HPE and QH dynamics, the horizontal
momentum equations are then stepped forward and ṙ found from continuity. Under NH dynamics a 3-d
elliptic equation must be solved for the non-hydrostatic pressure before stepping forward the horizontal
momentum equations; ṙ is found by stepping forward the vertical momentum equation.

There is no penalty in implementing QH over HPE except, of course, some complication that goes
with the inclusion of cosϕ Coriolis terms and the relaxation of the shallow atmosphere approximation.
But this leads to negligible increase in computation. In NH, in contrast, one additional elliptic equation
- a three-dimensional one - must be inverted for pnh. However the ‘overhead’ of the NH model is
essentially negligible in the hydrostatic limit (see detailed discussion in Marshall et al, 1997) resulting in
a non-hydrostatic algorithm that, in the hydrostatic limit, is as computationally economic as the HPEs.

1.3. CONTINUOUS EQUATIONS IN ‘R’ COORDINATES 31

Figure 1.17: Basic solution strategy in MITgcm. HPE and QH forms diagnose the vertical velocity, in
NH a prognostic equation for the vertical velocity is integrated.

1.3.6 Finding the pressure field

Unlike the prognostic variables u, v, w, θ and S, the pressure field must be obtained diagnostically.
We proceed, as before, by dividing the total (pressure/geo) potential in to three parts, a surface part,
φs(x, y), a hydrostatic part φhyd(x, y, r) and a non-hydrostatic part φnh(x, y, r), as in (1.25), and writing
the momentum equation as in (1.26).

1.3.6.1 Hydrostatic pressure

Hydrostatic pressure is obtained by integrating (1.27) vertically from r = Ro where φhyd(r = Ro) = 0,
to yield:

∫ Ro

r

∂φhyd

∂r
dr = [φhyd]

Ro

r =

∫ Ro

r

−bdr

and so

φhyd(x, y, r) =

∫ Ro

r

bdr (1.33)

The model can be easily modified to accommodate a loading term (e.g atmospheric pressure pushing
down on the ocean’s surface) by setting:

φhyd(r = Ro) = loading (1.34)

1.3.6.2 Surface pressure

The surface pressure equation can be obtained by integrating continuity, (1.3), vertically from r = Rfixed

to r = Rmoving

∫ Rmoving

Rfixed

(∇h · ~vh + ∂r ṙ) dr = 0

Thus:

∂η

∂t
+ ~v.∇η +

∫ Rmoving

Rfixed

∇h · ~vhdr = 0

32 CHAPTER 1. OVERVIEW OF MITGCM

where η = Rmoving − Ro is the free-surface r-anomaly in units of r. The above can be rearranged to
yield, using Leibnitz’s theorem:

∂η

∂t
+ ∇h ·

∫ Rmoving

Rfixed

~vhdr = source (1.35)

where we have incorporated a source term.
Whether φ is pressure (ocean model, p/ρc) or geopotential (atmospheric model), in (1.26), the hori-

zontal gradient term can be written

∇hφs = ∇h (bsη) (1.36)

where bs is the buoyancy at the surface.
In the hydrostatic limit (ǫnh = 0), equations (1.26), (1.35) and (1.36) can be solved by inverting a

2-d elliptic equation for φs as described in Chapter 2. Both ‘free surface’ and ‘rigid lid’ approaches are
available.

1.3.6.3 Non-hydrostatic pressure

Taking the horizontal divergence of (1.26) and adding ∂
∂r of (1.28), invoking the continuity equation (1.3),

we deduce that:

∇2
3φnh = ∇. ~G~v −

(
∇2

hφs + ∇2φhyd

)
= ∇.~F (1.37)

For a given rhs this 3-d elliptic equation must be inverted for φnh subject to appropriate choice of
boundary conditions. This method is usually called The Pressure Method [Harlow and Welch, 1965;
Williams, 1969; Potter, 1976]. In the hydrostatic primitive equations case (HPE), the 3-d problem does
not need to be solved.

Boundary Conditions We apply the condition of no normal flow through all solid boundaries - the
coasts (in the ocean) and the bottom:

~v.n̂ = 0 (1.38)

where n̂ is a vector of unit length normal to the boundary. The kinematic condition (1.38) is also applied
to the vertical velocity at r = Rmoving. No-slip (vT = 0) or slip (∂vT /∂n = 0) conditions are employed
on the tangential component of velocity, vT , at all solid boundaries, depending on the form chosen for
the dissipative terms in the momentum equations - see below.

Eq.(1.38) implies, making use of (1.26), that:

n̂.∇φnh = n̂.~F (1.39)

where

~F = ~G~v − (∇hφs + ∇φhyd)

presenting inhomogeneous Neumann boundary conditions to the Elliptic problem (1.37). As shown,
for example, by Williams (1969), one can exploit classical 3D potential theory and, by introducing an
appropriately chosen δ-function sheet of ‘source-charge’, replace the inhomogeneous boundary condition
on pressure by a homogeneous one. The source term rhs in (1.37) is the divergence of the vector ~F.
By simultaneously setting n̂.~F = 0 and n̂.∇φnh = 0 on the boundary the following self-consistent but
simpler homogenized Elliptic problem is obtained:

∇2φnh = ∇.~̃F

where ~̃F is a modified ~F such that ~̃F.n̂ = 0. As is implied by (1.39) the modified boundary condition
becomes:

n̂.∇φnh = 0 (1.40)

1.3. CONTINUOUS EQUATIONS IN ‘R’ COORDINATES 33

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion converges rapidly because φnh is
then only a small correction to the hydrostatic pressure field (see the discussion in Marshall et al, a,b).

The solution φnh to (1.37) and (1.39) does not vanish at r = Rmoving, and so refines the pressure
there.

1.3.7 Forcing/dissipation

1.3.7.1 Forcing

The forcing terms F on the rhs of the equations are provided by ‘physics packages’ and forcing packages.
These are described later on.

1.3.7.2 Dissipation

Momentum Many forms of momentum dissipation are available in the model. Laplacian and bihar-
monic frictions are commonly used:

DV = Ah∇2
hv +Av

∂2v

∂z2
+A4∇4

hv (1.41)

where Ah and Av are (constant) horizontal and vertical viscosity coefficients and A4 is the horizontal
coefficient for biharmonic friction. These coefficients are the same for all velocity components.

Tracers The mixing terms for the temperature and salinity equations have a similar form to that of
momentum except that the diffusion tensor can be non-diagonal and have varying coefficients.

DT,S = ∇.[K∇(T, S)] +K4∇4
h(T, S) (1.42)

where K is the diffusion tensor and the K4 horizontal coefficient for biharmonic diffusion. In the
simplest case where the subgrid-scale fluxes of heat and salt are parameterized with constant horizontal
and vertical diffusion coefficients, K, reduces to a diagonal matrix with constant coefficients:

K =

Kh 0 0
0 Kh 0
0 0 Kv

 (1.43)

where Kh and Kv are the horizontal and vertical diffusion coefficients. These coefficients are the same
for all tracers (temperature, salinity ...).

1.3.8 Vector invariant form

For some purposes it is advantageous to write momentum advection in eq(1.1) and (1.2) in the (so-called)
‘vector invariant’ form:

D~v

Dt
=
∂~v

∂t
+ (∇× ~v) × ~v + ∇

[
1

2
(~v · ~v)

]
(1.44)

This permits alternative numerical treatments of the non-linear terms based on their representation as
a vorticity flux. Because gradients of coordinate vectors no longer appear on the rhs of (1.44), explicit
representation of the metric terms in (1.29), (1.30) and (1.31), can be avoided: information about the
geometry is contained in the areas and lengths of the volumes used to discretize the model.

1.3.9 Adjoint

Tangent linear and adjoint counterparts of the forward model are described in Chapter 5.

34 CHAPTER 1. OVERVIEW OF MITGCM

1.4 Appendix ATMOSPHERE

1.4.1 Hydrostatic Primitive Equations for the Atmosphere in pressure coor-
dinates

The hydrostatic primitive equations (HPEs) in p-coordinates are:

D~vh

Dt
+ f k̂ × ~vh + ∇pφ = ~F (1.45)

∂φ

∂p
+ α = 0 (1.46)

∇p · ~vh +
∂ω

∂p
= 0 (1.47)

pα = RT (1.48)

cv
DT

Dt
+ p

Dα

Dt
= Q (1.49)

where ~vh = (u, v, 0) is the ‘horizontal’ (on pressure surfaces) component of velocity, D
Dt = ∂

∂t +~vh·∇p+ω ∂
∂p

is the total derivative, f = 2Ω sinϕ is the Coriolis parameter, φ = gz is the geopotential, α = 1/ρ is the
specific volume, ω = Dp

Dt is the vertical velocity in the p−coordinate. Equation(1.49) is the first law of
thermodynamics where internal energy e = cvT , T is temperature, Q is the rate of heating per unit mass
and pDα

Dt is the work done by the fluid in compressing.

It is convenient to cast the heat equation in terms of potential temperature θ so that it looks more
like a generic conservation law. Differentiating (1.48) we get:

p
Dα

Dt
+ α

Dp

Dt
= R

DT

Dt

which, when added to the heat equation (1.49) and using cp = cv +R, gives:

cp
DT

Dt
− α

Dp

Dt
= Q (1.50)

Potential temperature is defined:

θ = T (
pc

p
)κ (1.51)

where pc is a reference pressure and κ = R/cp. For convenience we will make use of the Exner function
Π(p) which defined by:

Π(p) = cp(
p

pc
)κ (1.52)

The following relations will be useful and are easily expressed in terms of the Exner function:

cpT = Πθ ;
∂Π

∂p
=
κΠ

p
; α =

κΠθ

p
=
∂ Π

∂p
θ ;

DΠ

Dt
=
∂Π

∂p

Dp

Dt

where b = ∂ Π
∂p θ is the buoyancy.

The heat equation is obtained by noting that

cp
DT

Dt
=
D(Πθ)

Dt
= Π

Dθ

Dt
+ θ

DΠ

Dt
= Π

Dθ

Dt
+ α

Dp

Dt

and on substituting into (1.50) gives:

Π
Dθ

Dt
= Q (1.53)

which is in conservative form.

For convenience in the model we prefer to step forward (1.53) rather than (1.49).

1.4. APPENDIX ATMOSPHERE 35

1.4.1.1 Boundary conditions

The upper and lower boundary conditions are :

at the top: p = 0 , ω =
Dp

Dt
= 0 (1.54)

at the surface: p = ps , φ = φtopo = g Ztopo (1.55)

In p-coordinates, the upper boundary acts like a solid boundary (ω = 0); in z-coordinates and the lower
boundary is analogous to a free surface (φ is imposed and ω 6= 0).

1.4.1.2 Splitting the geo-potential

For the purposes of initialization and reducing round-off errors, the model deals with perturbations
from reference (or “standard”) profiles. For example, the hydrostatic geopotential associated with the
resting atmosphere is not dynamically relevant and can therefore be subtracted from the equations. The
equations written in terms of perturbations are obtained by substituting the following definitions into
the previous model equations:

θ = θo + θ′ (1.56)

α = αo + α′ (1.57)

φ = φo + φ′ (1.58)

The reference state (indicated by subscript “0”) corresponds to horizontally homogeneous atmosphere at
rest (θo, αo, φo) with surface pressure po(x, y) that satisfies φo(po) = g Ztopo, defined:

θo(p) = fn(p)

αo(p) = Πpθo

φo(p) = φtopo −
∫ p

p0

αodp

The final form of the HPE’s in p coordinates is then:

D~vh

Dt
+ f k̂× ~vh + ∇pφ

′ = ~F (1.59)

∂φ′

∂p
+ α′ = 0 (1.60)

∇p · ~vh +
∂ω

∂p
= 0 (1.61)

∂Π

∂p
θ′ = α′ (1.62)

Dθ

Dt
=

Q
Π

(1.63)

36 CHAPTER 1. OVERVIEW OF MITGCM

1.5 Appendix OCEAN

1.5.1 Equations of motion for the ocean

We review here the method by which the standard (Boussinesq, incompressible) HPE’s for the ocean
written in z-coordinates are obtained. The non-Boussinesq equations for oceanic motion are:

D~vh

Dt
+ f k̂× ~vh +

1

ρ
∇zp = ~F (1.64)

ǫnh
Dw

Dt
+ g +

1

ρ

∂p

∂z
= ǫnhFw (1.65)

1

ρ

Dρ

Dt
+ ∇z · ~vh +

∂w

∂z
= 0 (1.66)

ρ = ρ(θ, S, p) (1.67)

Dθ

Dt
= Qθ (1.68)

DS

Dt
= Qs (1.69)

These equations permit acoustics modes, inertia-gravity waves, non-hydrostatic motions, a geostrophic
(Rossby) mode and a thermohaline mode. As written, they cannot be integrated forward consistently -
if we step ρ forward in (1.66), the answer will not be consistent with that obtained by stepping (1.68)
and (1.69) and then using (1.67) to yield ρ. It is therefore necessary to manipulate the system as follows.
Differentiating the EOS (equation of state) gives:

Dρ

Dt
=
∂ρ

∂θ

∣∣∣∣
S,p

Dθ

Dt
+

∂ρ

∂S

∣∣∣∣
θ,p

DS

Dt
+
∂ρ

∂p

∣∣∣∣
θ,S

Dp

Dt
(1.70)

Note that ∂ρ
∂p = 1

c2
s

is the reciprocal of the sound speed (cs) squared. Substituting into 1.66 gives:

1

ρc2s

Dp

Dt
+ ∇z · ~v + ∂zw ≈ 0 (1.71)

where we have used an approximation sign to indicate that we have assumed adiabatic motion, dropping
the Dθ

Dt and DS
Dt . Replacing 1.66 with 1.71 yields a system that can be explicitly integrated forward:

D~vh

Dt
+ f k̂× ~vh +

1

ρ
∇zp = ~F (1.72)

ǫnh
Dw

Dt
+ g +

1

ρ

∂p

∂z
= ǫnhFw (1.73)

1

ρc2s

Dp

Dt
+ ∇z · ~vh +

∂w

∂z
= 0 (1.74)

ρ = ρ(θ, S, p) (1.75)

Dθ

Dt
= Qθ (1.76)

DS

Dt
= Qs (1.77)

1.5.1.1 Compressible z-coordinate equations

Here we linearize the acoustic modes by replacing ρ with ρo(z) wherever it appears in a product (ie.
non-linear term) - this is the ‘Boussinesq assumption’. The only term that then retains the full variation

1.5. APPENDIX OCEAN 37

in ρ is the gravitational acceleration:

D~vh

Dt
+ f k̂× ~vh +

1

ρo
∇zp = ~F (1.78)

ǫnh
Dw

Dt
+
gρ

ρo
+

1

ρo

∂p

∂z
= ǫnhFw (1.79)

1

ρoc2s

Dp

Dt
+ ∇z · ~vh +

∂w

∂z
= 0 (1.80)

ρ = ρ(θ, S, p) (1.81)

Dθ

Dt
= Qθ (1.82)

DS

Dt
= Qs (1.83)

These equations still retain acoustic modes. But, because the “compressible” terms are linearized, the
pressure equation 1.80 can be integrated implicitly with ease (the time-dependent term appears as a
Helmholtz term in the non-hydrostatic pressure equation). These are the truly compressible Boussinesq
equations. Note that the EOS must have the same pressure dependency as the linearized pressure term,

ie. ∂ρ
∂p

∣∣∣
θ,S

= 1
c2

s
, for consistency.

1.5.1.2 ‘Anelastic’ z-coordinate equations

The anelastic approximation filters the acoustic mode by removing the time-dependency in the continuity
(now pressure-) equation (1.80). This could be done simply by noting that Dp

Dt ≈ −gρo
Dz
Dt = −gρow, but

this leads to an inconsistency between continuity and EOS. A better solution is to change the dependency
on pressure in the EOS by splitting the pressure into a reference function of height and a perturbation:

ρ = ρ(θ, S, po(z) + ǫsp
′)

Remembering that the term Dp
Dt in continuity comes from differentiating the EOS, the continuity equation

then becomes:
1

ρoc2s

(
Dpo

Dt
+ ǫs

Dp′

Dt

)
+ ∇z · ~vh +

∂w

∂z
= 0

If the time- and space-scales of the motions of interest are longer than those of acoustic modes, then
Dp′

Dt << (Dpo

Dt ,∇ · ~vh) in the continuity equations and ∂ρ
∂p

∣∣∣
θ,S

Dp′

Dt << ∂ρ
∂p

∣∣∣
θ,S

Dpo

Dt in the EOS (1.70).

Thus we set ǫs = 0, removing the dependency on p′ in the continuity equation and EOS. Expanding
Dpo(z)

Dt = −gρow then leads to the anelastic continuity equation:

∇z · ~vh +
∂w

∂z
− g

c2s
w = 0 (1.84)

A slightly different route leads to the quasi-Boussinesq continuity equation where we use the scaling
∂ρ′

∂t + ∇3 · ρ′~v << ∇3 · ρo~v yielding:

∇z · ~vh +
1

ρo

∂ (ρow)

∂z
= 0 (1.85)

Equations 1.84 and 1.85 are in fact the same equation if:

1

ρo

∂ρo

∂z
=

−g
c2s

(1.86)

Again, note that if ρo is evaluated from prescribed θo and So profiles, then the EOS dependency on po

and the term g
c2

s
in continuity should be referred to those same profiles. The full set of ‘quasi-Boussinesq’

38 CHAPTER 1. OVERVIEW OF MITGCM

or ‘anelastic’ equations for the ocean are then:

D~vh

Dt
+ f k̂× ~vh +

1

ρo
∇zp = ~F (1.87)

ǫnh
Dw

Dt
+
gρ

ρo
+

1

ρo

∂p

∂z
= ǫnhFw (1.88)

∇z · ~vh +
1

ρo

∂ (ρow)

∂z
= 0 (1.89)

ρ = ρ(θ, S, po(z)) (1.90)

Dθ

Dt
= Qθ (1.91)

DS

Dt
= Qs (1.92)

1.5.1.3 Incompressible z-coordinate equations

Here, the objective is to drop the depth dependence of ρo and so, technically, to also remove the depen-
dence of ρ on po. This would yield the “truly” incompressible Boussinesq equations:

D~vh

Dt
+ f k̂× ~vh +

1

ρc
∇zp = ~F (1.93)

ǫnh
Dw

Dt
+
gρ

ρc
+

1

ρc

∂p

∂z
= ǫnhFw (1.94)

∇z · ~vh +
∂w

∂z
= 0 (1.95)

ρ = ρ(θ, S) (1.96)

Dθ

Dt
= Qθ (1.97)

DS

Dt
= Qs (1.98)

where ρc is a constant reference density of water.

1.5.1.4 Compressible non-divergent equations

The above “incompressible” equations are incompressible in both the flow and the density. In many
oceanic applications, however, it is important to retain compressibility effects in the density. To do this
we must split the density thus:

ρ = ρo + ρ′

We then assert that variations with depth of ρo are unimportant while the compressible effects in ρ′ are:

ρo = ρc

ρ′ = ρ(θ, S, po(z)) − ρo

This then yields what we can call the semi-compressible Boussinesq equations:

D~vh

Dt
+ f k̂ × ~vh +

1

ρc
∇zp

′ = ~F (1.99)

ǫnh
Dw

Dt
+
gρ′

ρc
+

1

ρc

∂p′

∂z
= ǫnhFw (1.100)

∇z · ~vh +
∂w

∂z
= 0 (1.101)

ρ′ = ρ(θ, S, po(z)) − ρc (1.102)

Dθ

Dt
= Qθ (1.103)

DS

Dt
= Qs (1.104)

1.6. APPENDIX:OPERATORS 39

Note that the hydrostatic pressure of the resting fluid, including that associated with ρc, is subtracted
out since it has no effect on the dynamics.

Though necessary, the assumptions that go into these equations are messy since we essentially assume
a different EOS for the reference density and the perturbation density. Nevertheless, it is the hydrostatic
(ǫnh = 0 form of these equations that are used throughout the ocean modeling community and referred
to as the primitive equations (HPE).

1.6 Appendix:OPERATORS

1.6.1 Coordinate systems

1.6.1.1 Spherical coordinates

In spherical coordinates, the velocity components in the zonal, meridional and vertical direction respec-
tively, are given by (see Fig.2) :

u = r cosϕ
Dλ

Dt

v = r
Dϕ

Dt

ṙ =
Dr

Dt

Here ϕ is the latitude, λ the longitude, r the radial distance of the particle from the center of the
earth, Ω is the angular speed of rotation of the Earth and D/Dt is the total derivative.

The ‘grad’ (∇) and ‘div’ (∇·) operators are defined by, in spherical coordinates:

∇ ≡
(

1

r cosϕ

∂

∂λ
,
1

r

∂

∂ϕ
,
∂

∂r

)

∇ · v ≡ 1

r cosϕ

{
∂u

∂λ
+

∂

∂ϕ
(v cosϕ)

}
+

1

r2
∂
(
r2ṙ
)

∂r

40 CHAPTER 1. OVERVIEW OF MITGCM

Chapter 2

Discretization and Algorithm

This chapter lays out the numerical schemes that are employed in the core MITgcm algorithm. Whenever
possible links are made to actual program code in the MITgcm implementation. The chapter begins with
a discussion of the temporal discretization used in MITgcm. This discussion is followed by sections
that describe the spatial discretization. The schemes employed for momentum terms are described first,
afterwards the schemes that apply to passive and dynamically active tracers are described.

2.1 Notation

Because of the particularity of the vertical direction in stratified fluid context, in this chapter, the vector
notations are mostly used for the horizontal component: the horizontal part of a vector is simply written
~v (instead of vh or ~vh in chaper 1) and a 3.D vector is simply written ~v (instead of ~v in chapter 1).

The notations we use to describe the discrete formulation of the model are summarized hereafter:
general notation:
∆x,∆y,∆r grid spacing in X,Y,R directions.
Ac, Aw, As, Aζ : horizontal area of a grid cell surrounding θ, u, v, ζ point.
Vu,Vv,Vw,Vθ : Volume of the grid box surrounding u, v, w, θ point;
i, j, k : current index relative to X,Y,R directions;
basic operator:
δi : δiΦ = Φi+1/2 − Φi−1/2

−i : Φ
i
= (Φi+1/2 + Φi−1/2)/2

δx : δxΦ = 1
∆xδiΦ

∇ = horizontal gradient operator : ∇Φ = {δxΦ, δyΦ}
∇· = horizontal divergence operator : ∇ ·~f = 1

A{δi∆y fx + δj∆x fy}
∇2

= horizontal Laplacian operator : ∇2
Φ = ∇ · ∇Φ

2.2 Time-stepping

The equations of motion integrated by the model involve four prognostic equations for flow, u and v, tem-
perature, θ, and salt/moisture, S, and three diagnostic equations for vertical flow, w, density/buoyancy,
ρ/b, and pressure/geo-potential, φhyd. In addition, the surface pressure or height may by described by
either a prognostic or diagnostic equation and if non-hydrostatics terms are included then a diagnostic
equation for non-hydrostatic pressure is also solved. The combination of prognostic and diagnostic equa-
tions requires a model algorithm that can march forward prognostic variables while satisfying constraints
imposed by diagnostic equations.

Since the model comes in several flavors and formulation, it would be confusing to present the model
algorithm exactly as written into code along with all the switches and optional terms. Instead, we present
the algorithm for each of the basic formulations which are:

41

42 CHAPTER 2. DISCRETIZATION AND ALGORITHM

()

u,vG(n+½)

u,vn+1

∆2η = ∆. u
v

*
*

∆(n+1) t∆
time

n t

n *u,v u,v

Figure 2.1: A schematic of the evolution in time of the pressure method algorithm. A prediction for the
flow variables at time level n+ 1 is made based only on the explicit terms, G(n+1/2), and denoted u∗, v∗.
Next, a pressure field is found such that un+1, vn+1 will be non-divergent. Conceptually, the ∗ quantities
exist at time level n+ 1 but they are intermediate and only temporary.

1. the semi-implicit pressure method for hydrostatic equations with a rigid-lid, variables co-located in
time and with Adams-Bashforth time-stepping,

2. as 1. but with an implicit linear free-surface,

3. as 1. or 2. but with variables staggered in time,

4. as 1. or 2. but with non-hydrostatic terms included,

5. as 2. or 3. but with non-linear free-surface.

In all the above configurations it is also possible to substitute the Adams-Bashforth with an alter-
native time-stepping scheme for terms evaluated explicitly in time. Since the over-arching algorithm is
independent of the particular time-stepping scheme chosen we will describe first the over-arching algo-
rithm, known as the pressure method, with a rigid-lid model in section 2.3. This algorithm is essentially
unchanged, apart for some coefficients, when the rigid lid assumption is replaced with a linearized implicit
free-surface, described in section 2.4. These two flavors of the pressure-method encompass all formulations
of the model as it exists today. The integration of explicit in time terms is out-lined in section 2.5 and
put into the context of the overall algorithm in sections 2.7 and 2.8. Inclusion of non-hydrostatic terms
requires applying the pressure method in three dimensions instead of two and this algorithm modifica-
tion is described in section 2.9. Finally, the free-surface equation may be treated more exactly, including
non-linear terms, and this is described in section 2.10.2.

2.3 Pressure method with rigid-lid

The horizontal momentum and continuity equations for the ocean (1.99 and 1.101), or for the atmosphere
(1.45 and 1.47), can be summarized by:

∂tu+ g∂xη = Gu (2.1)

∂tv + g∂yη = Gv (2.2)

∂xu+ ∂yv + ∂zw = 0 (2.3)

where we are adopting the oceanic notation for brevity. All terms in the momentum equations, except
for surface pressure gradient, are encapsulated in the G vector. The continuity equation, when integrated

2.3. PRESSURE METHOD WITH RIGID-LID 43

FORWARD STEP

DYNAMICS
TIMESTEP u∗,v∗ (2.8,2.9)

SOLVE FOR PRESSURE

CALC DIV GHAT Hû∗,Hv̂∗ (2.10)
CG2D ηn+1 (2.10)

MOMENTUM CORRECTION STEP
CALC GRAD PHI SURF ∇ηn+1

CORRECTION STEP un+1,vn+1 (2.11,2.12)

Figure 2.2: Calling tree for the pressure method algorithm (FORWARD STEP)

over the fluid depth, H , and with the rigid-lid/no normal flow boundary conditions applied, becomes:

∂xHû+ ∂yHv̂ = 0 (2.4)

Here, Hû =
∫

H udz is the depth integral of u, similarly for Hv̂. The rigid-lid approximation sets w = 0 at
the lid so that it does not move but allows a pressure to be exerted on the fluid by the lid. The horizontal
momentum equations and vertically integrated continuity equation are be discretized in time and space
as follows:

un+1 + ∆tg∂xη
n+1 = un + ∆tG(n+1/2)

u (2.5)

vn+1 + ∆tg∂yη
n+1 = vn + ∆tG(n+1/2)

v (2.6)

∂xHûn+1 + ∂yHv̂n+1 = 0 (2.7)

As written here, terms on the LHS all involve time level n+1 and are referred to as implicit; the implicit
backward time stepping scheme is being used. All other terms in the RHS are explicit in time. The
thermodynamic quantities are integrated forward in time in parallel with the flow and will be discussed
later. For the purposes of describing the pressure method it suffices to say that the hydrostatic pressure
gradient is explicit and so can be included in the vector G.

Substituting the two momentum equations into the depth integrated continuity equation eliminates
un+1 and vn+1 yielding an elliptic equation for ηn+1. Equations 2.5, 2.6 and 2.7 can then be re-arranged
as follows:

u∗ = un + ∆tG(n+1/2)
u (2.8)

v∗ = vn + ∆tG(n+1/2)
v (2.9)

∂x∆tgH∂xη
n+1 + ∂y∆tgH∂yη

n+1 = ∂xHû∗ + ∂yHv̂∗ (2.10)

un+1 = u∗ − ∆tg∂xη
n+1 (2.11)

vn+1 = v∗ − ∆tg∂yη
n+1 (2.12)

Equations 2.8 to 2.12, solved sequentially, represent the pressure method algorithm used in the model.
The essence of the pressure method lies in the fact that any explicit prediction for the flow would lead
to a divergence flow field so a pressure field must be found that keeps the flow non-divergent over each
step of the integration. The particular location in time of the pressure field is somewhat ambiguous; in
Fig. 2.1 we depicted as co-located with the future flow field (time level n+ 1) but it could equally have
been drawn as staggered in time with the flow.

The correspondence to the code is as follows:

• the prognostic phase, equations 2.8 and 2.9, stepping forward un and vn to u∗ and v∗ is coded in
TIMESTEP()

• the vertical integration, Hû∗ and Hv̂∗, divergence and inversion of the elliptic operator in equation
2.10 is coded in SOLVE FOR PRESSURE()

• finally, the new flow field at time level n + 1 given by equations 2.11 and 2.12 is calculated in
CORRECTION STEP().

file:../code_reference/vdb/byname/model-src-forward_step.F.html
file:../code_reference/vdb/byname/model-src-forward_step.F.html
file:../code_reference/vdb/byname/model-src-timestep.F.html
file:../code_reference/vdb/byname/model-src-solve_for_pressure.F.html
file:../code_reference/vdb/byname/model-src-correction_step.F.html

44 CHAPTER 2. DISCRETIZATION AND ALGORITHM

The calling tree for these routines is given in Fig. 2.2.
In general, the horizontal momentum time-stepping can contain some terms that are treated implicitly

in time, such as the vertical viscosity when using the backward time-stepping scheme (implicitViscosity
=.TRUE.). The method used to solve those implicit terms is provided in section 2.6, and modifies equa-
tions 2.5 and 2.6 to give:

un+1 − ∆t∂zAv∂zu
n+1 + ∆tg∂xη

n+1 = un + ∆tG(n+1/2)
u (2.13)

vn+1 − ∆t∂zAv∂zv
n+1 + ∆tg∂yη

n+1 = vn + ∆tG(n+1/2)
v (2.14)

2.4 Pressure method with implicit linear free-surface

The rigid-lid approximation filters out external gravity waves subsequently modifying the dispersion
relation of barotropic Rossby waves. The discrete form of the elliptic equation has some zero eigen-values
which makes it a potentially tricky or inefficient problem to solve.

The rigid-lid approximation can be easily replaced by a linearization of the free-surface equation which
can be written:

∂tη + ∂xHû+ ∂yHv̂ = P − E +R (2.15)

which differs from the depth integrated continuity equation with rigid-lid (2.4) by the time-dependent
term and fresh-water source term.

Equation 2.7 in the rigid-lid pressure method is then replaced by the time discretization of 2.15 which
is:

ηn+1 + ∆t∂xHûn+1 + ∆t∂yHv̂n+1 = ηn + ∆t(P − E) (2.16)

where the use of flow at time level n + 1 makes the method implicit and backward in time. This is
the preferred scheme since it still filters the fast unresolved wave motions by damping them. A centered
scheme, such as Crank-Nicholson (see section 2.10.1), would alias the energy of the fast modes onto slower
modes of motion.

As for the rigid-lid pressure method, equations 2.5, 2.6 and 2.16 can be re-arranged as follows:

u∗ = un + ∆tG(n+1/2)
u (2.17)

v∗ = vn + ∆tG(n+1/2)
v (2.18)

η∗ = ǫfs (ηn + ∆t(P − E)) − ∆t
(
∂xHû∗ + ∂yHv̂∗

)
(2.19)

∂xgH∂xη
n+1 + ∂ygH∂yη

n+1 − ǫfsη
n+1

∆t2
= − η∗

∆t2
(2.20)

un+1 = u∗ − ∆tg∂xη
n+1 (2.21)

vn+1 = v∗ − ∆tg∂yη
n+1 (2.22)

Equations 2.17 to 2.22, solved sequentially, represent the pressure method algorithm with a backward
implicit, linearized free surface. The method is still formerly a pressure method because in the limit of
large ∆t the rigid-lid method is recovered. However, the implicit treatment of the free-surface allows
the flow to be divergent and for the surface pressure/elevation to respond on a finite time-scale (as
opposed to instantly). To recover the rigid-lid formulation, we introduced a switch-like parameter, ǫfs

(freesurfFac), which selects between the free-surface and rigid-lid; ǫfs = 1 allows the free-surface to
evolve; ǫfs = 0 imposes the rigid-lid. The evolution in time and location of variables is exactly as it was
for the rigid-lid model so that Fig. 2.1 is still applicable. Similarly, the calling sequence, given in Fig. 2.2,
is as for the pressure-method.

2.5 Explicit time-stepping: Adams-Bashforth

In describing the the pressure method above we deferred describing the time discretization of the explicit
terms. We have historically used the quasi-second order Adams-Bashforth method for all explicit terms
in both the momentum and tracer equations. This is still the default mode of operation but it is now
possible to use alternate schemes for tracers (see section 2.17).

file:../code_reference/vdb/byname/implicitViscosity.html
file:../code_reference/vdb/byname/freesurfFac.html

2.6. IMPLICIT TIME-STEPPING: BACKWARD METHOD 45

FORWARD STEP
THERMODYNAMICS

CALC GT
GAD CALC RHS Gn

θ = Gθ(u, θ
n)

either EXTERNAL FORCING Gn
θ = Gn

θ + Q
ADAMS BASHFORTH2 G

(n+1/2)
θ (2.24)

or EXTERNAL FORCING G
(n+1/2)
θ = G

(n+1/2)
θ + Q

TIMESTEP TRACER τ∗ (2.23)

IMPLDIFF τ (n+1) (2.27)

Figure 2.3: Calling tree for the Adams-Bashforth time-stepping of temperature with implicit diffusion.
(THERMODYNAMICS, ADAMS BASHFORTH2)

In the previous sections, we summarized an explicit scheme as:

τ∗ = τn + ∆tG(n+1/2)
τ (2.23)

where τ could be any prognostic variable (u, v, θ or S) and τ∗ is an explicit estimate of τn+1 and would
be exact if not for implicit-in-time terms. The parenthesis about n+1/2 indicates that the term is explicit
and extrapolated forward in time and for this we use the quasi-second order Adams-Bashforth method:

G(n+1/2)
τ = (3/2 + ǫAB)Gn

τ − (1/2 + ǫAB)Gn−1
τ (2.24)

This is a linear extrapolation, forward in time, to t = (n+ 1/2 + ǫAB)∆t. An extrapolation to the mid-
point in time, t = (n+ 1/2)∆t, corresponding to ǫAB = 0, would be second order accurate but is weakly
unstable for oscillatory terms. A small but finite value for ǫAB stabilizes the method. Strictly speaking,
damping terms such as diffusion and dissipation, and fixed terms (forcing), do not need to be inside the
Adams-Bashforth extrapolation. However, in the current code, it is simpler to include these terms and
this can be justified if the flow and forcing evolves smoothly. Problems can, and do, arise when forcing
or motions are high frequency and this corresponds to a reduced stability compared to a simple forward
time-stepping of such terms. The model offers the possibility to leave the tracer and momentum forcing
terms and the dissipation terms outside the Adams-Bashforth extrapolation, by turning off the logical
flags forcing In AB (parameter file data, namelist PARM01, default value = True). (tracForcingOutAB,
default=0, momForcingOutAB, default=0) and momDissip In AB (parameter file data, namelist PARM01,
default value = True). respectively.

A stability analysis for an oscillation equation should be given at this point. AJA needs to find
on this...A stability analysis for a relaxation equation should be given at this point.
...and for this to

2.6 Implicit time-stepping: backward method

Vertical diffusion and viscosity can be treated implicitly in time using the backward method which is an
intrinsic scheme. Recently, the option to treat the vertical advection implicitly has been added, but not
yet tested; therefore, the description hereafter is limited to diffusion and viscosity. For tracers, the time
discretized equation is:

τn+1 − ∆t∂rκv∂rτ
n+1 = τn + ∆tG(n+1/2)

τ (2.25)

where G
(n+1/2)
τ is the remaining explicit terms extrapolated using the Adams-Bashforth method as de-

scribed above. Equation 2.25 can be split split into:

τ∗ = τn + ∆tG(n+1/2)
τ (2.26)

τn+1 = L−1
τ (τ∗) (2.27)

where L−1
τ is the inverse of the operator

Lτ = [1 + ∆t∂rκv∂r] (2.28)

file:../code_reference/vdb/byname/model-src-thermodynamics.F.html
file:../code_reference/vdb/byname/model-src-adams_bashforth2.F.html
file:../code_reference/vdb/byname/forcing_In_AB.html
file:../code_reference/vdb/byname/tracForcingOutAB.html
file:../code_reference/vdb/byname/momForcingOutAB.html
file:../code_reference/vdb/byname/momDissip_In_AB.html

46 CHAPTER 2. DISCRETIZATION AND ALGORITHM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

3

6

9

ε = 0.00

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

3

6

9

ε = 0.10 ; f
c
= 0.5025

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

3

6

9

ε = 0.25 ; f
c
= 0.5963

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

ε = 0.00 ; µ
c
= 1.0000

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

ε = 0.10 ; µ
c
= 0.9091

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

ε = 0.25 ; µ
c
= 0.8000

Figure 2.4: Oscillatory and damping response of quasi-second order Adams-Bashforth scheme for differ-
ent values of the ǫAB parameter (0., 0.1, 0.25, from top to bottom) The analytical solution (in black), the
physical mode (in blue) and the numerical mode (in red) are represented with a CFL step of 0.1. The
left column represents the oscillatory response on the complex plane for CFL ranging from 0.1 up to 0.9.
The right column represents the damping response amplitude (y-axis) function of the CFL (x-axis).

2.7. SYNCHRONOUS TIME-STEPPING: VARIABLES CO-LOCATED IN TIME 47

∆(n+1) t∆(n−1) t ∆
time

n t

 ,Sθ ,Sθ ,Sθ

 ,Sθ n+1

L
−1

θ,S θ,S θ,S

θ,S
Φh

L
−1

u,vn+1

n−1 n *
Gn−1 GGn (n+½)

n−1 n *u,v u,v u,v
u,vGn−1

u,v

u,v u,vG(n+½)Gn

Figure 2.5: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the
algorithm. All prognostic variables are co-located in time. Explicit tendencies are evaluated at time level
n as a function of the state at that time level (dotted arrow). The explicit tendency from the previous
time level, n−1, is used to extrapolate tendencies to n+1/2 (dashed arrow). This extrapolated tendency
allows variables to be stably integrated forward-in-time to render an estimate (∗-variables) at the n+ 1
time level (solid arc-arrow). The operator L formed from implicit-in-time terms is solved to yield the
state variables at time level n+ 1.

Equation 2.26 looks exactly as 2.23 while 2.27 involves an operator or matrix inversion. By re-arranging
2.25 in this way we have cast the method as an explicit prediction step and an implicit step allowing the
latter to be inserted into the over all algorithm with minimal interference.

Fig. 2.3 shows the calling sequence for stepping forward a tracer variable such as temperature.

In order to fit within the pressure method, the implicit viscosity must not alter the barotropic flow.
In other words, it can only redistribute momentum in the vertical. The upshot of this is that although
vertical viscosity may be backward implicit and unconditionally stable, no-slip boundary conditions may
not be made implicit and are thus cast as a an explicit drag term.

2.7 Synchronous time-stepping: variables co-located in time

The Adams-Bashforth extrapolation of explicit tendencies fits neatly into the pressure method algorithm
when all state variables are co-located in time. Fig. 2.5 illustrates the location of variables in time and
the evolution of the algorithm with time. The algorithm can be represented by the sequential solution of

48 CHAPTER 2. DISCRETIZATION AND ALGORITHM

FORWARD STEP
EXTERNAL FIELDS LOAD
DO ATMOSPHERIC PHYS
DO OCEANIC PHYS

THERMODYNAMICS
CALC GT

GAD CALC RHS Gn
θ = Gθ(u, θ

n) (2.29)
EXTERNAL FORCING Gn

θ = Gn
θ + Q

ADAMS BASHFORTH2 G
(n+1/2)
θ (2.30)

TIMESTEP TRACER θ∗ (2.31)
IMPLDIFF θ(n+1) (2.32)

DYNAMICS
CALC PHI HYD φn

hyd (2.33)

MOM FLUXFORM or MOM VECINV Gn
~v (2.34)

TIMESTEP ~v∗ (2.35, 2.36)
IMPLDIFF ~v∗∗ (2.37)

UPDATE R STAR or UPDATE SURF DR (NonLin-FS only)
SOLVE FOR PRESSURE

CALC DIV GHAT η∗ (2.38)
CG2D ηn+1 (2.39)

MOMENTUM CORRECTION STEP
CALC GRAD PHI SURF ∇ηn+1

CORRECTION STEP un+1,vn+1 (2.40)
TRACERS CORRECTION STEP

CYCLE TRACER θn+1

FILTER Shapiro Filter, Zonal Filter (FFT)
CONVECTIVE ADJUSTMENT

Figure 2.6: Calling tree for the overall synchronous algorithm using Adams-Bashforth time-stepping.
The place where the model geometry (hFac factors) is updated is added here but is only relevant for the
non-linear free-surface algorithm. For completeness, the external forcing, ocean and atmospheric physics
have been added, although they are mainly optional

2.8. STAGGERED BAROCLINIC TIME-STEPPING 49

the follow equations:

Gn
θ,S = Gθ,S(un, θn, Sn) (2.29)

G
(n+1/2)
θ,S = (3/2 + ǫAB)Gn

θ,S − (1/2 + ǫAB)Gn−1
θ,S (2.30)

(θ∗, S∗) = (θn, Sn) + ∆tG
(n+1/2)
θ,S (2.31)

(θn+1, Sn+1) = L−1
θ,S(θ∗, S∗) (2.32)

φn
hyd =

∫
b(θn, Sn)dr (2.33)

~Gn
~v = ~G~v(~vn, φn

hyd) (2.34)

~G
(n+1/2)
~v = (3/2 + ǫAB)~Gn

~v − (1/2 + ǫAB)~Gn−1
~v (2.35)

~v∗ = ~vn + ∆t~G
(n+1/2)
~v (2.36)

~v∗∗ = L−1
~v (~v∗) (2.37)

η∗ = ǫfs (ηn + ∆t(P − E)) − ∆t∇ ·H~̂v∗∗ (2.38)

∇ · gH∇ηn+1 − ǫfsη
n+1

∆t2
= − η∗

∆t2
(2.39)

~vn+1 = ~v∗∗ − ∆tg∇ηn+1 (2.40)

Fig. 2.5 illustrates the location of variables in time and evolution of the algorithm with time. The
Adams-Bashforth extrapolation of the tracer tendencies is illustrated by the dashed arrow, the prediction
at n + 1 is indicated by the solid arc. Inversion of the implicit terms, L−1

θ,S, then yields the new tracer
fields at n+ 1. All these operations are carried out in subroutine THERMODYNAMICS an subsidiaries,
which correspond to equations 2.29 to 2.32. Similarly illustrated is the Adams-Bashforth extrapolation
of accelerations, stepping forward and solving of implicit viscosity and surface pressure gradient terms,
corresponding to equations 2.34 to 2.40. These operations are carried out in subroutines DYNAMCIS,
SOLVE FOR PRESSURE and MOMENTUM CORRECTION STEP. This, then, represents an entire
algorithm for stepping forward the model one time-step. The corresponding calling tree is given in 2.6.

2.8 Staggered baroclinic time-stepping

For well stratified problems, internal gravity waves may be the limiting process for determining a stable
time-step. In the circumstance, it is more efficient to stagger in time the thermodynamic variables with
the flow variables. Fig. 2.7 illustrates the staggering and algorithm. The key difference between this and
Fig. 2.5 is that the thermodynamic variables are solved after the dynamics, using the recently updated
flow field. This essentially allows the gravity wave terms to leap-frog in time giving second order accuracy
and more stability.

The essential change in the staggered algorithm is that the thermodynamics solver is delayed from
half a time step, allowing the use of the most recent velocities to compute the advection terms. Once the
thermodynamics fields are updated, the hydrostatic pressure is computed to step forward the dynamics.
Note that the pressure gradient must also be taken out of the Adams-Bashforth extrapolation. Also,
retaining the integer time-levels, n and n + 1, does not give a user the sense of where variables are
located in time. Instead, we re-write the entire algorithm, 2.29 to 2.40, annotating the position in time

50 CHAPTER 2. DISCRETIZATION AND ALGORITHM

L
−1

 ,Sθ ,Sθ ,Sθ

L
−1

θ,S θ,S

θ,S

 ,SθΦh

θ,S

∆ (n+½) t∆(n−½) t

∆(n+1) t∆(n−1) t ∆
time

n t

(n−1½) t∆

*u,v u,v u,v
u,vG u,vGu,v

G

*
G GG

(n)

(n+½)

n−½

n

n−1½

n−1

n−1½ n−½

u,v

u,v
(n+½)

n+1

n−1 n

Figure 2.7: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the
algorithm but with staggering in time of thermodynamic variables with the flow. Explicit momentum
tendencies are evaluated at time level n−1/2 as a function of the flow field at that time level n−1/2. The
explicit tendency from the previous time level, n − 3/2, is used to extrapolate tendencies to n (dashed
arrow). The hydrostatic pressure/geo-potential φhyd is evaluated directly at time level n (vertical arrows)
and used with the extrapolated tendencies to step forward the flow variables from n − 1/2 to n + 1/2
(solid arc-arrow). The implicit-in-time operator Lu,v (vertical arrows) is then applied to the previous
estimation of the the flow field (∗-variables) and yields to the two velocity components u, v at time level
n+1/2. These are then used to calculate the advection term (dashed arc-arrow) of the thermo-dynamics
tendencies at time step n. The extrapolated thermodynamics tendency, from time level n − 1 and n to
n+ 1/2, allows thermodynamic variables to be stably integrated forward-in-time (solid arc-arrow) up to
time level n+ 1.

2.9. NON-HYDROSTATIC FORMULATION 51

of variables appropriately:

φn
hyd =

∫
b(θn, Sn)dr (2.41)

~G
n−1/2
~v = ~G~v(~vn−1/2) (2.42)

~G
(n)
~v = (3/2 + ǫAB)~G

n−1/2
~v − (1/2 + ǫAB)~G

n−3/2
~v (2.43)

~v∗ = ~vn−1/2 + ∆t
(
~G

(n)
~v −∇φn

hyd

)
(2.44)

~v∗∗ = L−1
~v (~v∗) (2.45)

η∗ = ǫfs

(
ηn−1/2 + ∆t(P − E)n

)
− ∆t∇ ·H~̂v∗∗ (2.46)

∇ · gH∇ηn+1/2 − ǫfsη
n+1/2

∆t2
= − η∗

∆t2
(2.47)

~vn+1/2 = ~v∗∗ − ∆tg∇ηn+1/2 (2.48)

Gn
θ,S = Gθ,S(un+1/2, θn, Sn) (2.49)

G
(n+1/2)
θ,S = (3/2 + ǫAB)Gn

θ,S − (1/2 + ǫAB)Gn−1
θ,S (2.50)

(θ∗, S∗) = (θn, Sn) + ∆tG
(n+1/2)
θ,S (2.51)

(θn+1, Sn+1) = L−1
θ,S(θ∗, S∗) (2.52)

The corresponding calling tree is given in 2.8. The staggered algorithm is activated with the run-time
flag staggerTimeStep=.TRUE. in parameter file data, namelist PARM01.

The only difficulty with this approach is apparent in equation 2.49 and illustrated by the dotted
arrow connecting u, vn+1/2 with Gn

θ . The flow used to advect tracers around is not naturally located
in time. This could be avoided by applying the Adams-Bashforth extrapolation to the tracer field itself
and advecting that around but this approach is not yet available. We’re not aware of any detrimental
effect of this feature. The difficulty lies mainly in interpretation of what time-level variables and terms
correspond to.

2.9 Non-hydrostatic formulation

The non-hydrostatic formulation re-introduces the full vertical momentum equation and requires the
solution of a 3-D elliptic equations for non-hydrostatic pressure perturbation. We still integrate vertically
for the hydrostatic pressure and solve a 2-D elliptic equation for the surface pressure/elevation for this
reduces the amount of work needed to solve for the non-hydrostatic pressure.

The momentum equations are discretized in time as follows:

1

∆t
un+1 + g∂xη

n+1 + ∂xφ
n+1
nh =

1

∆t
un +G(n+1/2)

u (2.53)

1

∆t
vn+1 + g∂yη

n+1 + ∂yφ
n+1
nh =

1

∆t
vn +G(n+1/2)

v (2.54)

1

∆t
wn+1 + ∂rφ

n+1
nh =

1

∆t
wn +G(n+1/2)

w (2.55)

which must satisfy the discrete-in-time depth integrated continuity, equation 2.16 and the local continuity
equation

∂xu
n+1 + ∂yv

n+1 + ∂rw
n+1 = 0 (2.56)

As before, the explicit predictions for momentum are consolidated as:

u∗ = un + ∆tG(n+1/2)
u

v∗ = vn + ∆tG(n+1/2)
v

w∗ = wn + ∆tG(n+1/2)
w

but this time we introduce an intermediate step by splitting the tendancy of the flow as follows:

un+1 = u∗∗ − ∆t∂xφ
n+1
nh u∗∗ = u∗ − ∆tg∂xη

n+1 (2.57)

vn+1 = v∗∗ − ∆t∂yφ
n+1
nh v∗∗ = v∗ − ∆tg∂yη

n+1 (2.58)

52 CHAPTER 2. DISCRETIZATION AND ALGORITHM

FORWARD STEP
EXTERNAL FIELDS LOAD
DO ATMOSPHERIC PHYS
DO OCEANIC PHYS

DYNAMICS
CALC PHI HYD φn

hyd (2.41)

MOM FLUXFORM or MOM VECINV G
n−1/2
~v (2.42)

TIMESTEP ~v∗ (2.43, 2.44)
IMPLDIFF ~v∗∗ (2.45)

UPDATE R STAR or UPDATE SURF DR (NonLin-FS only)
SOLVE FOR PRESSURE

CALC DIV GHAT η∗ (2.46)

CG2D ηn+1/2 (2.47)
MOMENTUM CORRECTION STEP

CALC GRAD PHI SURF ∇ηn+1/2

CORRECTION STEP un+1/2,vn+1/2 (2.48)
THERMODYNAMICS

CALC GT
GAD CALC RHS Gn

θ = Gθ(u, θ
n) (2.49)

EXTERNAL FORCING Gn
θ = Gn

θ + Q
ADAMS BASHFORTH2 G

(n+1/2)
θ (2.50)

TIMESTEP TRACER θ∗ (2.51)
IMPLDIFF θ(n+1) (2.52)

TRACERS CORRECTION STEP
CYCLE TRACER θn+1

FILTER Shapiro Filter, Zonal Filter (FFT)
CONVECTIVE ADJUSTMENT

Figure 2.8: Calling tree for the overall staggered algorithm using Adams-Bashforth time-stepping. The
place where the model geometry (hFac factors) is updated is added here but is only relevant for the
non-linear free-surface algorithm.

2.10. VARIANTS ON THE FREE SURFACE 53

Substituting into the depth integrated continuity (equation 2.16) gives

∂xH∂x

(
gηn+1 + φ̂n+1

nh

)
+ ∂yH∂y

(
gηn+1 + φ̂n+1

nh

)
− ǫfsη

n+1

∆t2
= − η∗

∆t2
(2.59)

which is approximated by equation 2.20 on the basis that i) φn+1
nh is not yet known and ii) ∇φ̂nh << g∇η.

If 2.20 is solved accurately then the implication is that φ̂nh ≈ 0 so that the non-hydrostatic pressure field
does not drive barotropic motion.

The flow must satisfy non-divergence (equation 2.56) locally, as well as depth integrated, and this
constraint is used to form a 3-D elliptic equations for φn+1

nh :

∂xxφ
n+1
nh + ∂yyφ

n+1
nh + ∂rrφ

n+1
nh = (∂xu

∗∗ + ∂yv
∗∗ + ∂rw

∗) /∆t (2.60)

The entire algorithm can be summarized as the sequential solution of the following equations:

u∗ = un + ∆tG(n+1/2)
u (2.61)

v∗ = vn + ∆tG(n+1/2)
v (2.62)

w∗ = wn + ∆tG(n+1/2)
w (2.63)

η∗ = ǫfs (ηn + ∆t(P − E)) − ∆t
(
∂xHû∗ + ∂yHv̂∗

)
(2.64)

∂xgH∂xη
n+1 + ∂ygH∂yη

n+1 − ǫfsη
n+1

∆t2
= − η∗

∆t2
(2.65)

u∗∗ = u∗ − ∆tg∂xη
n+1 (2.66)

v∗∗ = v∗ − ∆tg∂yη
n+1 (2.67)

∂xxφ
n+1
nh + ∂yyφ

n+1
nh + ∂rrφ

n+1
nh = (∂xu

∗∗ + ∂yv
∗∗ + ∂rw

∗) /∆t (2.68)

un+1 = u∗∗ − ∆t∂xφ
n+1
nh (2.69)

vn+1 = v∗∗ − ∆t∂yφ
n+1
nh (2.70)

∂rw
n+1 = −∂xu

n+1 − ∂yv
n+1 (2.71)

where the last equation is solved by vertically integrating for wn+1.

2.10 Variants on the Free Surface

We now describe the various formulations of the free-surface that include non-linear forms, implicit in
time using Crank-Nicholson, explicit and [one day] split-explicit. First, we’ll reiterate the underlying
algorithm but this time using the notation consistent with the more general vertical coordinate r. The
elliptic equation for free-surface coordinate (units of r), corresponding to 2.16, and assuming no non-
hydrostatic effects (ǫnh = 0) is:

ǫfsη
n+1 −∇h · ∆t2(Ro −Rfixed)∇hbsη

n+1 = η∗ (2.72)

where

η∗ = ǫfs η
n − ∆t∇h ·

∫ Ro

Rfixed

~v∗dr + ǫfw∆t(P − E)n (2.73)

S/R SOLVE FOR PRESSURE (solve for pressure.F)
u∗: gU (DYNVARS.h)
v∗: gV (DYNVARS.h)
η∗: cg2d b (SOLVE FOR PRESSURE.h)
ηn+1: etaN (DYNVARS.h)

Once ηn+1 has been found, substituting into 2.5, 2.6 yields ~vn+1 if the model is hydrostatic (ǫnh = 0):

~vn+1 = ~v∗ − ∆t∇hbsη
n+1

54 CHAPTER 2. DISCRETIZATION AND ALGORITHM

This is known as the correction step. However, when the model is non-hydrostatic (ǫnh = 1) we need
an additional step and an additional equation for φ′nh. This is obtained by substituting 2.53, 2.54 and
2.55 into continuity:

[
∇2

h + ∂rr

]
φ′nh

n+1
=

1

∆t
(∇h · ~v∗∗ + ∂r ṙ

∗) (2.74)

where
~v∗∗ = ~v∗ − ∆t∇hbsη

n+1

Note that ηn+1 is also used to update the second RHS term ∂r ṙ
∗ since the vertical velocity at the surface

(ṙsurf) is evaluated as (ηn+1 − ηn)/∆t.
Finally, the horizontal velocities at the new time level are found by:

~vn+1 = ~v∗∗ − ǫnh∆t∇hφ
′
nh

n+1
(2.75)

and the vertical velocity is found by integrating the continuity equation vertically. Note that, for the
convenience of the restart procedure, the vertical integration of the continuity equation has been moved
to the beginning of the time step (instead of at the end), without any consequence on the solution.

S/R CORRECTION STEP (correction step.F)
ηn+1: etaN (DYNVARS.h)
φn+1

nh : phi nh (NH VARS.h)
u∗: gU (DYNVARS.h)
v∗: gV (DYNVARS.h)
un+1: uVel (DYNVARS.h)
vn+1: vVel (DYNVARS.h)

Regarding the implementation of the surface pressure solver, all computation are done within the
routine SOLVE FOR PRESSURE and its dependent calls. The standard method to solve the 2D elliptic
problem (2.72) uses the conjugate gradient method (routine CG2D); the solver matrix and conjugate
gradient operator are only function of the discretized domain and are therefore evaluated separately,
before the time iteration loop, within INI CG2D. The computation of the RHS η∗ is partly done in
CALC DIV GHAT and in SOLVE FOR PRESSURE.

The same method is applied for the non hydrostatic part, using a conjugate gradient 3D solver (CG3D)
that is initialized in INI CG3D. The RHS terms of 2D and 3D problems are computed together at the
same point in the code.

2.10.1 Crank-Nicolson barotropic time stepping

The full implicit time stepping described previously is unconditionally stable but damps the fast gravity
waves, resulting in a loss of potential energy. The modification presented now allows one to combine an
implicit part (β, γ) and an explicit part (1 − β, 1 − γ) for the surface pressure gradient (β) and for the
barotropic flow divergence (γ).
For instance, β = γ = 1 is the previous fully implicit scheme; β = γ = 1/2 is the non damping (energy
conserving), unconditionally stable, Crank-Nicolson scheme; (β, γ) = (1, 0) or = (0, 1) corresponds to the
forward - backward scheme that conserves energy but is only stable for small time steps.
In the code, β, γ are defined as parameters, respectively implicSurfPress, implicDiv2DFlow. They
are read from the main parameter file ”data” (namelist PARM01) and are set by default to 1,1.

Equations 2.17 – 2.22 are modified as follows:

~vn+1

∆t
+ ∇hbs[βη

n+1 + (1 − β)ηn] + ǫnh∇hφ
′
nh

n+1
=
~vn

∆t
+ ~G

(n+1/2)
~v + ∇hφ

′
hyd

(n+1/2)

ǫfs
ηn+1 − ηn

∆t
+ ∇h ·

∫ Ro

Rfixed

[γ~vn+1 + (1 − γ)~vn]dr = ǫfw(P − E) (2.76)

We set

~v∗ = ~vn + ∆t~G
(n+1/2)
~v + (β − 1)∆t∇hbsη

n + ∆t∇hφ
′
hyd

(n+1/2)

η∗ = ǫfsη
n + ǫfw∆t(P − E) − ∆t∇h ·

∫ Ro

Rfixed

[γ~v∗ + (1 − γ)~vn]dr

2.10. VARIANTS ON THE FREE SURFACE 55

In the hydrostatic case (ǫnh = 0), allowing us to find ηn+1, thus:

ǫfsη
n+1 −∇h · βγ∆t2bs(Ro −Rfixed)∇hη

n+1 = η∗

and then to compute (CORRECTION STEP):

~vn+1 = ~v∗ − β∆t∇hbsη
n+1

Notes:

1. The RHS term of equation 2.76 corresponds the contribution of fresh water flux (P-E) to the free-
surface variations (ǫfw = 1, useRealFreshWater=TRUE in parameter file data). In order to
remain consistent with the tracer equation, specially in the non-linear free-surface formulation, this
term is also affected by the Crank-Nicolson time stepping. The RHS reads: ǫfw(γ(P − E)n+1/2 +
(1 − γ)(P − E)n−1/2)

2. The stability criteria with Crank-Nicolson time stepping for the pure linear gravity wave problem
in cartesian coordinates is:

• β + γ < 1 : unstable

• β ≥ 1/2 and γ ≥ 1/2 : stable

• β + γ ≥ 1 : stable if
c2max(β − 1/2)(γ − 1/2) + 1 ≥ 0

with cmax = 2∆t
√
gH

√
1

∆x2
+

1

∆y2

3. A similar mixed forward/backward time-stepping is also available for the non-hydrostatic algorithm,
with a fraction βnh (0 < βnh ≤ 1) of the non-hydrostatic pressure gradient being evaluated at time
step n + 1 (backward in time) and the remaining part (1 − βnh) being evaluated at time step
n (forward in time). The run-time parameter implicitNHPress corresponding to the implicit
fraction βnh of the non-hydrostatic pressure is set by default to the implicit fraction β of surface
pressure (implicSurfPress), but can also be specified independently (in main parameter file data,
namelist PARM01).

2.10.2 Non-linear free-surface

Recently, new options have been added to the model that concern the free surface formulation.

2.10.2.1 pressure/geo-potential and free surface

For the atmosphere, since φ = φtopo −
∫ p

ps
αdp, subtracting the reference state defined in section 1.4.1.2 :

φo = φtopo −
∫ p

po

αodp with φo(po) = φtopo

we get:

φ′ = φ− φo =

∫ ps

p

αdp−
∫ po

p

αodp

For the ocean, the reference state is simpler since ρc does not dependent on z (bo = g) and the surface
reference position is uniformly z = 0 (Ro = 0), and the same subtraction leads to a similar relation. For
both fluid, using the isomorphic notations, we can write:

φ′ =

∫ rsurf

r

b dr −
∫ Ro

r

bodr

and re-write as:

φ′ =

∫ rsurf

Ro

b dr +

∫ Ro

r

(b − bo)dr (2.77)

56 CHAPTER 2. DISCRETIZATION AND ALGORITHM

or:

φ′ =

∫ rsurf

Ro

bodr +

∫ rsurf

r

(b − bo)dr (2.78)

In section 1.3.6, following eq.2.77, the pressure/geo-potential φ′ has been separated into surface (φs),
and hydrostatic anomaly (φ′hyd). In this section, the split between φs and φ′hyd is made according to
equation 2.78. This slightly different definition reflects the actual implementation in the code and is valid
for both linear and non-linear free-surface formulation, in both r-coordinate and r*-coordinate.

Because the linear free-surface approximation ignore the tracer content of the fluid parcel between Ro

and rsurf = Ro + η, for consistency reasons, this part is also neglected in φ′hyd :

φ′hyd =

∫ rsurf

r

(b− bo)dr ≃
∫ Ro

r

(b − bo)dr

Note that in this case, the two definitions of φs and φ′hyd from equation 2.77 and 2.78 converge toward

the same (approximated) expressions: φs =
∫ rsurf

Ro
bodr and φ′hyd =

∫ Ro

r b′dr.

On the contrary, the unapproximated formulation (”non-linear free-surface”, see the next section) retains
the full expression: φ′hyd =

∫ rsurf

r (b − bo)dr . This is obtained by selecting nonlinFreeSurf=4 in pa-
rameter file data.

Regarding the surface potential:

φs =

∫ Ro+η

Ro

bodr = bsη with bs =
1

η

∫ Ro+η

Ro

bodr

bs ≃ bo(Ro) is an excellent approximation (better than the usual numerical truncation, since generally
|η| is smaller than the vertical grid increment).

For the ocean, φs = gη and bs = g is uniform. For the atmosphere, however, because of topo-
graphic effects, the reference surface pressure Ro = po has large spatial variations that are responsible
for significant bs variations (from 0.8 to 1.2 [m3/kg]). For this reason, when uniformLin PhiSurf
=.FALSE. (parameter file data, namelist PARAM01) a non-uniform linear coefficient bs is used and
computed (S/R INI LINEAR PHISURF) according to the reference surface pressure po: bs = bo(Ro) =
cpκ(po/P

o
SL)(κ−1)θref (po). with P o

SL the mean sea-level pressure.

2.10.2.2 Free surface effect on column total thickness (Non-linear free-surface)

The total thickness of the fluid column is rsurf − Rfixed = η + Ro − Rfixed. In most applications, the
free surface displacements are small compared to the total thickness η ≪ Ho = Ro − Rfixed. In the
previous sections and in older version of the model, the linearized free-surface approximation was made,
assuming rsurf − Rfixed ≃ Ho when computing horizontal transports, either in the continuity equation
or in tracer and momentum advection terms. This approximation is dropped when using the non-linear
free-surface formulation and the total thickness, including the time varying part η, is considered when
computing horizontal transports. Implications for the barotropic part are presented hereafter. In section
2.10.2.3 consequences for tracer conservation is briefly discussed (more details can be found in Campin
et al. [2004]) ; the general time-stepping is presented in section 2.10.2.4 with some limitations regarding
the vertical resolution in section 2.10.2.5.

In the non-linear formulation, the continuous form of the model equations remains unchanged, except
for the 2D continuity equation (2.16) which is now integrated from Rfixed(x, y) up to rsurf = Ro + η :

ǫfs∂tη = ṙ|r=rsurf
+ ǫfw(P − E) = −∇h ·

∫ Ro+η

Rfixed

~vdr + ǫfw(P − E)

Since η has a direct effect on the horizontal velocity (through ∇hΦsurf), this adds a non-linear term
to the free surface equation. Several options for the time discretization of this non-linear part can be
considered, as detailed below.

If the column thickness is evaluated at time step n, and with implicit treatment of the surface potential
gradient, equations (2.72 and 2.73) becomes:

ǫfsη
n+1 −∇h · ∆t2(ηn +Ro −Rfixed)∇hbsη

n+1 = η∗

2.10. VARIANTS ON THE FREE SURFACE 57

where

η∗ = ǫfs η
n − ∆t∇h ·

∫ Ro+ηn

Rfixed

~v∗dr + ǫfw∆t(P − E)n

This method requires us to update the solver matrix at each time step.
Alternatively, the non-linear contribution can be evaluated fully explicitly:

ǫfsη
n+1 −∇h · ∆t2(Ro −Rfixed)∇hbsη

n+1 = η∗ + ∇h · ∆t2(ηn)∇hbsη
n

This formulation allows one to keep the initial solver matrix unchanged though throughout the integration,
since the non-linear free surface only affects the RHS.

Finally, another option is a ”linearized” formulation where the total column thickness appears only
in the integral term of the RHS (2.73) but not directly in the equation (2.72).

Those different options (see Table 2.1) have been tested and show little differences. However, we
recommend the use of the most precise method (the 1rst one) since the computation cost involved in the
solver matrix update is negligible.

parameter value description
-1 linear free-surface, restart from a pickup file

produced with #undef EXACT CONSERV code
0 Linear free-surface

nonlinFreeSurf 4 Non-linear free-surface

3 same as 4 but neglecting
∫ Ro+η

Ro
b′dr in Φ′hyd

2 same as 3 but do not update cg2d solver matrix
1 same as 2 but treat momentum as in Linear FS
0 do not use r∗ vertical coordinate (= default)

select rStar 2 use r∗ vertical coordinate
1 same as 2 but without the contribution of the

slope of the coordinate in ∇Φ

Table 2.1: Non-linear free-surface flags

2.10.2.3 Tracer conservation with non-linear free-surface

To ensure global tracer conservation (i.e., the total amount) as well as local conservation, the change in
the surface level thickness must be consistent with the way the continuity equation is integrated, both in
the barotropic part (to find η) and baroclinic part (to find w = ṙ).

To illustrate this, consider the shallow water model, with a source of fresh water (P):

∂th+ ∇ · h~v = P

where h is the total thickness of the water column. To conserve the tracer θ we have to discretize:

∂t(hθ) + ∇ · (hθ~v) = Pθrain

Using the implicit (non-linear) free surface described above (section 2.4) we have:

hn+1 = hn − ∆t∇ · (hn ~vn+1) + ∆tP

The discretized form of the tracer equation must adopt the same “form” in the computation of tracer
fluxes, that is, the same value of h, as used in the continuity equation:

hn+1 θn+1 = hn θn − ∆t∇ · (hn θn ~vn+1) + ∆tPθrain

The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth make the conservation
sightly tricky. The current implementation with the Adams-Bashforth time-stepping provides an exact

58 CHAPTER 2. DISCRETIZATION AND ALGORITHM

local conservation and prevents any drift in the global tracer content (Campin et al. [2004]). Compared to
the linear free-surface method, an additional step is required: the variation of the water column thickness
(from hn to hn+1) is not incorporated directly into the tracer equation. Instead, the model uses the Gθ

terms (first step) as in the linear free surface formulation (with the ”surface correction” turned ”on”, see
tracer section):

Gn
θ =

(
−∇ · (hn θn ~vn+1) − ṙn+1

surf θ
n
)
/hn

Then, in a second step, the thickness variation (expansion/reduction) is taken into account:

θn+1 = θn + ∆t
hn

hn+1

(
G

(n+1/2)
θ + P (θrain − θn)/hn

)

Note that with a simple forward time step (no Adams-Bashforth), these two formulations are equivalent,
since (hn+1 − hn)/∆t = P −∇ · (hn ~vn+1) = P + ṙn+1

surf

2.10.2.4 Time stepping implementation of the non-linear free-surface

The grid cell thickness was hold constant with the linear free-surface ; with the non-linear free-surface,
it is now varying in time, at least at the surface level. This implies some modifications of the general
algorithm described earlier in sections 2.7 and 2.8.

A simplified version of the staggered in time, non-linear free-surface algorithm is detailed hereafter,
and can be compared to the equivalent linear free-surface case (eq. 2.42 to 2.52) and can also be easily
transposed to the synchronous time-stepping case. Among the simplifications, salinity equation, implicit
operator and detailed elliptic equation are omitted. Surface forcing is explicitly written as fluxes of
temperature, fresh water and momentum, Qn+1/2, Pn+1/2, Fn

v respectively. hn and dhn are the column
and grid box thickness in r-coordinate.

φn
hyd =

∫
b(θn, Sn, r)dr (2.79)

~G
n−1/2
~v = ~G~v(dhn−1, ~vn−1/2) ; ~G

(n)
~v =

3

2
~G

n−1/2
~v − 1

2
~G

n−3/2
~v (2.80)

~v∗ = ~vn−1/2 + ∆t
dhn−1

dhn

(
~G

(n)
~v + Fn

~v /dh
n−1
)
− ∆t∇φn

hyd (2.81)

−→ update model geometry : hFac(dhn)

ηn+1/2 = ηn−1/2 + ∆tPn+1/2 − ∆t∇ ·
∫
~vn+1/2dhn

= ηn−1/2 + ∆tPn+1/2 − ∆t∇ ·
∫(
~v∗ − g∆t∇ηn+1/2

)
dhn (2.82)

~vn+1/2 = ~v∗ − g∆t∇ηn+1/2 (2.83)

hn+1 = hn + ∆tPn+1/2 − ∆t∇ ·
∫
~vn+1/2dhn (2.84)

Gn
θ = Gθ(dh

n, un+1/2, θn) ; G
(n+1/2)
θ =

3

2
Gn

θ − 1

2
Gn−1

θ (2.85)

θn+1 = θn + ∆t
dhn

dhn+1

(
G

(n+1/2)
θ + (Pn+1/2(θrain − θn) +Qn+1/2)/dhn

)

(2.86)

Two steps have been added to linear free-surface algorithm (eq. 2.42 to 2.52): Firstly, the model “geome-
try” (here the hFacC,W,S) is updated just before entering SOLVE FOR PRESSURE, using the current
dhn field. Secondly, the vertically integrated continuity equation (eq.2.84) has been added (exactCon-
serv=TRUE, in parameter file data, namelist PARM01) just before computing the vertical velocity, in
subroutine INTEGR CONTINUITY. Although this equation might appear redundant with eq.2.82, the
integrated column thickness hn+1 will be different from ηn+1/2 +H in the following cases:

• when Crank-Nicolson time-stepping is used (see section 2.10.1).

2.11. SPATIAL DISCRETIZATION OF THE DYNAMICAL EQUATIONS 59

• when filters are applied to the flow field, after (2.83) and alter the divergence of the flow.

• when the solver does not iterate until convergence ; for example, because a too large residual target
was set (cg2dTargetResidual, parameter file data, namelist PARM02).

In this staggered time-stepping algorithm, the momentum tendencies are computed using dhn−1 geometry
factors. (eq.2.80) and then rescaled in subroutine TIMESTEP, (eq.2.81), similarly to tracer tendencies
(see section 2.10.2.3). The tracers are stepped forward later, using the recently updated flow field vn+1/2

and the corresponding model geometry dhn to compute the tendencies (eq.2.85); Then the tendencies
are rescaled by dhn/dhn+1 to derive the new tracers values (θ, S)n+1 (eq.2.86, in subroutine CALC GT,
CALC GS).

Note that the fresh-water input is added in a consistent way in the continuity equation and in the
tracer equation, taking into account the fresh-water temperature θrain.

Regarding the restart procedure, two 2.D fields hn−1 and (hn −hn−1)/∆t in addition to the standard

state variables and tendencies (ηn−1/2, vn−1/2, θn, Sn, G
n−3/2
v , Gn−1

θ,S) are stored in a ”pickup” file.

The model restarts reading this ”pickup” file, then update the model geometry according to hn−1, and
compute hn and the vertical velocity before starting the main calling sequence (eq.2.79 to 2.86, S/R
FORWARD STEP).

INTEGR CONTINUITY (integr continuity.F)
hn+1 −Ho: etaH (DYNVARS.h)
hn −Ho: etaHnm1 (SURFACE.h)
(hn+1 − hn)/∆t: dEtaHdt (SURFACE.h)

2.10.2.5 Non-linear free-surface and vertical resolution

When the amplitude of the free-surface variations becomes as large as the vertical resolution near the
surface, the surface layer thickness can decrease to nearly zero or can even vanish completely. This later
possibility has not been implemented, and a minimum relative thickness is imposed (hFacInf, parameter
file data, namelist PARM01) to prevent numerical instabilities caused by very thin surface level.

A better alternative to the vanishing level problem has been found and implemented recently, and
rely on a different vertical coordinate r∗ : The time variation ot the total column thickness becomes part
of the r* coordinate motion, as in a σz , σp model, but the fixed part related to topography is treated as
in a height or pressure coordinate model. A complete description is given in Adcroft and Campin [2004].

The time-stepping implementation of the r∗ coordinate is identical to the non-linear free-surface in r
coordinate, and differences appear only in the spacial discretization. needs a subsection

2.11 Spatial discretization of the dynamical equations

Spatial discretization is carried out using the finite volume method. This amounts to a grid-point method
(namely second-order centered finite difference) in the fluid interior but allows boundaries to intersect
a regular grid allowing a more accurate representation of the position of the boundary. We treat the
horizontal and vertical directions as separable and differently.

2.11.1 The finite volume method: finite volumes versus finite difference

The finite volume method is used to discretize the equations in space. The expression “finite volume”
actually has two meanings; one is the method of embedded or intersecting boundaries (shaved or lopped
cells in our terminology) and the other is non-linear interpolation methods that can deal with non-
smooth solutions such as shocks (i.e. flux limiters for advection). Both make use of the integral form
of the conservation laws to which the weak solution is a solution on each finite volume of (sub-domain).
The weak solution can be constructed out of piece-wise constant elements or be differentiable. The
differentiable equations can not be satisfied by piece-wise constant functions.

As an example, the 1-D constant coefficient advection-diffusion equation:

∂tθ + ∂x(uθ − κ∂xθ) = 0

60 CHAPTER 2. DISCRETIZATION AND ALGORITHM

u
v

v u

w

w

Figure 2.9: Three dimensional staggering of velocity components. This facilitates the natural discretiza-
tion of the continuity and tracer equations.

can be discretized by integrating over finite sub-domains, i.e. the lengths ∆xi:

∆x∂tθ + δi(F) = 0

is exact if θ(x) is piece-wise constant over the interval ∆xi or more generally if θi is defined as the average
over the interval ∆xi.

The flux, Fi−1/2, must be approximated:

F = uθ − κ

∆xc
∂iθ

and this is where truncation errors can enter the solution. The method for obtaining θ is unspecified and
a wide range of possibilities exist including centered and upwind interpolation, polynomial fits based on
the the volume average definitions of quantities and non-linear interpolation such as flux-limiters.

Choosing simple centered second-order interpolation and differencing recovers the same ODE’s result-
ing from finite differencing for the interior of a fluid. Differences arise at boundaries where a boundary is
not positioned on a regular or smoothly varying grid. This method is used to represent the topography
using lopped cell, see Adcroft et al. [1997]. Subtle difference also appear in more than one dimension
away from boundaries. This happens because the each direction is discretized independently in the finite
difference method while the integrating over finite volume implicitly treats all directions simultaneously.
Illustration of this is given in Adcroft and Campin [2002].

2.11.2 C grid staggering of variables

The basic algorithm employed for stepping forward the momentum equations is based on retaining non-
divergence of the flow at all times. This is most naturally done if the components of flow are staggered
in space in the form of an Arakawa C grid Arakawa and Lamb [1977].

Fig. 2.9 shows the components of flow (u,v,w) staggered in space such that the zonal component falls
on the interface between continuity cells in the zonal direction. Similarly for the meridional and vertical
directions. The continuity cell is synonymous with tracer cells (they are one and the same).

2.11.3 Grid initialization and data

Initialization of grid data is controlled by subroutine INI GRID which in calls INI VERTICAL GRID to
initialize the vertical grid, and then either of INI CARTESIAN GRID, INI SPHERICAL POLAR GRID
or INI CURVILINEAR GRID to initialize the horizontal grid for cartesian, spherical-polar or curvilinear
coordinates respectively.

The reciprocals of all grid quantities are pre-calculated and this is done in subroutine INI MASKS ETC
which is called later by subroutine INITIALIZE FIXED.

2.11. SPATIAL DISCRETIZATION OF THE DYNAMICAL EQUATIONS 61

a)

x∆

∆y

G

G C

u

v v

u

v

u u

v

u

v

u

v

A b)

y∆

x∆

C

C

u

u u

uu

v v

v

vv

v

u

Aζ

c) y∆

x∆

W
F

V

v v

v v

uu

u u u

v v

A d)

y∆

x∆

U

F

S

v

u u u

u u u

v

v

v v

A

Figure 2.10: Staggering of horizontal grid descriptors (lengths and areas). The grid lines indicate the
tracer cell boundaries and are the reference grid for all panels. a) The area of a tracer cell, Ac, is bordered
by the lengths ∆xg and ∆yg. b) The area of a vorticity cell, Aζ , is bordered by the lengths ∆xc and
∆yc. c) The area of a u cell, Aw, is bordered by the lengths ∆xv and ∆yf . d) The area of a v cell, As,
is bordered by the lengths ∆xf and ∆yu.

All grid descriptors are global arrays and stored in common blocks in GRID.h and a generally declared
as RS.

S/R INI GRID (model/src/ini grid.F)
S/R INI MASKS ETC (model/src/ini masks etc.F)
grid data: (model/inc/GRID.h)

2.11.4 Horizontal grid

The model domain is decomposed into tiles and within each tile a quasi-regular grid is used. A tile is the
basic unit of domain decomposition for parallelization but may be used whether parallelized or not; see
section 4.2.4 for more details. Although the tiles may be patched together in an unstructured manner
(i.e. irregular or non-tessilating pattern), the interior of tiles is a structured grid of quadrilateral cells.
The horizontal coordinate system is orthogonal curvilinear meaning we can not necessarily treat the two
horizontal directions as separable. Instead, each cell in the horizontal grid is described by the length of
it’s sides and it’s area.

The grid information is quite general and describes any of the available coordinates systems, cartesian,
spherical-polar or curvilinear. All that is necessary to distinguish between the coordinate systems is to
initialize the grid data (descriptors) appropriately.

In the following, we refer to the orientation of quantities on the computational grid using geographic
terminology such as points of the compass. This is purely for convenience but should not be confused Caution!
with the actual geographic orientation of model quantities.

Fig. 2.10a shows the tracer cell (synonymous with the continuity cell). The length of the southern
edge, ∆xg , western edge, ∆yg and surface area, Ac, presented in the vertical are stored in arrays DXg,

62 CHAPTER 2. DISCRETIZATION AND ALGORITHM

DYg and rAc. The “g” suffix indicates that the lengths are along the defining grid boundaries. The
“c” suffix associates the quantity with the cell centers. The quantities are staggered in space and the
indexing is such that DXg(i,j) is positioned to the south of rAc(i,j) and DYg(i,j) positioned to the
west.

Fig. 2.10b shows the vorticity cell. The length of the southern edge, ∆xc, western edge, ∆yc and
surface area, Aζ , presented in the vertical are stored in arrays DXc, DYc and rAz. The “z” suffix
indicates that the lengths are measured between the cell centers and the “ζ” suffix associates points with
the vorticity points. The quantities are staggered in space and the indexing is such that DXc(i,j) is
positioned to the north of rAz(i,j) and DYc(i,j) positioned to the east.

Fig. 2.10c shows the “u” or western (w) cell. The length of the southern edge, ∆xv, eastern edge,
∆yf and surface area, Aw, presented in the vertical are stored in arrays DXv, DYf and rAw. The
“v” suffix indicates that the length is measured between the v-points, the “f” suffix indicates that the
length is measured between the (tracer) cell faces and the “w” suffix associates points with the u-points
(w stands for west). The quantities are staggered in space and the indexing is such that DXv(i,j) is
positioned to the south of rAw(i,j) and DYf(i,j) positioned to the east.

Fig. 2.10d shows the “v” or southern (s) cell. The length of the northern edge, ∆xf , western edge,
∆yu and surface area, As, presented in the vertical are stored in arrays DXf, DYu and rAs. The “u”
suffix indicates that the length is measured between the u-points, the “f” suffix indicates that the length
is measured between the (tracer) cell faces and the “s” suffix associates points with the v-points (s stands
for south). The quantities are staggered in space and the indexing is such that DXf(i,j) is positioned to
the north of rAs(i,j) and DYu(i,j) positioned to the west.

S/R INI CARTESIAN GRID (model/src/ini cartesian grid.F)
S/R INI SPHERICAL POLAR GRID (model/src/ini spherical polar grid.F)
S/R INI CURVILINEAR GRID (model/src/ini curvilinear grid.F)
Ac, Aζ , Aw, As: rAc, rAz, rAw, rAs (GRID.h)
∆xg, ∆yg: DXg, DYg (GRID.h)
∆xc, ∆yc: DXc, DYc (GRID.h)
∆xf , ∆yf : DXf, DYf (GRID.h)
∆xv, ∆yu: DXv, DYu (GRID.h)

2.11.4.1 Reciprocals of horizontal grid descriptors

Lengths and areas appear in the denominator of expressions as much as in the numerator. For efficiency
and portability, we pre-calculate the reciprocal of the horizontal grid quantities so that in-line divisions
can be avoided.

For each grid descriptor (array) there is a reciprocal named using the prefix RECIP . This doubles
the amount of storage in GRID.h but they are all only 2-D descriptors.

S/R INI MASKS ETC (model/src/ini masks etc.F)
A−1

c : RECIP Ac (GRID.h)
A−1

ζ : RECIP Az (GRID.h)

A−1
w : RECIP Aw (GRID.h)

A−1
s : RECIP As (GRID.h)

∆x−1
g , ∆y−1

g : RECIP DXg, RECIP DYg (GRID.h)
∆x−1

c , ∆y−1
c : RECIP DXc, RECIP DYc (GRID.h)

∆x−1
f , ∆y−1

f : RECIP DXf, RECIP DYf (GRID.h)

∆x−1
v , ∆y−1

u : RECIP DXv, RECIP DYu (GRID.h)

2.11.4.2 Cartesian coordinates

Cartesian coordinates are selected when the logical flag usingCartesianGrid in namelist PARM04 is
set to true. The grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist
PARM04 or to variable resolution by the vectors DELX and DELY. Units are normally meters. Non-
dimensional coordinates can be used by interpreting the gravitational constant as the Rayleigh number.

2.11. SPATIAL DISCRETIZATION OF THE DYNAMICAL EQUATIONS 63

a)

∆rf

∆rc

w

w

w

w

b)

∆rc

∆rf

w

w

w

w

Figure 2.11: Two versions of the vertical grid. a) The cell centered approach where the interface depths
are specified and the tracer points centered in between the interfaces. b) The interface centered approach
where tracer levels are specified and the w-interfaces are centered in between.

2.11.4.3 Spherical-polar coordinates

Spherical coordinates are selected when the logical flag usingSphericalPolarGrid in namelist PARM04
is set to true. The grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist
PARM04 or to variable resolution by the vectors DELX and DELY. Units of these namelist variables
are alway degrees. The horizontal grid descriptors are calculated from these namelist variables have units
of meters.

2.11.4.4 Curvilinear coordinates

Curvilinear coordinates are selected when the logical flag usingCurvilinearGrid in namelist PARM04
is set to true. The grid spacing can not be set via the namelist. Instead, the grid descriptors are read
from data files, one for each descriptor. As for other grids, the horizontal grid descriptors have units of
meters.

2.11.5 Vertical grid

As for the horizontal grid, we use the suffixes “c” and “f” to indicates faces and centers. Fig. 2.11a shows
the default vertical grid used by the model. ∆rf is the difference in r (vertical coordinate) between the ∆rf : DRf

∆rc: DRcfaces (i.e. ∆rf ≡ −δkr where the minus sign appears due to the convention that the surface layer has
index k = 1.).

The vertical grid is calculated in subroutine INI VERTICAL GRID and specified via the vector
DELR in namelist PARM04. The units of “r” are either meters or Pascals depending on the isomorphism
being used which in turn is dependent only on the choice of equation of state.

There are alternative namelist vectors DELZ and DELP which dictate whether z- or p- coordinates Caution!
are to be used but we intend to phase this out since they are redundant.

64 CHAPTER 2. DISCRETIZATION AND ALGORITHM

hw
hc

∆r f

∆r f

∆r f

x

r

Figure 2.12: A schematic of the x-r plane showing the location of the non-dimensional fractions hc and
hw. The physical thickness of a tracer cell is given by hc(i, j, k)∆rf (k) and the physical thickness of the
open side is given by hw(i, j, k)∆rf (k).

The reciprocals ∆r−1
f and ∆r−1

c are pre-calculated (also in subroutine INI VERTICAL GRID). All
vertical grid descriptors are stored in common blocks in GRID.h.

The above grid (Fig. 2.11a) is known as the cell centered approach because the tracer points are at cell
centers; the cell centers are mid-way between the cell interfaces. This discretization is selected when the
thickness of the levels are provided (delR, parameter file data, namelist PARM04) An alternative, the
vertex or interface centered approach, is shown in Fig. 2.11b. Here, the interior interfaces are positioned
mid-way between the tracer nodes (no longer cell centers). This approach is formally more accurate
for evaluation of hydrostatic pressure and vertical advection but historically the cell centered approach
has been used. An alternative form of subroutine INI VERTICAL GRID is used to select the interface
centered approach This form requires to specify Nr + 1 vertical distances delRc (parameter file data,
namelist PARM04, e.g. verification/ideal 2D oce/input/data) corresponding to surface to center, Nr− 1
center to center, and center to bottom distances.

S/R INI VERTICAL GRID (model/src/ini vertical grid.F)
∆rf : DRf (GRID.h)
∆rc: DRc (GRID.h)
∆r−1

f : RECIP DRf (GRID.h)

∆r−1
c : RECIP DRc (GRID.h)

2.11.6 Topography: partially filled cells

Adcroft et al. [1997] presented two alternatives to the step-wise finite difference representation of topog-
raphy. The method is known to the engineering community as intersecting boundary method. It involves
allowing the boundary to intersect a grid of cells thereby modifying the shape of those cells intersected.
We suggested allowing the topography to take on a piece-wise linear representation (shaved cells) or a
simpler piecewise constant representation (partial step). Both show dramatic improvements in solution
compared to the traditional full step representation, the piece-wise linear being the best. However, the
storage requirements are excessive so the simpler piece-wise constant or partial-step method is all that is
currently supported.

Fig. 2.12 shows a schematic of the x-r plane indicating how the thickness of a level is determined at

2.12. CONTINUITY AND HORIZONTAL PRESSURE GRADIENT TERMS 65

tracer and u points. The physical thickness of a tracer cell is given by hc(i, j, k)∆rf (k) and the physical hc: hFacC

hw: hFacW

hs: hFacS

thickness of the open side is given by hw(i, j, k)∆rf (k). Three 3-D descriptors hc, hw and hs are used
to describe the geometry: hFacC, hFacW and hFacS respectively. These are calculated in subroutine
INI MASKS ETC along with there reciprocals RECIP hFacC, RECIP hFacW and RECIP hFacS.

The non-dimensional fractions (or h-facs as we call them) are calculated from the model depth array
and then processed to avoid tiny volumes. The rule is that if a fraction is less than hFacMin then it
is rounded to the nearer of 0 or hFacMin or if the physical thickness is less than hFacMinDr then
it is similarly rounded. The larger of the two methods is used when there is a conflict. By setting
hFacMinDr equal to or larger than the thinnest nominal layers, min (∆zf), but setting hFacMin to
some small fraction then the model will only lop thick layers but retain stability based on the thinnest
unlopped thickness; min (∆zf ,hFacMinDr).

S/R INI MASKS ETC (model/src/ini masks etc.F)
hc: hFacC (GRID.h)
hw: hFacW (GRID.h)
hs: hFacS (GRID.h)
h−1

c : RECIP hFacC (GRID.h)
h−1

w : RECIP hFacW (GRID.h)
h−1

s : RECIP hFacS (GRID.h)

2.12 Continuity and horizontal pressure gradient terms

The core algorithm is based on the “C grid” discretization of the continuity equation which can be
summarized as:

∂tu+
1

∆xc
δi
∂Φ

∂r

∣∣∣∣
s

η +
ǫnh

∆xc
δiΦ
′
nh = Gu − 1

∆xc
δiΦ
′
h (2.87)

∂tv +
1

∆yc
δj
∂Φ

∂r

∣∣∣∣
s

η +
ǫnh

∆yc
δjΦ
′
nh = Gv − 1

∆yc
δjΦ
′
h (2.88)

ǫnh

(
∂tw +

1

∆rc
δkΦ′nh

)
= ǫnhGw + b

k − 1

∆rc
δkΦ′h (2.89)

δi∆yg∆rfhwu+ δj∆xg∆rfhsv + δkAcw = Acδk(P − E)r=0 (2.90)

where the continuity equation has been most naturally discretized by staggering the three components
of velocity as shown in Fig. 2.9. The grid lengths ∆xc and ∆yc are the lengths between tracer points
(cell centers). The grid lengths ∆xg, ∆yg are the grid lengths between cell corners. ∆rf and ∆rc are the
distance (in units of r) between level interfaces (w-level) and level centers (tracer level). The surface area
presented in the vertical is denoted Ac. The factors hw and hs are non-dimensional fractions (between 0
and 1) that represent the fraction cell depth that is “open” for fluid flow. hw: hFacW

hs: hFacSThe last equation, the discrete continuity equation, can be summed in the vertical to yield the free-
surface equation:

Ac∂tη + δi
∑

k

∆yg∆rfhwu+ δj
∑

k

∆xg∆rfhsv = Ac(P − E)r=0 (2.91)

The source term P − E on the rhs of continuity accounts for the local addition of volume due to excess
precipitation and run-off over evaporation and only enters the top-level of the ocean model.

2.13 Hydrostatic balance

The vertical momentum equation has the hydrostatic or quasi-hydrostatic balance on the right hand
side. This discretization guarantees that the conversion of potential to kinetic energy as derived from the
buoyancy equation exactly matches the form derived from the pressure gradient terms when forming the
kinetic energy equation.

In the ocean, using z-coordinates, the hydrostatic balance terms are discretized:

ǫnh∂tw + gρ′
k

+
1

∆z
δkΦ′h = . . . (2.92)

66 CHAPTER 2. DISCRETIZATION AND ALGORITHM

In the atmosphere, using p-coordinates, hydrostatic balance is discretized:

θ′
k

+
1

∆Π
δkΦ′h = 0 (2.93)

where ∆Π is the difference in Exner function between the pressure points. The non-hydrostatic equations
are not available in the atmosphere.

The difference in approach between ocean and atmosphere occurs because of the direct use of the
ideal gas equation in forming the potential energy conversion term αω. The form of these conversion
terms is discussed at length in Adcroft [2002].

Because of the different representation of hydrostatic balance between ocean and atmosphere there is
no elegant way to represent both systems using an arbitrary coordinate.

The integration for hydrostatic pressure is made in the positive r direction (increasing k-index). For
the ocean, this is from the free-surface down and for the atmosphere this is from the ground up.

The calculations are made in the subroutine CALC PHI HYD. Inside this routine, one of other of the
atmospheric/oceanic form is selected based on the string variable buoyancyRelation.

2.14 Flux-form momentum equations

The original finite volume model was based on the Eulerian flux form momentum equations. This is the
default though the vector invariant form is optionally available (and recommended in some cases).

The “G’s” (our colloquial name for all terms on rhs!) are broken into the various advective, Coriolis,
horizontal dissipation, vertical dissipation and metric forces:

Gu = Gadv
u +Gcor

u +Gh−diss
u +Gv−diss

u +Gmetric
u +Gnh−metric

u (2.94)

Gv = Gadv
v +Gcor

v +Gh−diss
v +Gv−diss

v +Gmetric
v +Gnh−metric

v (2.95)

Gw = Gadv
w +Gcor

w +Gh−diss
w +Gv−diss

w +Gmetric
w +Gnh−metric

w (2.96)

In the hydrostatic limit, Gw = 0 and ǫnh = 0, reducing the vertical momentum to hydrostatic balance.

These terms are calculated in routines called from subroutine MOM FLUXFORM a collected into the
global arrays Gu, Gv, and Gw.

S/R MOM FLUXFORM (pkg/mom fluxform/mom fluxform.F)
Gu: Gu (DYNVARS.h)
Gv: Gv (DYNVARS.h)
Gw: Gw (DYNVARS.h)

2.14.1 Advection of momentum

The advective operator is second order accurate in space:

Aw∆rfhwG
adv
u = δiU

i
ui + δjV

i
uj + δkW

i
uk (2.97)

As∆rfhsG
adv
v = δiU

j
vi + δjV

j
vj + δkW

j
vk (2.98)

Ac∆rcG
adv
w = δiU

k
wi + δjV

k
wj + δkW

k
wk (2.99)

and because of the flux form does not contribute to the global budget of linear momentum. The quantities
U , V and W are volume fluxes defined:

U = ∆yg∆rfhwu (2.100)

V = ∆xg∆rfhsv (2.101)

W = Acw (2.102)

The advection of momentum takes the same form as the advection of tracers but by a translated advective
flow. Consequently, the conservation of second moments, derived for tracers later, applies to u2 and v2

and w2 so that advection of momentum correctly conserves kinetic energy.

2.14. FLUX-FORM MOMENTUM EQUATIONS 67

S/R MOM U ADV UU (mom u adv uu.F)
S/R MOM U ADV VU (mom u adv vu.F)
S/R MOM U ADV WU (mom u adv wu.F)
S/R MOM U ADV UV (mom u adv uv.F)
S/R MOM U ADV VV (mom u adv vv.F)
S/R MOM U ADV WV (mom u adv wv.F)
uu, uv, vu, vv: aF (local to mom fluxform.F)

2.14.2 Coriolis terms

The “pure C grid” Coriolis terms (i.e. in absence of C-D scheme) are discretized:

Aw∆rfhwG
Cor
u = fAc∆rfhcv

j
i
− ǫnhf ′Ac∆rfhcw

k
i

(2.103)

As∆rfhsG
Cor
v = −fAc∆rfhcu

i
j

(2.104)

Ac∆rcG
Cor
w = ǫnhf ′Ac∆rfhcu

i
k

(2.105)

where the Coriolis parameters f and f ′ are defined:

f = 2Ω sinϕ (2.106)

f ′ = 2Ω cosϕ (2.107)

where ϕ is geographic latitude when using spherical geometry, otherwise the β-plane definition is used:

f = fo + βy (2.108)

f ′ = 0 (2.109)

This discretization globally conserves kinetic energy. It should be noted that despite the use of this
discretization in former publications, all calculations to date have used the following different discretiza-
tion:

GCor
u = fuv

ji − ǫnhf
′
uw

ik (2.110)

GCor
v = −fvu

ij (2.111)

GCor
w = ǫnhf

′
wu

ik (2.112)

where the subscripts on f and f ′ indicate evaluation of the Coriolis parameters at the appropriate points Need to change the
code to match thisin space. The above discretization does not conserve anything, especially energy and for historical reasons

is the default for the code. A flag controls this discretization: set run-time logical useEnergyConserv-
ingCoriolis to true which otherwise defaults to false.

S/R MOM CDSCHEME (mom cdscheme.F)
S/R MOM U CORIOLIS (mom u coriolis.F)
S/R MOM V CORIOLIS (mom v coriolis.F)
GCor

u , GCor
v : cF (local to mom fluxform.F)

2.14.3 Curvature metric terms

The most commonly used coordinate system on the sphere is the geographic system (λ, ϕ). The curvilinear
nature of these coordinates on the sphere lead to some “metric” terms in the component momentum
equations. Under the thin-atmosphere and hydrostatic approximations these terms are discretized:

Aw∆rfhwG
metric
u =

ui

a
tanϕAc∆rfhcv

j

i

(2.113)

As∆rfhsG
metric
v = −u

i

a
tanϕAc∆rfhcu

i

j

(2.114)

Gmetric
w = 0 (2.115)

68 CHAPTER 2. DISCRETIZATION AND ALGORITHM

where a is the radius of the planet (sphericity is assumed) or the radial distance of the particle (i.e. a
function of height). It is easy to see that this discretization satisfies all the properties of the discrete
Coriolis terms since the metric factor u

a tanϕ can be viewed as a modification of the vertical Coriolis
parameter: f → f + u

a tanϕ.

However, as for the Coriolis terms, a non-energy conserving form has exclusively been used to date:

Gmetric
u =

uvij

a
tanϕ (2.116)

Gmetric
v =

uijuij

a
tanϕ (2.117)

where tanϕ is evaluated at the u and v points respectively.

S/R MOM U METRIC SPHERE (mom u metric sphere.F)
S/R MOM V METRIC SPHERE (mom v metric sphere.F)
Gmetric

u , Gmetric
v : mT (local to mom fluxform.F)

2.14.4 Non-hydrostatic metric terms

For the non-hydrostatic equations, dropping the thin-atmosphere approximation re-introduces metric
terms involving w and are required to conserve angular momentum:

Aw∆rfhwG
metric
u = −u

iwk

a
Ac∆rfhc

i

(2.118)

As∆rfhsG
metric
v = −v

jwk

a
Ac∆rfhc

j

(2.119)

Ac∆rcG
metric
w =

ui2 + vj2

a
Ac∆rfhc

k

(2.120)

Because we are always consistent, even if consistently wrong, we have, in the past, used a different
discretization in the model which is:

Gmetric
u = −u

a
wik (2.121)

Gmetric
v = −v

a
wjk (2.122)

Gmetric
w =

1

a
(uik2

+ vjk2
) (2.123)

S/R MOM U METRIC NH (mom u metric nh.F)
S/R MOM V METRIC NH (mom v metric nh.F)
Gmetric

u , Gmetric
v : mT (local to mom fluxform.F)

2.14.5 Lateral dissipation

Historically, we have represented the SGS Reynolds stresses as simply down gradient momentum fluxes,
ignoring constraints on the stress tensor such as symmetry.

Aw∆rfhwG
h−diss
u = δi∆yf∆rfhcτ11 + δj∆xv∆rfhζτ12 (2.124)

As∆rfhsG
h−diss
v = δi∆yu∆rfhζτ21 + δj∆xf∆rfhcτ22 (2.125)

stress defini-

2.14. FLUX-FORM MOMENTUM EQUATIONS 69

The lateral viscous stresses are discretized:

τ11 = Ahc11∆(ϕ)
1

∆xf
δiu−A4c11∆2(ϕ)

1

∆xf
δi∇2u (2.126)

τ12 = Ahc12∆(ϕ)
1

∆yu
δju−A4c12∆2(ϕ)

1

∆yu
δj∇2u (2.127)

τ21 = Ahc21∆(ϕ)
1

∆xv
δiv −A4c21∆2(ϕ)

1

∆xv
δi∇2v (2.128)

τ22 = Ahc22∆(ϕ)
1

∆yf
δjv −A4c22∆2(ϕ)

1

∆yf
δj∇2v (2.129)

where the non-dimensional factors clm∆n(ϕ), {l,m, n} ∈ {1, 2} define the “cosine” scaling with latitude
which can be applied in various ad-hoc ways. For instance, c11∆ = c21∆ = (cosϕ)3/2, c12∆ = c22∆ = 1
would represent the an-isotropic cosine scaling typically used on the “lat-lon” grid for Laplacian viscosity.

Need to tidy up
controlling thisIt should be noted that despite the ad-hoc nature of the scaling, some scaling must be done since on a

lat-lon grid the converging meridians make it very unlikely that a stable viscosity parameter exists across
the entire model domain.

The Laplacian viscosity coefficient, Ah (viscAh), has units of m2s−1. The bi-harmonic viscosity
coefficient, A4 (viscA4), has units of m4s−1.

S/R MOM U XVISCFLUX (mom u xviscflux.F)
S/R MOM U YVISCFLUX (mom u yviscflux.F)
S/R MOM V XVISCFLUX (mom v xviscflux.F)
S/R MOM V YVISCFLUX (mom v yviscflux.F)
τ11, τ12, τ21, τ22: vF, v4F (local to mom fluxform.F)

Two types of lateral boundary condition exist for the lateral viscous terms, no-slip and free-slip.

The free-slip condition is most convenient to code since it is equivalent to zero-stress on boundaries.
Simple masking of the stress components sets them to zero. The fractional open stress is properly handled
using the lopped cells.

The no-slip condition defines the normal gradient of a tangential flow such that the flow is zero on
the boundary. Rather than modify the stresses by using complicated functions of the masks and “ghost”
points (see Adcroft and Marshall [1998]) we add the boundary stresses as an additional source term in
cells next to solid boundaries. This has the advantage of being able to cope with “thin walls” and also
makes the interior stress calculation (code) independent of the boundary conditions. The “body” force
takes the form:

Gside−drag
u =

4

∆zf
(1 − hζ)

∆xv

∆yu

j (
Ahc12∆(ϕ)u− A4c12∆2(ϕ)∇2u

)
(2.130)

Gside−drag
v =

4

∆zf
(1 − hζ)

∆yu

∆xv

i (
Ahc21∆(ϕ)v −A4c21∆2(ϕ)∇2v

)
(2.131)

In fact, the above discretization is not quite complete because it assumes that the bathymetry at
velocity points is deeper than at neighboring vorticity points, e.g. 1 − hw < 1 − hζ

S/R MOM U SIDEDRAG (mom u sidedrag.F)
S/R MOM V SIDEDRAG (mom v sidedrag.F)
Gside−drag

u , Gside−drag
v : vF (local to mom fluxform.F)

2.14.6 Vertical dissipation

Vertical viscosity terms are discretized with only partial adherence to the variable grid lengths introduced
by the finite volume formulation. This reduces the formal accuracy of these terms to just first order but

70 CHAPTER 2. DISCRETIZATION AND ALGORITHM

only next to boundaries; exactly where other terms appear such as linear and quadratic bottom drag.

Gv−diss
u =

1

∆rfhw
δkτ13 (2.132)

Gv−diss
v =

1

∆rfhs
δkτ23 (2.133)

Gv−diss
w = ǫnh

1

∆rfhd
δkτ33 (2.134)

represents the general discrete form of the vertical dissipation terms.
In the interior the vertical stresses are discretized:

τ13 = Av
1

∆rc
δku (2.135)

τ23 = Av
1

∆rc
δkv (2.136)

τ33 = Av
1

∆rf
δkw (2.137)

It should be noted that in the non-hydrostatic form, the stress tensor is even less consistent than for the
hydrostatic (see Wajsowicz [1993]). It is well known how to do this properly (see Griffies and Hallberg
[2000]) and is on the list of to-do’s.

S/R MOM U RVISCLFUX (mom u rviscflux.F)
S/R MOM V RVISCLFUX (mom v rviscflux.F)
τ13: urf (local to mom fluxform.F)
τ23: vrf (local to mom fluxform.F)

As for the lateral viscous terms, the free-slip condition is equivalent to simply setting the stress to
zero on boundaries. The no-slip condition is implemented as an additional term acting on top of the
interior and free-slip stresses. Bottom drag represents additional friction, in addition to that imposed
by the no-slip condition at the bottom. The drag is cast as a stress expressed as a linear or quadratic
function of the mean flow in the layer above the topography:

τbottom−drag
13 =

(
2Av

1

∆rc
+ rb + Cd

√
2KE

i

)
u (2.138)

τbottom−drag
23 =

(
2Av

1

∆rc
+ rb + Cd

√
2KE

j

)
v (2.139)

where these terms are only evaluated immediately above topography. rb (bottomDragLinear) has units
of ms−1 and a typical value of the order 0.0002 ms−1. Cd (bottomDragQuadratic) is dimensionless
with typical values in the range 0.001–0.003.

S/R MOM U BOTTOMDRAG (mom u bottomdrag.F)
S/R MOM V BOTTOMDRAG (mom v bottomdrag.F)

τbottom−drag
13 /∆rf , τbottom−drag

23 /∆rf : vf (local to mom fluxform.F)

2.14.7 Derivation of discrete energy conservation

These discrete equations conserve kinetic plus potential energy using the following definitions:

KE =
1

2

(
u2

i
+ v2

j
+ ǫnhw2

k
)

(2.140)

2.14.8 Mom Diagnostics

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

2.14. FLUX-FORM MOMENTUM EQUATIONS 71

--

VISCAHZ | 15 |SZ MR |m^2/s |Harmonic Visc Coefficient (m2/s) (Zeta Pt)

VISCA4Z | 15 |SZ MR |m^4/s |Biharmonic Visc Coefficient (m4/s) (Zeta Pt)

VISCAHD | 15 |SM MR |m^2/s |Harmonic Viscosity Coefficient (m2/s) (Div Pt)

VISCA4D | 15 |SM MR |m^4/s |Biharmonic Viscosity Coefficient (m4/s) (Div Pt)

VAHZMAX | 15 |SZ MR |m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Zeta Pt)

VA4ZMAX | 15 |SZ MR |m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Zeta Pt)

VAHDMAX | 15 |SM MR |m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Div Pt)

VA4DMAX | 15 |SM MR |m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Div Pt)

VAHZMIN | 15 |SZ MR |m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Zeta Pt)

VA4ZMIN | 15 |SZ MR |m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Zeta Pt)

VAHDMIN | 15 |SM MR |m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Div Pt)

VA4DMIN | 15 |SM MR |m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Div Pt)

VAHZLTH | 15 |SZ MR |m^2/s |Leith Harm Visc Coefficient (m2/s) (Zeta Pt)

VA4ZLTH | 15 |SZ MR |m^4/s |Leith Biharm Visc Coefficient (m4/s) (Zeta Pt)

VAHDLTH | 15 |SM MR |m^2/s |Leith Harm Visc Coefficient (m2/s) (Div Pt)

VA4DLTH | 15 |SM MR |m^4/s |Leith Biharm Visc Coefficient (m4/s) (Div Pt)

VAHZLTHD| 15 |SZ MR |m^2/s |LeithD Harm Visc Coefficient (m2/s) (Zeta Pt)

VA4ZLTHD| 15 |SZ MR |m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Zeta Pt)

VAHDLTHD| 15 |SM MR |m^2/s |LeithD Harm Visc Coefficient (m2/s) (Div Pt)

VA4DLTHD| 15 |SM MR |m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Div Pt)

VAHZSMAG| 15 |SZ MR |m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Zeta Pt)

VA4ZSMAG| 15 |SZ MR |m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Zeta Pt)

VAHDSMAG| 15 |SM MR |m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Div Pt)

VA4DSMAG| 15 |SM MR |m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Div Pt)

momKE | 15 |SM MR |m^2/s^2 |Kinetic Energy (in momentum Eq.)

momHDiv | 15 |SM MR |s^-1 |Horizontal Divergence (in momentum Eq.)

momVort3| 15 |SZ MR |s^-1 |3rd component (vertical) of Vorticity

Strain | 15 |SZ MR |s^-1 |Horizontal Strain of Horizontal Velocities

Tension | 15 |SM MR |s^-1 |Horizontal Tension of Horizontal Velocities

UBotDrag| 15 |UU 129MR |m/s^2 |U momentum tendency from Bottom Drag

VBotDrag| 15 |VV 128MR |m/s^2 |V momentum tendency from Bottom Drag

USidDrag| 15 |UU 131MR |m/s^2 |U momentum tendency from Side Drag

VSidDrag| 15 |VV 130MR |m/s^2 |V momentum tendency from Side Drag

Um_Diss | 15 |UU 133MR |m/s^2 |U momentum tendency from Dissipation

Vm_Diss | 15 |VV 132MR |m/s^2 |V momentum tendency from Dissipation

Um_Advec| 15 |UU 135MR |m/s^2 |U momentum tendency from Advection terms

Vm_Advec| 15 |VV 134MR |m/s^2 |V momentum tendency from Advection terms

Um_Cori | 15 |UU 137MR |m/s^2 |U momentum tendency from Coriolis term

Vm_Cori | 15 |VV 136MR |m/s^2 |V momentum tendency from Coriolis term

Um_Ext | 15 |UU 137MR |m/s^2 |U momentum tendency from external forcing

Vm_Ext | 15 |VV 138MR |m/s^2 |V momentum tendency from external forcing

Um_AdvZ3| 15 |UU 141MR |m/s^2 |U momentum tendency from Vorticity Advection

Vm_AdvZ3| 15 |VV 140MR |m/s^2 |V momentum tendency from Vorticity Advection

Um_AdvRe| 15 |UU 143MR |m/s^2 |U momentum tendency from vertical Advection (Explicit

Vm_AdvRe| 15 |VV 142MR |m/s^2 |V momentum tendency from vertical Advection (Explicit

ADVx_Um | 15 |UM 145MR |m^4/s^2 |Zonal Advective Flux of U momentum

ADVy_Um | 15 |VZ 144MR |m^4/s^2 |Meridional Advective Flux of U momentum

ADVrE_Um| 15 |WU LR |m^4/s^2 |Vertical Advective Flux of U momentum (Explicit part)

ADVx_Vm | 15 |UZ 148MR |m^4/s^2 |Zonal Advective Flux of V momentum

ADVy_Vm | 15 |VM 147MR |m^4/s^2 |Meridional Advective Flux of V momentum

ADVrE_Vm| 15 |WV LR |m^4/s^2 |Vertical Advective Flux of V momentum (Explicit part)

VISCx_Um| 15 |UM 151MR |m^4/s^2 |Zonal Viscous Flux of U momentum

VISCy_Um| 15 |VZ 150MR |m^4/s^2 |Meridional Viscous Flux of U momentum

VISrE_Um| 15 |WU LR |m^4/s^2 |Vertical Viscous Flux of U momentum (Explicit part)

VISrI_Um| 15 |WU LR |m^4/s^2 |Vertical Viscous Flux of U momentum (Implicit part)

72 CHAPTER 2. DISCRETIZATION AND ALGORITHM

VISCx_Vm| 15 |UZ 155MR |m^4/s^2 |Zonal Viscous Flux of V momentum

VISCy_Vm| 15 |VM 154MR |m^4/s^2 |Meridional Viscous Flux of V momentum

VISrE_Vm| 15 |WV LR |m^4/s^2 |Vertical Viscous Flux of V momentum (Explicit part)

VISrI_Vm| 15 |WV LR |m^4/s^2 |Vertical Viscous Flux of V momentum (Implicit part)

2.15 Vector invariant momentum equations

The finite volume method lends itself to describing the continuity and tracer equations in curvilinear
coordinate systems. However, in curvilinear coordinates many new metric terms appear in the momentum
equations (written in Lagrangian or flux-form) making generalization far from elegant. Fortunately,
an alternative form of the equations, the vector invariant equations are exactly that; invariant under
coordinate transformations so that they can be applied uniformly in any orthogonal curvilinear coordinate
system such as spherical coordinates, boundary following or the conformal spherical cube system.

The non-hydrostatic vector invariant equations read:

∂t~v + (2~Ω + ~ζ) ∧ ~v − br̂ + ~∇B = ~∇ · ~τ (2.141)

which describe motions in any orthogonal curvilinear coordinate system. Here, B is the Bernoulli function
and ~ζ = ∇ ∧ ~v is the vorticity vector. We can take advantage of the elegance of these equations when
discretizing them and use the discrete definitions of the grad, curl and divergence operators to satisfy
constraints. We can also consider the analogy to forming derived equations, such as the vorticity equation,
and examine how the discretization can be adjusted to give suitable vorticity advection among other
things.

The underlying algorithm is the same as for the flux form equations. All that has changed is the
contents of the “G’s”. For the time-being, only the hydrostatic terms have been coded but we will
indicate the points where non-hydrostatic contributions will enter:

Gu = Gfv
u +Gζ3v

u +Gζ2w
u +G∂xB

u +G∂zτx

u +Gh−dissip
u +Gv−dissip

u (2.142)

Gv = Gfu
v +Gζ3u

v +Gζ1w
v +G∂yB

v +G∂zτy

v +Gh−dissip
v +Gv−dissip

v (2.143)

Gw = Gfu
w +Gζ1v

w +Gζ2u
w +G∂zB

w +Gh−dissip
w +Gv−dissip

w (2.144)

S/R MOM VECINV (pkg/mom vecinv/mom vecinv.F)
Gu: Gu (DYNVARS.h)
Gv: Gv (DYNVARS.h)
Gw: Gw (DYNVARS.h)

2.15.1 Relative vorticity

The vertical component of relative vorticity is explicitly calculated and use in the discretization. The
particular form is crucial for numerical stability; alternative definitions break the conservation properties
of the discrete equations.

Relative vorticity is defined:

ζ3 =
Γ

Aζ
=

1

Aζ
(δi∆ycv − δj∆xcu) (2.145)

where Aζ is the area of the vorticity cell presented in the vertical and Γ is the circulation about that cell.

S/R MOM VI CALC RELVORT3 (mom vi calc relvort3.F)
ζ3: vort3 (local to mom vecinv.F)

2.15.2 Kinetic energy

The kinetic energy, denoted KE, is defined:

KE =
1

2
(u2

i
+ v2

j
+ ǫnhw2

k
) (2.146)

S/R MOM VI CALC KE (mom vi calc ke.F)
KE: KE (local to mom vecinv.F)

2.15. VECTOR INVARIANT MOMENTUM EQUATIONS 73

2.15.3 Coriolis terms

The potential enstrophy conserving form of the linear Coriolis terms are written:

Gfv
u =

1

∆xc

f

hζ

j

∆xghsv
j
i

(2.147)

Gfu
v = − 1

∆yc

f

hζ

i

∆yghwu
i
j

(2.148)

Here, the Coriolis parameter f is defined at vorticity (corner) points. f : fCoriG

hζ : hFacZThe potential enstrophy conserving form of the non-linear Coriolis terms are written:

Gζ3v
u =

1

∆xc

ζ3
hζ

j

∆xghsv
j
i

(2.149)

Gζ3u
v = − 1

∆yc

ζ3
hζ

i

∆yghwu
i
j

(2.150)

ζ3: vort3
The Coriolis terms can also be evaluated together and expressed in terms of absolute vorticity f + ζ3.

The potential enstrophy conserving form using the absolute vorticity is written:

Gfv
u +Gζ3v

u =
1

∆xc

f + ζ3
hζ

j

∆xghsv
j
i

(2.151)

Gfu
v +Gζ3u

v = − 1

∆yc

f + ζ3
hζ

i

∆yghwu
i
j

(2.152)

Run-time control
added for theseThe distinction between using absolute vorticity or relative vorticity is useful when constructing

higher order advection schemes; monotone advection of relative vorticity behaves differently to monotone
advection of absolute vorticity. Currently the choice of relative/absolute vorticity, centered/upwind/high
order advection is available only through commented subroutine calls.

S/R MOM VI CORIOLIS (mom vi coriolis.F)
S/R MOM VI U CORIOLIS (mom vi u coriolis.F)
S/R MOM VI V CORIOLIS (mom vi v coriolis.F)
Gfv

u , Gζ3v
u : uCf (local to mom vecinv.F)

Gfu
v , Gζ3u

v : vCf (local to mom vecinv.F)

2.15.4 Shear terms

The shear terms (ζ2w and ζ1w) are are discretized to guarantee that no spurious generation of kinetic
energy is possible; the horizontal gradient of Bernoulli function has to be consistent with the vertical
advection of shear: N-H terms hav

tried!
Gζ2w

u =
1

Aw∆rfhw
Acw

i
(δku− ǫnhδjw)

k

(2.153)

Gζ1w
v =

1

As∆rfhs
Acw

i
(δku− ǫnhδjw)

k

(2.154)

S/R MOM VI U VERTSHEAR (mom vi u vertshear.F)
S/R MOM VI V VERTSHEAR (mom vi v vertshear.F)
Gζ2w

u : uCf (local to mom vecinv.F)
Gζ1w

v : vCf (local to mom vecinv.F)

2.15.5 Gradient of Bernoulli function

G∂xB
u =

1

∆xc
δi(φ

′ +KE) (2.155)

G∂yB
v =

1

∆xy
δj(φ

′ +KE) (2.156)

74 CHAPTER 2. DISCRETIZATION AND ALGORITHM

S/R MOM VI U GRAD KE (mom vi u grad ke.F)
S/R MOM VI V GRAD KE (mom vi v grad ke.F)
G∂xKE

u : uCf (local to mom vecinv.F)

G
∂yKE
v : vCf (local to mom vecinv.F)

2.15.6 Horizontal divergence

The horizontal divergence, a complimentary quantity to relative vorticity, is used in parameterizing the
Reynolds stresses and is discretized:

D =
1

Achc
(δi∆yghwu+ δj∆xghsv) (2.157)

S/R MOM VI CALC HDIV (mom vi calc hdiv.F)
D: hDiv (local to mom vecinv.F)

2.15.7 Horizontal dissipation

The following discretization of horizontal dissipation conserves potential vorticity (thickness weighted
relative vorticity) and divergence and dissipates energy, enstrophy and divergence squared:

Gh−dissip
u =

1

∆xc
δi(ADD −AD4D

∗) − 1

∆yuhw
δjhζ(Aζζ −Aζ4ζ

∗) (2.158)

Gh−dissip
v =

1

∆xvhs
δihζ(Aζζ −Aζζ

∗) +
1

∆yc
δj(ADD −AD4D

∗) (2.159)

where

D∗ =
1

Achc
(δi∆yghw∇2u+ δj∆xghs∇2v) (2.160)

ζ∗ =
1

Aζ
(δi∆yc∇2v − δj∆xc∇2u) (2.161)

S/R MOM VI HDISSIP (mom vi hdissip.F)
Gh−dissip

u : uDiss (local to mom vecinv.F)
Gh−dissip

v : vDiss (local to mom vecinv.F)

2.15.8 Vertical dissipation

Currently, this is exactly the same code as the flux form equations.

Gv−diss
u =

1

∆rfhw
δkτ13 (2.162)

Gv−diss
v =

1

∆rfhs
δkτ23 (2.163)

represents the general discrete form of the vertical dissipation terms.
In the interior the vertical stresses are discretized:

τ13 = Av
1

∆rc
δku (2.164)

τ23 = Av
1

∆rc
δkv (2.165)

S/R MOM U RVISCLFUX (mom u rviscflux.F)
S/R MOM V RVISCLFUX (mom v rviscflux.F)
τ13: urf (local to mom vecinv.F)
τ23: vrf (local to mom vecinv.F)

2.16. TRACER EQUATIONS 75

2.16 Tracer equations

The basic discretization used for the tracer equations is the second order piece-wise constant finite volume
form of the forced advection-diffusion equations. There are many alternatives to second order method
for advection and alternative parameterizations for the sub-grid scale processes. The Gent-McWilliams
eddy parameterization, KPP mixing scheme and PV flux parameterization are all dealt with in separate
sections. The basic discretization of the advection-diffusion part of the tracer equations and the various
advection schemes will be described here.

2.16.1 Time-stepping of tracers: ABII

The default advection scheme is the centered second order method which requires a second order or quasi-
second order time-stepping scheme to be stable. Historically this has been the quasi-second order Adams-
Bashforth method (ABII) and applied to all terms. For an arbitrary tracer, τ , the forced advection-
diffusion equation reads:

∂tτ +Gτ
adv = Gτ

diff +Gτ
forc (2.166)

where Gτ
adv, G

τ
diff and Gτ

forc are the tendencies due to advection, diffusion and forcing, respectively,
namely:

Gτ
adv = ∂xuτ + ∂yvτ + ∂rwτ − τ∇ · v (2.167)

Gτ
diff = ∇ · K∇τ (2.168)

and the forcing can be some arbitrary function of state, time and space.

The term, τ∇ · v, is required to retain local conservation in conjunction with the linear implicit
free-surface. It only affects the surface layer since the flow is non-divergent everywhere else. This term
is therefore referred to as the surface correction term. Global conservation is not possible using the
flux-form (as here) and a linearized free-surface (Griffies and Hallberg [2000]; Campin et al. [2004]).

The continuity equation can be recovered by setting Gdiff = Gforc = 0 and τ = 1.

The driver routine that calls the routines to calculate tendencies are S/R CALC GT and S/R
CALC GS for temperature and salt (moisture), respectively. These in turn call a generic advection
diffusion routine S/R GAD CALC RHS that is called with the flow field and relevant tracer as argu-
ments and returns the collective tendency due to advection and diffusion. Forcing is add subsequently in
S/R CALC GT or S/R CALC GS to the same tendency array.

S/R GAD CALC RHS (pkg/generic advdiff/gad calc rhs.F)
τ : tracer (argument)
G(n): gTracer (argument)
Fr: fVerT (argument)

The space and time discretization are treated separately (method of lines). Tendencies are calculated
at time levels n and n− 1 and extrapolated to n+ 1/2 using the Adams-Bashforth method: ǫ: AB eps

G(n+1/2) = (
3

2
+ ǫ)G(n) − (

1

2
+ ǫ)G(n−1) (2.169)

where G(n) = Gτ
adv +Gτ

diff +Gτ
src at time step n. The tendency at n− 1 is not re-calculated but rather

the tendency at n is stored in a global array for later re-use.

S/R ADAMS BASHFORTH2 (model/src/adams bashforth2.F)
G(n+1/2): gTracer (argument on exit)
G(n): gTracer (argument on entry)
G(n−1): gTrNm1 (argument)
ǫ: ABeps (PARAMS.h)

The tracers are stepped forward in time using the extrapolated tendency:

τ (n+1) = τ (n) + ∆tG(n+1/2) (2.170)

∆t: deltaTtracer

76 CHAPTER 2. DISCRETIZATION AND ALGORITHM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Θ

a) Analytic solution
upwind−1
DST−3
upwind−3
upwind−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Θ

b) Analytic solution
Lax−Wendroff
4−DST
centered−2
centered−4
4−FV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Θ

c) Analytic solution
minmod
Superbee
van Leer (MC)
van Leer (alb)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

x

Θ

d) Analytic solution
3−DST Sw µ=1
3−DST Sw µ(c)
4−DST Sw µ(c)

Figure 2.13: Comparison of 1-D advection schemes. Courant number is 0.05 with 60 points and solutions
are shown for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind,
DST3, third order upwind and second order upwind. b) Shows the centered schemes; Lax-Wendroff,
DST4, centered second order, centered fourth order and finite volume fourth order. c) Shows the second
order flux limiters: minmod, Superbee, MC limiter and the van Leer limiter. d) Shows the DST3 method
with flux limiters due to Sweby with µ = 1, µ = c/(1 − c) and a fourth order DST method with Sweby
limiter, µ = c/(1 − c).

S/R TIMESTEP TRACER (model/src/timestep tracer.F)
τ (n+1): gTracer (argument on exit)
τ (n): tracer (argument on entry)
G(n+1/2): gTracer (argument)
∆t: deltaTtracer (PARAMS.h)

Strictly speaking the ABII scheme should be applied only to the advection terms. However, this
scheme is only used in conjunction with the standard second, third and fourth order advection schemes.
Selection of any other advection scheme disables Adams-Bashforth for tracers so that explicit diffusion
and forcing use the forward method.

2.17 Linear advection schemes

The advection schemes known as centered second order, centered fourth order, first order upwind and
upwind biased third order are known as linear advection schemes because the coefficient for interpolation
of the advected tracer are linear and a function only of the flow, not the tracer field it self. We discuss
these first since they are most commonly used in the field and most familiar.

2.17. LINEAR ADVECTION SCHEMES 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Θ

a) Analytic solution
upwind−1
DST−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Θ

b) Analytic solution
Lax−Wendroff
4−DST

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Θ

c) Analytic solution
minmod
Superbee
van Leer (MC)
van Leer (alb)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

x

Θ

d) Analytic solution
3−DST Sw µ=1
3−DST Sw µ(c)
4−DST Sw µ(c)

Figure 2.14: Comparison of 1-D advection schemes. Courant number is 0.89 with 60 points and solutions
are shown for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind and
DST3. Third order upwind and second order upwind are unstable at this Courant number. b) Shows the
centered schemes; Lax-Wendroff, DST4. Centered second order, centered fourth order and finite volume
fourth order and unstable at this Courant number. c) Shows the second order flux limiters: minmod,
Superbee, MC limiter and the van Leer limiter. d) Shows the DST3 method with flux limiters due to
Sweby with µ = 1, µ = c/(1 − c) and a fourth order DST method with Sweby limiter, µ = c/(1 − c).

78 CHAPTER 2. DISCRETIZATION AND ALGORITHM

2.17.1 Centered second order advection-diffusion

The basic discretization, centered second order, is the default. It is designed to be consistent with the
continuity equation to facilitate conservation properties analogous to the continuum. However, centered
second order advection is notoriously noisy and must be used in conjunction with some finite amount of
diffusion to produce a sensible solution.

The advection operator is discretized:

Ac∆rfhcG
τ
adv = δiFx + δjFy + δkFr (2.171)

where the area integrated fluxes are given by:

Fx = Uτ i (2.172)

Fy = V τ j (2.173)

Fr = Wτk (2.174)

The quantities U , V and W are volume fluxes defined:

U = ∆yg∆rfhwu (2.175)

V = ∆xg∆rfhsv (2.176)

W = Acw (2.177)

For non-divergent flow, this discretization can be shown to conserve the tracer both locally and globally
and to globally conserve tracer variance, τ2. The proof is given in Adcroft [1995]; Adcroft et al. [1997].

S/R GAD C2 ADV X (gad c2 adv x.F)
Fx: uT (argument)
U : uTrans (argument)
τ : tracer (argument)
S/R GAD C2 ADV Y (gad c2 adv y.F)
Fy: vT (argument)
V : vTrans (argument)
τ : tracer (argument)
S/R GAD C2 ADV R (gad c2 adv r.F)
Fr: wT (argument)
W : rTrans (argument)
τ : tracer (argument)

2.17.2 Third order upwind bias advection

Upwind biased third order advection offers a relatively good compromise between accuracy and smooth-
ness. It is not a “positive” scheme meaning false extrema are permitted but the amplitude of such are
significantly reduced over the centered second order method.

The third order upwind fluxes are discretized:

Fx = Uτ − 1

6
δiiτ

i

+
1

2
|U |δi

1

6
δiiτ (2.178)

Fy = V τ − 1

6
δiiτ

j

+
1

2
|V |δj

1

6
δjjτ (2.179)

Fr = Wτ − 1

6
δiiτ

k

+
1

2
|W |δk

1

6
δkkτ (2.180)

At boundaries, δn̂τ is set to zero allowing δnn to be evaluated. We are currently examine the accuracy
of this boundary condition and the effect on the solution.

2.17. LINEAR ADVECTION SCHEMES 79

S/R GAD U3 ADV X (gad u3 adv x.F)
Fx: uT (argument)
U : uTrans (argument)
τ : tracer (argument)
S/R GAD U3 ADV Y (gad u3 adv y.F)
Fy: vT (argument)
V : vTrans (argument)
τ : tracer (argument)
S/R GAD U3 ADV R (gad u3 adv r.F)
Fr: wT (argument)
W : rTrans (argument)
τ : tracer (argument)

2.17.3 Centered fourth order advection

Centered fourth order advection is formally the most accurate scheme we have implemented and can be
used to great effect in high resolution simulation where dynamical scales are well resolved. However, the
scheme is noisy like the centered second order method and so must be used with some finite amount of
diffusion. Bi-harmonic is recommended since it is more scale selective and less likely to diffuse away the
well resolved gradient the fourth order scheme worked so hard to create.

The centered fourth order fluxes are discretized:

Fx = Uτ − 1

6
δiiτ

i

(2.181)

Fy = V τ − 1

6
δiiτ

j

(2.182)

Fr = Wτ − 1

6
δiiτ

k

(2.183)

As for the third order scheme, the best discretization near boundaries is under investigation but
currently δiτ = 0 on a boundary.

S/R GAD C4 ADV X (gad c4 adv x.F)
Fx: uT (argument)
U : uTrans (argument)
τ : tracer (argument)
S/R GAD C4 ADV Y (gad c4 adv y.F)
Fy: vT (argument)
V : vTrans (argument)
τ : tracer (argument)
S/R GAD C4 ADV R (gad c4 adv r.F)
Fr: wT (argument)
W : rTrans (argument)
τ : tracer (argument)

2.17.4 First order upwind advection

Although the upwind scheme is the underlying scheme for the robust or non-linear methods given later,
we haven’t actually supplied this method for general use. It would be very diffusive and it is unlikely
that it could ever produce more useful results than the positive higher order schemes.

Upwind bias is introduced into many schemes using the abs function and is allows the first order
upwind flux to be written:

Fx = Uτ i − 1

2
|U |δiτ (2.184)

Fy = V τ j − 1

2
|V |δjτ (2.185)

Fr = Wτk − 1

2
|W |δkτ (2.186)

80 CHAPTER 2. DISCRETIZATION AND ALGORITHM

If for some reason, the above method is required, then the second order flux limiter scheme described
later reduces to the above scheme if the limiter is set to zero.

2.18 Non-linear advection schemes

Non-linear advection schemes invoke non-linear interpolation and are widely used in computational fluid
dynamics (non-linear does not refer to the non-linearity of the advection operator). The flux limited
advection schemes belong to the class of finite volume methods which neatly ties into the spatial dis-
cretization of the model.

When employing the flux limited schemes, first order upwind or direct-space-time method the time-
stepping is switched to forward in time.

2.18.1 Second order flux limiters

The second order flux limiter method can be cast in several ways but is generally expressed in terms
of other flux approximations. For example, in terms of a first order upwind flux and second order Lax-
Wendroff flux, the limited flux is given as:

F = F1 + ψ(r)FLW (2.187)

where ψ(r) is the limiter function,

F1 = uτ i − 1

2
|u|δiτ (2.188)

is the upwind flux,

FLW = F1 +
|u|
2

(1 − c)δiτ (2.189)

is the Lax-Wendroff flux and c = u∆t
∆x is the Courant (CFL) number.

The limiter function, ψ(r), takes the slope ratio

r =
τi−1 − τi−2

τi − τi−1
∀ u > 0 (2.190)

r =
τi+1 − τi
τi − τi−1

∀ u < 0 (2.191)

as it’s argument. There are many choices of limiter function but we only provide the Superbee limiter
Roe [1985]:

ψ(r) = max[0,min[1, 2r],min[2, r]] (2.192)

S/R GAD FLUXLIMIT ADV X (gad fluxlimit adv x.F)
Fx: uT (argument)
U : uTrans (argument)
τ : tracer (argument)
S/R GAD FLUXLIMIT ADV Y (gad fluxlimit adv y.F)
Fy: vT (argument)
V : vTrans (argument)
τ : tracer (argument)
S/R GAD FLUXLIMIT ADV R (gad fluxlimit adv r.F)
Fr: wT (argument)
W : rTrans (argument)
τ : tracer (argument)

2.18.2 Third order direct space time

The direct-space-time method deals with space and time discretization together (other methods that
treat space and time separately are known collectively as the “Method of Lines”). The Lax-Wendroff

2.18. NON-LINEAR ADVECTION SCHEMES 81

scheme falls into this category; it adds sufficient diffusion to a second order flux that the forward-in-time
method is stable. The upwind biased third order DST scheme is:

F = u (τi−1 + d0(τi − τi−1) + d1(τi−1 − τi−2)) ∀ u > 0 (2.193)

F = u (τi − d0(τi − τi−1) − d1(τi+1 − τi)) ∀ u < 0 (2.194)

where

d1 =
1

6
(2 − |c|)(1 − |c|) (2.195)

d2 =
1

6
(1 − |c|)(1 + |c|) (2.196)

The coefficients d0 and d1 approach 1/3 and 1/6 respectively as the Courant number, c, vanishes. In this
limit, the conventional third order upwind method is recovered. For finite Courant number, the deviations
from the linear method are analogous to the diffusion added to centered second order advection in the
Lax-Wendroff scheme.

The DST3 method described above must be used in a forward-in-time manner and is stable for
0 ≤ |c| ≤ 1. Although the scheme appears to be forward-in-time, it is in fact third order in time and
the accuracy increases with the Courant number! For low Courant number, DST3 produces very similar
results (indistinguishable in Fig. 2.13) to the linear third order method but for large Courant number,
where the linear upwind third order method is unstable, the scheme is extremely accurate (Fig. 2.14)
with only minor overshoots.

S/R GAD DST3 ADV X (gad dst3 adv x.F)
Fx: uT (argument)
U : uTrans (argument)
τ : tracer (argument)
S/R GAD DST3 ADV Y (gad dst3 adv y.F)
Fy: vT (argument)
V : vTrans (argument)
τ : tracer (argument)
S/R GAD DST3 ADV R (gad dst3 adv r.F)
Fr: wT (argument)
W : rTrans (argument)
τ : tracer (argument)

2.18.3 Third order direct space time with flux limiting

The overshoots in the DST3 method can be controlled with a flux limiter. The limited flux is written:

F =
1

2
(u + |u|)

(
τi−1 + ψ(r+)(τi − τi−1)

)
+

1

2
(u− |u|)

(
τi−1 + ψ(r−)(τi − τi−1)

)
(2.197)

where

r+ =
τi−1 − τi−2

τi − τi−1
(2.198)

r− =
τi+1 − τi
τi − τi−1

(2.199)

and the limiter is the Sweby limiter:

ψ(r) = max[0,min[min(1, d0 + d1r],
1 − c

c
r]] (2.200)

82 CHAPTER 2. DISCRETIZATION AND ALGORITHM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2nd order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3rd order upwind

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4th order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Lax−Wendroff

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee flux limiter

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST Sweby µ=µ(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee (no multi−dim)

Figure 2.15: Comparison of advection schemes in two dimensions; diagonal advection of a resolved
Gaussian feature. Courant number is 0.01 with 30×30 points and solutions are shown for T=1/2. White
lines indicate zero crossing (ie. the presence of false minima). The left column shows the second order
schemes; top) centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee
flux limited. The middle column shows the third order schemes; top) upwind biased third order with
Adams-Bashforth, middle) third order direct space-time method and bottom) the same with flux limiting.
The top right panel shows the centered fourth order scheme with Adams-Bashforth and right middle panel
shows a fourth order variant on the DST method. Bottom right panel shows the Superbee flux limiter
(second order) applied independently in each direction (method of lines).

S/R GAD DST3FL ADV X (gad dst3 adv x.F)
Fx: uT (argument)
U : uTrans (argument)
τ : tracer (argument)
S/R GAD DST3FL ADV Y (gad dst3 adv y.F)
Fy: vT (argument)
V : vTrans (argument)
τ : tracer (argument)
S/R GAD DST3FL ADV R (gad dst3 adv r.F)
Fr: wT (argument)
W : rTrans (argument)
τ : tracer (argument)

2.18. NON-LINEAR ADVECTION SCHEMES 83

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2nd order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3rd order upwind

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4th order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Lax−Wendroff

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee flux limiter

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST Sweby µ=µ(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee (no multi−dim)

Figure 2.16: Comparison of advection schemes in two dimensions; diagonal advection of a resolved
Gaussian feature. Courant number is 0.27 with 30×30 points and solutions are shown for T=1/2. White
lines indicate zero crossing (ie. the presence of false minima). The left column shows the second order
schemes; top) centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee
flux limited. The middle column shows the third order schemes; top) upwind biased third order with
Adams-Bashforth, middle) third order direct space-time method and bottom) the same with flux limiting.
The top right panel shows the centered fourth order scheme with Adams-Bashforth and right middle panel
shows a fourth order variant on the DST method. Bottom right panel shows the Superbee flux limiter
(second order) applied independently in each direction (method of lines).

84 CHAPTER 2. DISCRETIZATION AND ALGORITHM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2nd order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3rd order upwind

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4th order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Lax−Wendroff

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee flux limiter

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST Sweby µ=µ(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee (no multi−dim)

Figure 2.17: Comparison of advection schemes in two dimensions; diagonal advection of a resolved
Gaussian feature. Courant number is 0.47 with 30×30 points and solutions are shown for T=1/2. White
lines indicate zero crossings and initial maximum values (ie. the presence of false extrema). The left
column shows the second order schemes; top) centered second order with Adams-Bashforth, middle)
Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third order schemes;
top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method and
bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with
Adams-Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right
panel shows the Superbee flux limiter (second order) applied independently in each direction (method of
lines).

2.19. COMPARISON OF ADVECTION SCHEMES 85

2.18.4 Multi-dimensional advection

In many of the aforementioned advection schemes the behavior in multiple dimensions is not necessarily
as good as the one dimensional behavior. For instance, a shape preserving monotonic scheme in one
dimension can have severe shape distortion in two dimensions if the two components of horizontal fluxes
are treated independently. There is a large body of literature on the subject dealing with this problem
and among the fixes are operator and flux splitting methods, corner flux methods and more. We have
adopted a variant on the standard splitting methods that allows the flux calculations to be implemented
as if in one dimension:

τn+1/3 = τn − ∆t

(
1

∆x
δiF

x(τn) + τn 1

∆x
δiu

)
(2.201)

τn+2/3 = τn+1/3 − ∆t

(
1

∆y
δjF

y(τn+1/3) + τn 1

∆y
δiv

)
(2.202)

τn+3/3 = τn+2/3 − ∆t

(
1

∆r
δkF

x(τn+2/3) + τn 1

∆r
δiw

)
(2.203)

In order to incorporate this method into the general model algorithm, we compute the effective
tendency rather than update the tracer so that other terms such as diffusion are using the n time-level
and not the updated n+ 3/3 quantities:

G
n+1/2
adv =

1

∆t
(τn+3/3 − τn) (2.204)

So that the over all time-stepping looks likes:

τn+1 = τn + ∆t
(
G

n+1/2
adv +Gdiff (τn) +Gn

forcing

)
(2.205)

S/R GAD ADVECTION (gad advection.F)
τ : Tracer (argument)

G
n+1/2
adv : Gtracer (argument)

Fx, Fy, Fr : af (local)
U : uTrans (local)
V : vTrans (local)
W : rTrans (local)

2.19 Comparison of advection schemes

Figs. 2.15, 2.16 and 2.17 show solutions to a simple diagonal advection problem using a selection of
schemes for low, moderate and high Courant numbers, respectively. The top row shows the linear
schemes, integrated with the Adams-Bashforth method. Theses schemes are clearly unstable for the high
Courant number and weakly unstable for the moderate Courant number. The presence of false extrema
is very apparent for all Courant numbers. The middle row shows solutions obtained with the unlimited
but multi-dimensional schemes. These solutions also exhibit false extrema though the pattern now shows
symmetry due to the multi-dimensional scheme. Also, the schemes are stable at high Courant number
where the linear schemes weren’t. The bottom row (left and middle) shows the limited schemes and most
obvious is the absence of false extrema. The accuracy and stability of the unlimited non-linear schemes is
retained at high Courant number but at low Courant number the tendency is to loose amplitude in sharp
peaks due to diffusion. The one dimensional tests shown in Figs. 2.13 and 2.14 showed this phenomenon.

Finally, the bottom left and right panels use the same advection scheme but the right does not use the
multi-dimensional method. At low Courant number this appears to not matter but for moderate Courant
number severe distortion of the feature is apparent. Moreover, the stability of the multi-dimensional
scheme is determined by the maximum Courant number applied of each dimension while the stability of
the method of lines is determined by the sum. Hence, in the high Courant number plot, the scheme is
unstable.

With many advection schemes implemented in the code two questions arise: “Which scheme is best?”
and “Why don’t you just offer the best advection scheme?”. Unfortunately, no one advection scheme is

86 CHAPTER 2. DISCRETIZATION AND ALGORITHM

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

1 2

3 4

5 6npass = 1

Calc & Update X dir
Calc & Update Y dir
 X dir (Overlap)
 Y dir (Overlap)

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

1 2

3 4

5 6npass = 2

Calc & Update X dir
Calc & Update Y dir
 X dir (Overlap)
 Y dir (Overlap)

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

1 2

3 4

5 6npass = 3

Calc & Update X dir
Calc & Update Y dir
 X dir (Overlap)
 Y dir (Overlap)

Figure 2.18: Muti-dimensional advection time-stepping with Cubed-Sphere topology

2.20. SHAPIRO FILTER 87

Advection Scheme code use use Multi- Stencil comments
A.B. dimension (1 dim)

1rstorder upwind 1 No Yes 3 pts linear/τ , non-linear/v

centered 2ndorder 2 Yes No 3 pts linear

3rdorder upwind 3 Yes No 5 pts linear/τ

centered 4thorder 4 Yes No 5 pts linear

2ndorder DST (Lax-Wendroff) 20 No Yes 3 pts linear/τ , non-linear/v

3rdorder DST 30 No Yes 5 pts linear/τ , non-linear/v

2ndorder-moment Prather 80 No Yes

2ndorder Flux Limiters 77 No Yes 5 pts non-linear

3ndorder DST Flux limiter 33 No Yes 5 pts non-linear

2ndorder-moment Prather w. limiter 81 No Yes

piecewise parabolic w. “null” limiter 40 No Yes

piecewise parabolic w. “mono” limiter 41 No Yes

piecewise quartic w. “null” limiter 50 No Yes

piecewise quartic w. “mono” limiter 51 No Yes

piecewise quartic w. “weno” limiter 52 No Yes

7ndorder one-step method 7 No Yes
with Monotonicity Preserving Limiter

Table 2.2: Summary of the different advection schemes available in MITgcm. “A.B.” stands for Adams-
Bashforth and “DST” for direct space time. The code corresponds to the number used to select the
corresponding advection scheme in the parameter file (e.g., tempAdvScheme=3 in file data selects the
3rd order upwind advection scheme for temperature).

“the best” for all particular applications and for new applications it is often a matter of trial to determine
which is most suitable. Here are some guidelines but these are not the rule;

• If you have a coarsely resolved model, using a positive or upwind biased scheme will introduce
significant diffusion to the solution and using a centered higher order scheme will introduce more
noise. In this case, simplest may be best.

• If you have a high resolution model, using a higher order scheme will give a more accurate solution
but scale-selective diffusion might need to be employed. The flux limited methods offer similar
accuracy in this regime.

• If your solution has shocks or propagating fronts then a flux limited scheme is almost essential.

• If your time-step is limited by advection, the multi-dimensional non-linear schemes have the most
stability (up to Courant number 1).

• If you need to know how much diffusion/dissipation has occurred you will have a lot of trouble
figuring it out with a non-linear method.

• The presence of false extrema is non-physical and this alone is the strongest argument for using a
positive scheme.

2.20 Shapiro Filter

The Shapiro filter Shapiro [1970] is a high order horizontal filter that efficiently remove small scale grid
noise without affecting the physical structures of a field. It is applied at the end of the time step on both
velocity and tracer fields.

Three different space operators are considered here (S1,S2 and S4). They differs essentially by the
sequence of derivative in both X and Y directions. Consequently they show different damping response
function specially in the diagonal directions X+Y and X-Y.

Space derivatives can be computed in the real space, taken into account the grid spacing. Alternatively,
a pure computational filter can be defined, using pure numerical differences and ignoring grid spacing.
This later form is stable whatever the grid is, and therefore specially useful for highly anisotropic grid

88 CHAPTER 2. DISCRETIZATION AND ALGORITHM

such as spherical coordinate grid. A damping time-scale parameter τshap defines the strength of the filter
damping.

The 3 computational filter operators are :

S1c : [1 − 1/2
∆t

τshap
{(1

4
δii)

n + (
1

4
δjj)

n}]

S2c : [1 − ∆t

τshap
{1

8
(δii + δjj)}n]

S4c : [1 − ∆t

τshap
(
1

4
δii)

n][1 − ∆t

τshap
(
1

4
δjj)

n]

In addition, the S2 operator can easily be extended to a physical space filter:

S2g : [1 − ∆t

τshap
{
L2

shap

8
∇2}n]

with the Laplacian operator ∇2
and a length scale parameter Lshap. The stability of this S2g filter

requires Lshap < Min(Global)(∆x,∆y).functions and

2.20.1 SHAP Diagnostics

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

SHAP_dT | 5 |SM MR |K/s |Temperature Tendency due to Shapiro Filter

SHAP_dS | 5 |SM MR |g/kg/s |Specific Humidity Tendency due to Shapiro Filter

SHAP_dU | 5 |UU 148MR |m/s^2 |Zonal Wind Tendency due to Shapiro Filter

SHAP_dV | 5 |VV 147MR |m/s^2 |Meridional Wind Tendency due to Shapiro Filter

2.21 Nonlinear Viscosities for Large Eddy Simulation

In Large Eddy Simulations (LES), a turbulent closure needs to be provided that accounts for the effects
of subgridscale motions on the large scale. With sufficiently powerful computers, we could resolve the
entire flow down to the molecular viscosity scales (Lν ≈ 1cm). Current computation allows perhaps
four decades to be resolved, so the largest problem computationally feasible would be about 10m. Most
oceanographic problems are much larger in scale, so some form of LES is required, where only the largest
scales of motion are resolved, and the subgridscale’s effects on the large-scale are parameterized.

To formalize this process, we can introduce a filter over the subgridscale L: uα → uα and L : b → b.
This filter has some intrinsic length and time scales, and we assume that the flow at that scale can be
characterized with a single velocity scale (V) and vertical buoyancy gradient (N2). The filtered equations
of motion in a local Mercator projection about the gridpoint in question (see Appendix for notation and
details of approximation) are:

Dũ

Dt
− ṽ sin θ

Ro sin θ0
+
MRo

Ro

∂π

∂x
= −

(
Dũ

Dt
− Dũ

Dt

)
+

∇2ũ

Re
(2.206)

Dṽ

Dt
+

ũ sin θ

Ro sin θ0
+
MRo

Ro

∂π

∂y
= −

(
Dṽ

Dt
− Dṽ

Dt

)
+

∇2ṽ

Re

Dw

Dt
+

∂π
∂z − b

Fr2λ2
= −

(
Dw

Dt
− Dw

Dt

)
+

∇2w

Re

D b

Dt
+ w = −

(
Db

Dt
− D b

Dt

)
+

∇2b

PrRe

µ2

(
∂ũ

∂x
+
∂ṽ

∂y

)
+
∂w

∂z
= 0 (2.207)

2.21. NONLINEAR VISCOSITIES FOR LARGE EDDY SIMULATION 89

Tildes denote multiplication by cos θ/ cos θ0 to account for converging meridians.
The ocean is usually turbulent, and an operational definition of turbulence is that the terms in

parentheses (the ’eddy’ terms) on the right of (2.206) are of comparable magnitude to the terms on
the left-hand side. The terms proportional to the inverse of Re, instead, are many orders of magnitude
smaller than all of the other terms in virtually every oceanic application.

2.21.1 Eddy Viscosity

A turbulent closure provides an approximation to the ’eddy’ terms on the right of the preceding equations.
The simplest form of LES is just to increase the viscosity and diffusivity until the viscous and diffusive
scales are resolved. That is, we approximate:

(
Dũ

Dt
− Dũ

Dt

)
≈ ∇2

hũ

Reh
+

∂2ũ
∂z2

Rev
,

(
Dṽ

Dt
− Dṽ

Dt

)
≈ ∇2

hṽ

Reh
+

∂2ṽ
∂z2

Rev

(
Dw

Dt
− Dw

Dt

)
≈ ∇2

hw

Reh
+

∂2w
∂z2

Rev
,

(
Db

Dt
− D b

Dt

)
≈ ∇2

hb

PrReh
+

∂2b
∂z2

PrRev

2.21.1.1 Reynolds-Number Limited Eddy Viscosity

One way of ensuring that the gridscale is sufficiently viscous (ie. resolved) is to choose the eddy viscosity
Ah so that the gridscale horizontal Reynolds number based on this eddy viscosity, Reh, to is O(1). That
is, if the gridscale is to be viscous, then the viscosity should be chosen to make the viscous terms as large
as the advective ones. Bryan et al Bryan et al. [1975] notes that a computational mode is squelched by
using Reh <2.

MITgcm users can select horizontal eddy viscosities based on Reh using two methods. 1) The user
may estimate the velocity scale expected from the calculation and grid spacing and set the viscAh to
satisfy Reh < 2. 2) The user may use viscAhReMax, which ensures that the viscosity is always chosen
so that Reh < viscAhReMax. This last option should be used with caution, however, since it effectively
implies that viscous terms are fixed in magnitude relative to advective terms. While it may be a useful
method for specifying a minimum viscosity with little effort, tests Bryan et al. [1975] have shown that
setting viscAhReMax=2 often tends to increase the viscosity substantially over other more ’physical’
parameterizations below, especially in regions where gradients of velocity are small (and thus turbulence
may be weak), so perhaps a more liberal value should be used, eg. viscAhReMax=10.

While it is certainly necessary that viscosity be active at the gridscale, the wavelength where dissipa-
tion of energy or enstrophy occurs is not necessarily L = Ah/U . In fact, it is by ensuring that the either
the dissipation of energy in a 3-d turbulent cascade (Smagorinsky) or dissipation of enstrophy in a 2-d
turbulent cascade (Leith) is resolved that these parameterizations derive their physical meaning.

2.21.1.2 Vertical Eddy Viscosities

Vertical eddy viscosities are often chosen in a more subjective way, as model stability is not usually as
sensitive to vertical viscosity. Usually the ’observed’ value from finescale measurements, etc., is used
(eg. viscAr≈ 1 × 10−4m2/s). However, Smagorinsky Smagorinsky [1993] notes that the Smagorinsky
parameterization of isotropic turbulence implies a value of the vertical viscosity as well as the horizontal
viscosity (see below).

2.21.1.3 Smagorinsky Viscosity

Some Smagorinsky [1963, 1993] suggest choosing a viscosity that depends on the resolved motions. Thus,
the overall viscous operator has a nonlinear dependence on velocity. Smagorinsky chose his form of
viscosity by considering Kolmogorov’s ideas about the energy spectrum of 3-d isotropic turbulence.

Kolmogorov suppposed that is that energy is injected into the flow at large scales (small k) and is
’cascaded’ or transferred conservatively by nonlinear processes to smaller and smaller scales until it is
dissipated near the viscous scale. By setting the energy flux through a particular wavenumber k, ǫ, to be
a constant in k, there is only one combination of viscosity and energy flux that has the units of length,
the Kolmogorov wavelength. It is Lǫ(ν) ∝ πǫ−1/4ν3/4 (the π stems from conversion from wavenumber
to wavelength). To ensure that this viscous scale is resolved in a numerical model, the gridscale should

90 CHAPTER 2. DISCRETIZATION AND ALGORITHM

be decreased until Lǫ(ν) > L (so-called Direct Numerical Simulation, or DNS). Alternatively, an eddy
viscosity can be used and the corresponding Kolmogorov length can be made larger than the gridscale,

Lǫ(Ah) ∝ πǫ−1/4A
3/4
h (for Large Eddy Simulation or LES).

There are two methods of ensuring that the Kolmogorov length is resolved in MITgcm. 1) The user
can estimate the flux of energy through spectral space for a given simulation and adjust grid spacing or
viscAh to ensure that Lǫ(Ah) > L. 2) The user may use the approach of Smagorinsky with viscC2Smag,
which estimates the energy flux at every grid point, and adjusts the viscosity accordingly.

Smagorinsky formed the energy equation from the momentum equations by dotting them with velocity.
There are some complications when using the hydrostatic approximation as described by Smagorinsky
Smagorinsky [1993]. The positive definite energy dissipation by horizontal viscosity in a hydrostatic flow
is νD2, where D is the deformation rate at the viscous scale. According to Kolmogorov’s theory, this
should be a good approximation to the energy flux at any wavenumber ǫ ≈ νD2. Kolmogorov and
Smagorinsky noted that using an eddy viscosity that exceeds the molecular value ν should ensure that
the energy flux through viscous scale set by the eddy viscosity is the same as it would have been had we

resolved all the way to the true viscous scale. That is, ǫ ≈ AhSmagD
2
. If we use this approximation to

estimate the Kolmogorov viscous length, then

Lǫ(AhSmag) ∝ πǫ−1/4A
3/4
hSmag ≈ π(AhSmagD

2
)−1/4A

3/4
hSmag = πA

1/2
hSmagD

−1/2
(2.208)

To make Lǫ(AhSmag) scale with the gridscale, then

AhSmag =

(
viscC2Smag

π

)2

L2|D| (2.209)

Where the deformation rate appropriate for hydrostatic flows with shallow-water scaling is

|D| =

√(
∂ũ

∂x
− ∂ṽ

∂y

)2

+

(
∂ũ

∂y
+
∂ṽ

∂x

)2

(2.210)

The coefficient viscC2Smag is what an MITgcm user sets, and it replaces the proportionality in the
Kolmogorov length with an equality. Others Griffies and Hallberg [2000] suggest values of viscC2Smag
from 2.2 to 4 for oceanic problems. Smagorinsky Smagorinsky [1993] shows that values from 0.2 to 0.9
have been used in atmospheric modeling.

Smagorinsky Smagorinsky [1993] shows that a corresponding vertical viscosity should be used:

AvSmag =

(
viscC2Smag

π

)2

H2

√(
∂ũ

∂z

)2

+

(
∂ṽ

∂z

)2

(2.211)

This vertical viscosity is currently not implemented in MITgcm (although it may be soon).

2.21.1.4 Leith Viscosity

Leith Leith [1968, 1996] notes that 2-d turbulence is quite different from 3-d. In two-dimensional tur-
bulence, energy cascades to larger scales, so there is no concern about resolving the scales of energy
dissipation. Instead, another quantity, enstrophy, (which is the vertical component of vorticity squared)
is conserved in 2-d turbulence, and it cascades to smaller scales where it is dissipated.

Following a similar argument to that above about energy flux, the enstrophy flux is estimated to be
equal to the positive-definite gridscale dissipation rate of enstrophy η ≈ AhLeith|∇ω3|2. By dimensional

analysis, the enstrophy-dissipation scale is Lη(AhLeith) ∝ πA
1/2
hLeithη

−1/6. Thus, the Leith-estimated
length scale of enstrophy-dissipation and the resulting eddy viscosity are

Lη(AhLeith) ∝ πA
1/2
hLeithη

−1/6 = πA
1/3
hLeith|∇ω3|−1/3 (2.212)

AhLeith =

(
viscC2Leith

π

)3

L3|∇ω3| (2.213)

|∇ω3| ≡

√[
∂

∂x

(
∂ṽ

∂x
− ∂ũ

∂y

)]2
+

[
∂

∂y

(
∂ṽ

∂x
− ∂ũ

∂y

)]2
(2.214)

2.21. NONLINEAR VISCOSITIES FOR LARGE EDDY SIMULATION 91

2.21.1.5 Modified Leith Viscosity

The argument above for the Leith viscosity parameterization uses concepts from purely 2-dimensional
turbulence, where the horizontal flow field is assumed to be divergenceless. However, oceanic flows are
only quasi-two dimensional. While the barotropic flow, or the flow within isopycnal layers may behave
nearly as two-dimensional turbulence, there is a possibility that these flows will be divergent. In a high-
resolution numerical model, these flows may be substantially divergent near the grid scale, and in fact,
numerical instabilities exist which are only horizontally divergent and have little vertical vorticity. This
causes a difficulty with the Leith viscosity, which can only responds to buildup of vorticity at the grid
scale.

MITgcm offers two options for dealing with this problem. 1) The Smagorinsky viscosity can be
used instead of Leith, or in conjunction with Leith–a purely divergent flow does cause an increase in
Smagorinsky viscosity. 2) The viscC2LeithD parameter can be set. This is a damping specifically targeting
purely divergent instabilities near the gridscale. The combined viscosity has the form:

AhLeith = L3

√(
viscC2Leith

π

)6

|∇ω3|2 +

(
viscC2LeithD

π

)6

|∇∇ · ũh|2 (2.215)

|∇∇ · ũh| ≡

√[
∂

∂x

(
∂ũ

∂x
+
∂ṽ

∂y

)]2
+

[
∂

∂y

(
∂ũ

∂x
+
∂ṽ

∂y

)]2
(2.216)

Whether there is any physical rationale for this correction is unclear at the moment, but the numerical
consequences are good. The divergence in flows with the grid scale larger or comparable to the Rossby
radius is typically much smaller than the vorticity, so this adjustment only rarely adjusts the viscosity
if viscC2LeithD = viscC2Leith. However, the rare regions where this viscosity acts are often the locations
for the largest vales of vertical velocity in the domain. Since the CFL condition on vertical velocity is
often what sets the maximum timestep, this viscosity may substantially increase the allowable timestep
without severely compromising the verity of the simulation. Tests have shown that in some calculations,
a timestep three times larger was allowed when viscC2LeithD = viscC2Leith.

2.21.1.6 Courant–Freidrichs–Lewy Constraint on Viscosity

Whatever viscosities are used in the model, the choice is constrained by gridscale and timestep by the
Courant–Freidrichs–Lewy (CFL) constraint on stability:

Ah <
L2

4∆t
(2.217)

A4 ≤ L4

32∆t
(2.218)

The viscosities may be automatically limited to be no greater than these values in MITgcm by specifying
viscAhGridMax< 1 and viscA4GridMax< 1. Similarly-scaled minimum values of viscosities are provided by
viscAhGridMin and viscA4GridMin, which if used, should be set to values ≪ 1. L is roughly the gridscale
(see below).

Following Griffies and Hallberg [2000], we note that there is a factor of ∆x2/8 difference between
the harmonic and biharmonic viscosities. Thus, whenever a non-dimensional harmonic coefficient is
used in the MITgcm (eg. viscAhGridMax< 1), the biharmonic equivalent is scaled so that the same
non-dimensional value can be used (eg. viscA4GridMax< 1).

2.21.1.7 Biharmonic Viscosity

Holland [1978] suggested that eddy viscosities ought to be focuses on the dynamics at the grid scale, as
larger motions would be ’resolved’. To enhance the scale selectivity of the viscous operator, he suggested
a biharmonic eddy viscosity instead of a harmonic (or Laplacian) viscosity:

(
Dũ

Dt
− Dũ

Dt

)
≈ −∇4

hũ

Re4
+

∂2ũ
∂z2

Rev
,

(
Dṽ

Dt
− Dṽ

Dt

)
≈ −∇4

hṽ

Re4
+

∂2ṽ
∂z2

Rev

(
Dw

Dt
− Dw

Dt

)
≈ −∇4

hw

Re4
+

∂2w
∂z2

Rev
,

(
Db

Dt
− D b

Dt

)
≈ −∇4

hb

PrRe4
+

∂2b
∂z2

PrRev

92 CHAPTER 2. DISCRETIZATION AND ALGORITHM

Griffies and Hallberg [2000] propose that if one scales the biharmonic viscosity by stability considerations,
then the biharmonic viscous terms will be similarly active to harmonic viscous terms at the gridscale of
the model, but much less active on larger scale motions. Similarly, a biharmonic diffusivity can be used
for less diffusive flows.

In practice, biharmonic viscosity and diffusivity allow a less viscous, yet numerically stable, simulation
than harmonic viscosity and diffusivity. However, there is no physical rationale for such operators being
of leading order, and more boundary conditions must be specified than for the harmonic operators.
If one considers the approximations of 2.208 and 2.219 to be terms in the Taylor series expansions of
the eddy terms as functions of the large-scale gradient, then one can argue that both harmonic and
biharmonic terms would occur in the series, and the only question is the choice of coefficients. Using
biharmonic viscosity alone implies that one zeros the first non-vanishing term in the Taylor series, which
is unsupported by any fluid theory or observation.

Nonetheless, MITgcm supports a plethora of biharmonic viscosities and diffusivities, which are con-
trolled with parameters named similarly to the harmonic viscosities and diffusivities with the substitution
h→ 4. MITgcm also supports a biharmonic Leith and Smagorinsky viscosities:

A4Smag =

(
viscC4Smag

π

)2
L4

8
|D| (2.219)

A4Leith =
L5

8

√(
viscC4Leith

π

)6

|∇ω3|2 +

(
viscC4LeithD

π

)6

|∇∇ · ũh|2 (2.220)

However, it should be noted that unlike the harmonic forms, the biharmonic scaling does not easily relate
to whether energy-dissipation or enstrophy-dissipation scales are resolved. If similar arguments are used
to estimate these scales and scale them to the gridscale, the resulting biharmonic viscosities should be:

A4Smag =

(
viscC4Smag

π

)5

L5|∇2ũh| (2.221)

A4Leith = L6

√(
viscC4Leith

π

)12

|∇2ω3|2 +

(
viscC4LeithD

π

)12

|∇2∇ · ũh|2 (2.222)

Thus, the biharmonic scaling suggested by Griffies and Hallberg [2000] implies:

|D| ∝ L|∇2ũh| (2.223)

|∇ω3| ∝ L|∇2ω3| (2.224)

It is not at all clear that these assumptions ought to hold. Only the Griffies and Hallberg [2000] forms
are currently implemented in MITgcm.

2.21.1.8 Selection of Length Scale

Above, the length scale of the grid has been denoted L. However, in strongly anisotropic grids, Lx

and Ly will be quite different in some locations. In that case, the CFL condition suggests that the
minimum of Lx and Ly be used. On the other hand, other viscosities which involve whether a particular
wavelength is ’resolved’ might be better suited to use the maximum of Lx and Ly. Currently, MITgcm
uses useAreaViscLength to select between two options. If false, the geometric mean of L2

x and L2
y is

used for all viscosities, which is closer to the minimum and occurs naturally in the CFL constraint. If
useAreaViscLength is true, then the square root of the area of the grid cell is used.

2.21.2 Mercator, Nondimensional Equations

The rotating, incompressible, Boussinesq equations of motion Gill [1982] on a sphere can be written in
Mercator projection about a latitude θ0 and geopotential height z = r− r0. The nondimensional form of
these equations is:

Ro
Dũ

Dt
− ṽ sin θ

sin θ0
+MRo

∂π

∂x
+
λFr2MRo cos θ

µ sin θ0
w = −Fr2MRoũw

r/H
+

Rox̂ · ∇2u

Re
(2.225)

2.21. NONLINEAR VISCOSITIES FOR LARGE EDDY SIMULATION 93

Ro
Dṽ

Dt
+
ũ sin θ

sin θ0
+MRo

∂π

∂y
= −µRo tan θ(ũ2 + ṽ2)

r/L
− Fr2MRoṽw

r/H
+

Roŷ · ∇2u

Re
(2.226)

Fr2λ2Dw

Dt
− b+

∂π

∂z
− λ cot θ0ũ

MRo
=

λµ2(ũ2 + ṽ2)

MRo(r/L)
+

Fr2λ2ẑ · ∇2u

Re
(2.227)

Db

Dt
+ w =

∇2b

PrRe

µ2

(
∂ũ

∂x
+
∂ṽ

∂y

)
+
∂w

∂z
= 0 (2.228)

Where

µ ≡ cos θ0
cos θ

, ũ =
u∗

V µ
, ṽ =

v∗

V µ
(2.229)

f0 ≡ 2Ω sin θ0,
D

Dt
≡ µ2

(
ũ
∂

∂x
+ ṽ

∂

∂y

)
+

Fr2MRo

Ro
w
∂

∂z
(2.230)

x ≡ r

L
φ cos θ0, y ≡ r

L

∫ θ

θ0

cos θ0 dθ′

cos θ′
, z ≡ λ

r − r0
L

(2.231)

t∗ = t
L

V
, b∗ = b

V f0MRo

λ
(2.232)

π∗ = πV f0LMRo, w∗ = wV
Fr2λMRo

Ro
(2.233)

Ro ≡ V

f0L
, MRo ≡ max[1,Ro] (2.234)

Fr ≡ V

NλL
, Re ≡ V L

ν
, Pr ≡ ν

κ
(2.235)

Dimensional variables are denoted by an asterisk where necessary. If we filter over a grid scale typical
for ocean models (1m < L < 100km, 0.0001 < λ < 1, 0.001m/s < V < 1m/s, f0 < 0.0001s−1,
0.01s−1 < N < 0.0001s−1), these equations are very well approximated by

Ro
Dũ

Dt
− ṽ sin θ

sin θ0
+MRo

∂π

∂x
= −λFr2MRo cos θ

µ sin θ0
w +

Ro∇2ũ

Re
(2.236)

Ro
Dṽ

Dt
+
ũ sin θ

sin θ0
+MRo

∂π

∂y
=

Ro∇2ṽ

Re
(2.237)

Fr2λ2Dw

Dt
− b+

∂π

∂z
=

λ cot θ0ũ

MRo
+

Fr2λ2∇2w

Re
(2.238)

Db

Dt
+ w =

∇2b

PrRe
(2.239)

µ2

(
∂ũ

∂x
+
∂ṽ

∂y

)
+
∂w

∂z
= 0 (2.240)

∇2 ≈
(
∂2

∂x2
+

∂2

∂y2
+

∂2

λ2∂z2

)
(2.241)

Neglecting the non-frictional terms on the right-hand side is usually called the ’traditional’ approximation.
It is appropriate, with either large aspect ratio or far from the tropics. This approximation is used here,
as it does not affect the form of the eddy stresses which is the main topic. The frictional terms are
preserved in this approximate form for later comparison with eddy stresses.

94 CHAPTER 2. DISCRETIZATION AND ALGORITHM

Chapter 3

Getting started with MITgcm

This chapter is divided into two main parts. The first part, which is covered in sections 3.1 through 3.7,
contains information about how to run experiments using MITgcm. The second part, covered in sections
3.9 through 3.20, contains a set of step-by-step tutorials for running specific pre-configured atmospheric
and oceanic experiments.

We believe the best way to familiarize yourself with the model is to run the case study examples
provided with the base version. Information on how to obtain, compile, and run the code is found here as
well as a brief description of the model structure directory and the case study examples. Information is
also provided here on how to customize the code when you are ready to try implementing the configuration
you have in mind. The code and algorithm are described more fully in chapters 2 and 4.

3.1 Where to find information

There is a web-archived support mailing list for the model that you can email at MITgcm-support@mitgcm.org
after subscribing to:

http://mailman.mitgcm.org/mailman/listinfo/mitgcm-support/

or browse at:

http://mailman.mitgcm.org/pipermail/mitgcm-support/

3.2 Obtaining the code

MITgcm can be downloaded from our system by following the instructions below. As a courtesy we ask
that you send e-mail to us at MITgcm-support@mitgcm.org to enable us to keep track of who’s using
the model and in what application. You can download the model two ways:

1. Using CVS software. CVS is a freely available source code management tool. To use CVS you need
to have the software installed. Many systems come with CVS pre-installed, otherwise good places
to look for the software for a particular platform are cvshome.org and wincvs.org .

2. Using a tar file. This method is simple and does not require any special software. However, this
method does not provide easy support for maintenance updates.

3.2.1 Method 1 - Checkout from CVS

If CVS is available on your system, we strongly encourage you to use it. CVS provides an efficient and
elegant way of organizing your code and keeping track of your changes. If CVS is not available on your
machine, you can also download a tar file.

Before you can use CVS, the following environment variable(s) should be set within your shell. For a
csh or tcsh shell, put the following

% setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack

95

96 CHAPTER 3. GETTING STARTED WITH MITGCM

in your .cshrc or .tcshrc file. For bash or sh shells, put:

% export CVSROOT=’:pserver:cvsanon@mitgcm.org:/u/gcmpack’

in your .profile or .bashrc file.

To get MITgcm through CVS, first register with the MITgcm CVS server using command:

% cvs login (CVS password: cvsanon)

You only need to do a “cvs login” once.

To obtain the latest sources type:

% cvs co -P MITgcm

or to get a specific release type:

% cvs co -P -r checkpoint52i_post MITgcm

The CVS command “cvs co” is the abreviation of the full-name “cvs checkout” command and using
the option “-P” (cvs co -P) will prevent to download unnecessary empty directories.

The MITgcm web site contains further directions concerning the source code and CVS. It also contains
a web interface to our CVS archive so that one may easily view the state of files, revisions, and other
development milestones:

http://mitgcm.org/viewvc/MITgcm/MITgcm/

As a convenience, the MITgcm CVS server contains aliases which are named subsets of the codebase.
These aliases can be especially helpful when used over slow internet connections or on machines with
restricted storage space. Table 3.1 contains a list of CVS aliases

Alias Name Information (directories) Contained
MITgcm code Only the source code – none of the verification exam-

ples.
MITgcm verif basic Source code plus a small set of the verifica-

tion examples (global ocean.90x40x15, aim.5l cs,
hs94.128x64x5, front relax, and plume on slope).

MITgcm verif atmos Source code plus all of the atmospheric examples.
MITgcm verif ocean Source code plus all of the oceanic examples.
MITgcm verif all Source code plus all of the verification examples.

Table 3.1: MITgcm CVS Modules

The checkout process creates a directory called MITgcm. If the directory MITgcm exists this command
updates your code based on the repository. Each directory in the source tree contains a directory CVS.
This information is required by CVS to keep track of your file versions with respect to the repository.
Don’t edit the files in CVS! You can also use CVS to download code updates. More extensive information
on using CVS for maintaining MITgcm code can be found here . It is important to note that the CVS
aliases in Table 3.1 cannot be used in conjunction with the CVS -d DIRNAME option. However, the MITgcm
directories they create can be changed to a different name following the check-out:

% cvs co -P MITgcm_verif_basic

% mv MITgcm MITgcm_verif_basic

Note that it is possible to checkout code without “cvs login” and without setting any shell environment
variables by specifying the pserver name and password in one line, for example:

% cvs -d :pserver:cvsanon:cvsanon@mitgcm.org:/u/gcmpack co -P MITgcm

3.2. OBTAINING THE CODE 97

3.2.1.1 Upgrading from an earlier version

If you already have an earlier version of the code you can “upgrade” your copy instead of downloading
the entire repository again. First, “cd” (change directory) to the top of your working copy:

% cd MITgcm

and then issue the cvs update command such as:

% cvs -q update -d -P -r checkpoint52i_post

This will update the “tag” to “checkpoint52i post”, add any new directories (-d) and remove any empty
directories (-P). The -q option means be quiet which will reduce the number of messages you’ll see in the
terminal. If you have modified the code prior to upgrading, CVS will try to merge your changes with the
upgrades. If there is a conflict between your modifications and the upgrade, it will report that file with
a “C” in front, e.g.:

C model/src/ini_parms.F

If the list of conflicts scrolled off the screen, you can re-issue the cvs update command and it will report
the conflicts. Conflicts are indicated in the code by the delimites “<<<<<<<”, “=======” and
“>>>>>>>”. For example,

<<<<<<< ini_parms.F

& bottomDragLinear,myOwnBottomDragCoefficient,

=======

& bottomDragLinear,bottomDragQuadratic,

>>>>>>> 1.18

means that you added “myOwnBottomDragCoefficient” to a namelist at the same time and place
that we added “bottomDragQuadratic”. You need to resolve this conflict and in this case the line should
be changed to:

& bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,

and the lines with the delimiters (<<<<<<,======,>>>>>>) be deleted. Unless you are mak-
ing modifications which exactly parallel developments we make, these types of conflicts should be rare.

Upgrading to the current pre-release version We don’t make a “release” for every little patch
and bug fix in order to keep the frequency of upgrades to a minimum. However, if you have run into a
problem for which “we have already fixed in the latest code” and we haven’t made a “tag” or “release”
since that patch then you’ll need to get the latest code:

% cvs -q update -d -P -A

Unlike, the “check-out” and “update” procedures above, there is no “tag” or release name. The -A tells
CVS to upgrade to the very latest version. As a rule, we don’t recommend this since you might upgrade
while we are in the processes of checking in the code so that you may only have part of a patch. Using
this method of updating also means we can’t tell what version of the code you are working with. So
please be sure you understand what you’re doing.

3.2.2 Method 2 - Tar file download

If you do not have CVS on your system, you can download the model as a tar file from the web site at:

http://mitgcm.org/download/

The tar file still contains CVS information which we urge you not to delete; even if you do not use CVS
yourself the information can help us if you should need to send us your copy of the code. If a recent
tar file does not exist, then please contact the developers through the MITgcm-support@mitgcm.org
mailing list.

98 CHAPTER 3. GETTING STARTED WITH MITGCM

3.3 Model and directory structure

The “numerical” model is contained within a execution environment support wrapper. This wrapper is
designed to provide a general framework for grid-point models. MITgcmUV is a specific numerical model
that uses the framework. Under this structure the model is split into execution environment support
code and conventional numerical model code. The execution environment support code is held under the
eesupp directory. The grid point model code is held under the model directory. Code execution actually
starts in the eesupp routines and not in the model routines. For this reason the top-level MAIN.F is in
the eesupp/src directory. In general, end-users should not need to worry about this level. The top-level
routine for the numerical part of the code is in model/src/THE MODEL MAIN.F. Here is a brief description
of the directory structure of the model under the root tree (a detailed description is given in section 3:
Code structure).

• doc: contains brief documentation notes.

• eesupp: contains the execution environment source code. Also subdivided into two subdirectories
inc and src.

• model: this directory contains the main source code. Also subdivided into two subdirectories inc
and src.

• pkg: contains the source code for the packages. Each package corresponds to a subdirectory. For
example, gmredi contains the code related to the Gent-McWilliams/Redi scheme, aim the code
relative to the atmospheric intermediate physics. The packages are described in detail in chapter 6.

• tools: this directory contains various useful tools. For example, genmake2 is a script written in
csh (C-shell) that should be used to generate your makefile. The directory adjoint contains the
makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that generates the adjoint
code. The latter is described in detail in part 8. This directory also contains the subdirectory
build options, which contains the ‘optfiles’ with the compiler options for the different compilers and
machines that can run MITgcm.

• utils: this directory contains various utilities. The subdirectory knudsen2 contains code and a
makefile that compute coefficients of the polynomial approximation to the knudsen formula for an
ocean nonlinear equation of state. The matlab subdirectory contains matlab scripts for reading
model output directly into matlab. scripts contains C-shell post-processing scripts for joining
processor-based and tiled-based model output. The subdirectory exch2 contains the code needed
for the exch2 package to work with different combinations of domain decompositions.

• verification: this directory contains the model examples. See section 3.8.

• jobs: contains sample job scripts for running MITgcm.

• lsopt: Line search code used for optimization.

• optim: Interface between MITgcm and line search code.

3.4 Building the code

To compile the code, we use the make program. This uses a file (Makefile) that allows us to pre-process
source files, specify compiler and optimization options and also figures out any file dependencies. We
supply a script (genmake2), described in section 3.4.2, that automatically creates the Makefile for you.
You then need to build the dependencies and compile the code.

As an example, assume that you want to build and run experiment verification/exp2. The are
multiple ways and places to actually do this but here let’s build the code in verification/exp2/build:

% cd verification/exp2/build

First, build the Makefile:

3.4. BUILDING MITGCM 99

% ../../../tools/genmake2 -mods=../code

The command line option tells genmake to override model source code with any files in the directory
../code/.

On many systems, the genmake2 program will be able to automatically recognize the hardware, find
compilers and other tools within the user’s path (“echo $PATH”), and then choose an appropriate set
of options from the files (“optfiles”) contained in the tools/build options directory. Under some
circumstances, a user may have to create a new “optfile” in order to specify the exact combination of
compiler, compiler flags, libraries, and other options necessary to build a particular configuration of
MITgcm. In such cases, it is generally helpful to read the existing “optfiles” and mimic their syntax.

Through the MITgcm-support list, the MITgcm developers are willing to provide help writing or
modifing “optfiles”. And we encourage users to post new “optfiles” (particularly ones for new machines
or architectures) to the MITgcm-support@mitgcm.org list.

To specify an optfile to genmake2, the syntax is:

% ../../../tools/genmake2 -mods=../code -of /path/to/optfile

Once a Makefile has been generated, we create the dependencies with the command:

% make depend

This modifies the Makefile by attaching a (usually, long) list of files upon which other files depend. The
purpose of this is to reduce re-compilation if and when you start to modify the code. The make depend

command also creates links from the model source to this directory. It is important to note that the make
depend stage will occasionally produce warnings or errors since the dependency parsing tool is unable to
find all of the necessary header files (eg. netcdf.inc). In these circumstances, it is usually OK to ignore
the warnings/errors and proceed to the next step.

Next one can compile the code using:

% make

The make command creates an executable called mitgcmuv. Additional make “targets” are defined within
the makefile to aid in the production of adjoint and other versions of MITgcm. On SMP (shared multi-
processor) systems, the build process can often be sped up appreciably using the command:

% make -j 2

where the “2” can be replaced with a number that corresponds to the number of CPUs available.

Now you are ready to run the model. General instructions for doing so are given in section 3.5. Here,
we can run the model by first creating links to all the input files:

ln -s ../input/* .

and then calling the executable with:

./mitgcmuv > output.txt

where we are re-directing the stream of text output to the file output.txt.

3.4.1 Building/compiling the code elsewhere

In the example above (section 3.4) we built the executable in the input directory of the experiment for
convenience. You can also configure and compile the code in other locations, for example on a scratch
disk with out having to copy the entire source tree. The only requirement to do so is you have genmake2
in your path or you know the absolute path to genmake2.

The following sections outline some possible methods of organizing your source and data.

100 CHAPTER 3. GETTING STARTED WITH MITGCM

3.4.1.1 Building from the ../code directory

This is just as simple as building in the input/ directory:

% cd verification/exp2/code

% ../../../tools/genmake2

% make depend

% make

However, to run the model the executable (mitgcmuv) and input files must be in the same place. If you
only have one calculation to make:

% cd ../input

% cp ../code/mitgcmuv ./

% ./mitgcmuv > output.txt

or if you will be making multiple runs with the same executable:

% cd ../

% cp -r input run1

% cp code/mitgcmuv run1

% cd run1

% ./mitgcmuv > output.txt

3.4.1.2 Building from a new directory

Since the input directory contains input files it is often more useful to keep input pristine and build in a
new directory within verification/exp2/:

% cd verification/exp2

% mkdir build

% cd build

% ../../../tools/genmake2 -mods=../code

% make depend

% make

This builds the code exactly as before but this time you need to copy either the executable or the input
files or both in order to run the model. For example,

% cp ../input/* ./

% ./mitgcmuv > output.txt

or if you tend to make multiple runs with the same executable then running in a new directory each time
might be more appropriate:

% cd ../

% mkdir run1

% cp build/mitgcmuv run1/

% cp input/* run1/

% cd run1

% ./mitgcmuv > output.txt

3.4.1.3 Building on a scratch disk

Model object files and output data can use up large amounts of disk space so it is often the case that you
will be operating on a large scratch disk. Assuming the model source is in /MITgcm then the following
commands will build the model in /scratch/exp2-run1:

% cd /scratch/exp2-run1

% ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \

-mods=~/MITgcm/verification/exp2/code

% make depend

% make

3.4. BUILDING MITGCM 101

To run the model here, you’ll need the input files:

% cp ~/MITgcm/verification/exp2/input/* ./

% ./mitgcmuv > output.txt

As before, you could build in one directory and make multiple runs of the one experiment:

% cd /scratch/exp2

% mkdir build

% cd build

% ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \

-mods=~/MITgcm/verification/exp2/code

% make depend

% make

% cd ../

% cp -r ~/MITgcm/verification/exp2/input run2

% cd run2

% ./mitgcmuv > output.txt

3.4.2 Using genmake2

To compile the code, first use the program genmake2 (located in the tools directory) to generate a
Makefile. genmake2 is a shell script written to work with all “sh”–compatible shells including bash v1,
bash v2, and Bourne. genmake2 parses information from the following sources:

- a gemake local file if one is found in the current directory

- command-line options

- an ”options file” as specified by the command-line option --optfile=/PATH/FILENAME

- a packages.conf file (if one is found) with the specific list of packages to compile. The search path for
file packages.conf is, first, the current directory and then each of the ”MODS” directories in the
given order (see below).

3.4.2.1 Optfiles in tools/build options directory:

The purpose of the optfiles is to provide all the compilation options for particular “platforms” (where
“platform” roughly means the combination of the hardware and the compiler) and code configurations.
Given the combinations of possible compilers and library dependencies (eg. MPI and NetCDF) there may
be numerous optfiles available for a single machine. The naming scheme for the majority of the optfiles
shipped with the code is

OS HARDWARE COMPILER

where

OS is the name of the operating system (generally the lower-case output of the ’uname’ command)

HARDWARE is a string that describes the CPU type and corresponds to output from the ’uname

-m’ command:

ia32 is for “x86” machines such as i386, i486, i586, i686, and athlon

ia64 is for Intel IA64 systems (eg. Itanium, Itanium2)

amd64 is AMD x86 64 systems

ppc is for Mac PowerPC systems

COMPILER is the compiler name (generally, the name of the FORTRAN executable)

102 CHAPTER 3. GETTING STARTED WITH MITGCM

In many cases, the default optfiles are sufficient and will result in usable Makefiles. However, for some
machines or code configurations, new “optfiles” must be written. To create a new optfile, it is generally
best to start with one of the defaults and modify it to suit your needs. Like genmake2, the optfiles are
all written using a simple “sh”–compatible syntax. While nearly all variables used within genmake2 may
be specified in the optfiles, the critical ones that should be defined are:

FC the FORTRAN compiler (executable) to use

DEFINES the command-line DEFINE options passed to the compiler

CPP the C pre-processor to use

NOOPTFLAGS options flags for special files that should not be optimized

For example, the optfile for a typical Red Hat Linux machine (“ia32” architecture) using the GCC
(g77) compiler is

FC=g77

DEFINES=’-D_BYTESWAPIO -DWORDLENGTH=4’

CPP=’cpp -traditional -P’

NOOPTFLAGS=’-O0’

For IEEE, use the "-ffloat-store" option

if test "x$IEEE" = x ; then

FFLAGS=’-Wimplicit -Wunused -Wuninitialized’

FOPTIM=’-O3 -malign-double -funroll-loops’

else

FFLAGS=’-Wimplicit -Wunused -ffloat-store’

FOPTIM=’-O0 -malign-double’

fi

If you write an optfile for an unrepresented machine or compiler, you are strongly encouraged to
submit the optfile to the MITgcm project for inclusion. Please send the file to the

MITgcm-support@mitgcm.org

mailing list.

3.4.2.2 Command-line options:

In addition to the optfiles, genmake2 supports a number of helpful command-line options. A complete
list of these options can be obtained from:

% genmake2 -h

The most important command-line options are:

--optfile=/PATH/FILENAME specifies the optfile that should be used for a particular build.

If no ”optfile” is specified (either through the command line or the MITGCM OPTFILE en-
vironment variable), genmake2 will try to make a reasonable guess from the list provided in
tools/build options. The method used for making this guess is to first determine the combina-
tion of operating system and hardware (eg. ”linux ia32”) and then find a working FORTRAN
compiler within the user’s path. When these three items have been identified, genmake2 will try to
find an optfile that has a matching name.

--mods=’DIR1 DIR2 DIR3 ...’ specifies a list of directories containing “modifications”. These directo-
ries contain files with names that may (or may not) exist in the main MITgcm source tree but will
be overridden by any identically-named sources within the “MODS” directories.

The order of precedence for this ”name-hiding” is as follows:

• “MODS” directories (in the order given)

3.4. BUILDING MITGCM 103

• Packages either explicitly specified or provided by default (in the order given)

• Packages included due to package dependencies (in the order that that package dependencies
are parsed)

• The ”standard dirs” (which may have been specified by the “-standarddirs” option)

--pgroups=/PATH/FILENAME specifies the file where package groups are defined. If not set, the package-
groups definition will be read from pkg/pkg groups. It also contains the default list of packages
(defined as the group “default pkg list” which is used when no specific package list (packages.conf)
is found in current directory or in any ”MODS” directory.

--pdepend=/PATH/FILENAME specifies the dependency file used for packages.

If not specified, the default dependency file pkg/pkg depend is used. The syntax for this file is parsed
on a line-by-line basis where each line containes either a comment (”#”) or a simple ”PKGNAME1
(+—-)PKGNAME2” pairwise rule where the ”+” or ”-” symbol specifies a ”must be used with” or
a ”must not be used with” relationship, respectively. If no rule is specified, then it is assumed that
the two packages are compatible and will function either with or without each other.

--adof=/path/to/file specifies the ”adjoint” or automatic differentiation options file to be used. The
file is analogous to the “optfile” defined above but it specifies information for the AD build process.

The default file is located in tools/adjoint options/adjoint default and it defines the ”TAF” and
”TAMC” compilers. An alternate version is also available at tools/adjoint options/adjoint staf that
selects the newer ”STAF” compiler. As with any compilers, it is helpful to have their directories
listed in your $PATH environment variable.

--mpi This option enables certain MPI features (using CPP #defines) within the code and is necessary
for MPI builds (see Section 3.4.3).

--make=/path/to/gmake Due to the poor handling of soft-links and other bugs common with the make

versions provided by commercial Unix vendors, GNU make (sometimes called gmake) should be
preferred. This option provides a means for specifying the make executable to be used.

--bash=/path/to/sh On some (usually older UNIX) machines, the “bash” shell is unavailable. To run
on these systems, genmake2 can be invoked using an “sh” (that is, a Bourne, POSIX, or compatible)
shell. The syntax in these circumstances is:

% /bin/sh genmake2 -bash=/bin/sh [...options...]

where /bin/sh can be replaced with the full path and name of the desired shell.

3.4.3 Building with MPI

Building MITgcm to use MPI libraries can be complicated due to the variety of different MPI imple-
mentations available, their dependencies or interactions with different compilers, and their often ad-hoc
locations within file systems. For these reasons, its generally a good idea to start by finding and reading
the documentation for your machine(s) and, if necessary, seeking help from your local systems adminis-
trator.

The steps for building MITgcm with MPI support are:

1. Determine the locations of your MPI-enabled compiler and/or MPI libraries and put them into an
options file as described in Section 3.4.2. One can start with one of the examples in:

MITgcm/tools/build options/

such as linux ia32 g77+mpi cg01 or linux ia64 efc+mpi and then edit it to suit the machine at
hand. You may need help from your user guide or local systems administrator to determine the
exact location of the MPI libraries. If libraries are not installed, MPI implementations and related
tools are available including:

104 CHAPTER 3. GETTING STARTED WITH MITGCM

• MPICH

• LAM/MPI

• MPIexec

2. Build the code with the genmake2 -mpi option (see Section 3.4.2) using commands such as:

% ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE

% make depend

% make

3. Run the code with the appropriate MPI “run” or “exec” program provided with your particular
implementation of MPI. Typical MPI packages such as MPICH will use something like:

% mpirun -np 4 -machinefile mf ./mitgcmuv

Sightly more complicated scripts may be needed for many machines since execution of the code
may be controlled by both the MPI library and a job scheduling and queueing system such as PBS,
LoadLeveller, Condor, or any of a number of similar tools. A few example scripts (those used for our
regular verification runs) are available at: http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example scripts/

or at: http://mitgcm.org/viewvc/MITgcm/MITgcm contrib/test scripts/

An example of the above process on the MITgcm cluster (“cg01”) using the GNU g77 compiler and
the mpich MPI library is:

% cd MITgcm/verification/exp5

% mkdir build

% cd build

% ../../../tools/genmake2 -mpi -mods=../code \

-of=../../../tools/build_options/linux_ia32_g77+mpi_cg01

% make depend

% make

% cd ../input

% /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \

-machinefile mf --gm-kill 5 -v -np 2 ../build/mitgcmuv

3.5 Running the model in prognostic mode

If compilation finished succesfully (section 3.4) then an executable called mitgcmuv will now exist in the
local directory.

To run the model as a single process (ie. not in parallel) simply type:

% ./mitgcmuv

The “./” is a safe-guard to make sure you use the local executable in case you have others that exist
in your path (surely odd if you do!). The above command will spew out many lines of text output to
your screen. This output contains details such as parameter values as well as diagnostics such as mean
Kinetic energy, largest CFL number, etc. It is worth keeping this text output with the binary output so
we normally re-direct the stdout stream as follows:

% ./mitgcmuv > output.txt

In the event that the model encounters an error and stops, it is very helpful to include the last few line
of this output.txt file along with the (stderr) error message within any bug reports.

For the example experiments in verification, an example of the output is kept in results/output.txt

for comparison. You can compare your output.txt with the corresponding one for that experiment to
check that the set-up works.

3.5.1 Output files

The model produces various output files and, when using mnc, sometimes even directories. Depend-
ing upon the I/O package(s) selected at compile time (either mdsio or mnc or both as determined by
code/packages.conf) and the run-time flags set (in input/data.pkg), the following output may ap-
pear.

3.5. RUNNING MITGCM 105

3.5.1.1 MDSIO output files

The “traditional” output files are generated by the mdsio package. At a minimum, the instantaneous
“state” of the model is written out, which is made of the following files:

• U.00000nIter - zonal component of velocity field (m/s and positive eastward).

• V.00000nIter - meridional component of velocity field (m/s and positive northward).

• W.00000nIter - vertical component of velocity field (ocean: m/s and positive upward, atmosphere:
Pa/s and positive towards increasing pressure i.e. downward).

• T.00000nIter - potential temperature (ocean: ◦C, atmosphere: ◦K).

• S.00000nIter - ocean: salinity (psu), atmosphere: water vapor (g/kg).

• Eta.00000nIter - ocean: surface elevation (m), atmosphere: surface pressure anomaly (Pa).

The chain 00000nIter consists of ten figures that specify the iteration number at which the output
is written out. For example, U.0000000300 is the zonal velocity at iteration 300.

In addition, a “pickup” or “checkpoint” file called:

• pickup.00000nIter

is written out. This file represents the state of the model in a condensed form and is used for restarting
the integration. If the C-D scheme is used, there is an additional “pickup” file:

• pickup cd.00000nIter

containing the D-grid velocity data and that has to be written out as well in order to restart the
integration. Rolling checkpoint files are the same as the pickup files but are named differently. Their
name contain the chain ckptA or ckptB instead of 00000nIter. They can be used to restart the model
but are overwritten every other time they are output to save disk space during long integrations.

3.5.1.2 MNC output files

Unlike the mdsio output, the mnc–generated output is usually (though not necessarily) placed within a
subdirectory with a name such as mnc test $DATE $SEQ.

3.5.2 Looking at the output

The “traditional” or mdsio model data are written according to a “meta/data” file format. Each variable
is associated with two files with suffix names .data and .meta. The .data file contains the data written
in binary form (big endian by default). The .meta file is a “header” file that contains information about
the size and the structure of the .data file. This way of organizing the output is particularly useful when
running multi-processors calculations. The base version of the model includes a few matlab utilities to
read output files written in this format. The matlab scripts are located in the directory utils/matlab

under the root tree. The script rdmds.m reads the data. Look at the comments inside the script to see
how to use it.

Some examples of reading and visualizing some output in Matlab:

% matlab

>> H=rdmds(’Depth’);

>> contourf(H’);colorbar;

>> title(’Depth of fluid as used by model’);

>> eta=rdmds(’Eta’,10);

>> imagesc(eta’);axis ij;colorbar;

>> title(’Surface height at iter=10’);

>> eta=rdmds(’Eta’,[0:10:100]);

>> for n=1:11; imagesc(eta(:,:,n)’);axis ij;colorbar;pause(.5);end

106 CHAPTER 3. GETTING STARTED WITH MITGCM

Similar scripts for netCDF output (rdmnc.m) are available and they are described in Section 7.2.
The MNC output files are all in the “self-describing” netCDF format and can thus be browsed and/or

plotted using tools such as:

• ncdump is a utility which is typically included with every netCDF install:

http://www.unidata.ucar.edu/packages/netcdf/

and it converts the netCDF binaries into formatted ASCII text files.

• ncview utility is a very convenient and quick way to plot netCDF data and it runs on most OSes:

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

• MatLAB(c) and other common post-processing environments provide various netCDF interfaces
including:

http://mexcdf.sourceforge.net/

http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html

3.6. CUSTOMIZING MITGCM 107

3.6 Doing it yourself: customizing the model configuration

When you are ready to run the model in the configuration you want, the easiest thing is to use and adapt
the setup of the case studies experiment (described previously) that is the closest to your configuration.
Then, the amount of setup will be minimized. In this section, we focus on the setup relative to the
“numerical model” part of the code (the setup relative to the “execution environment” part is covered in
the parallel implementation section) and on the variables and parameters that you are likely to change.

The CPP keys relative to the “numerical model” part of the code are all defined and set in the file
CPP OPTIONS.h in the directory model/inc or in one of the code directories of the case study experi-
ments under verification. The model parameters are defined and declared in the file model/inc/PARAMS.h
and their default values are set in the routine model/src/set defaults.F. The default values can be mod-
ified in the namelist file data which needs to be located in the directory where you will run the model.
The parameters are initialized in the routine model/src/ini parms.F. Look at this routine to see in what
part of the namelist the parameters are located. Here is a complete list of the model parameters related
to the main model (namelist parameters for the packages are located in the package descriptions), their
meaning, and their default values:

108 CHAPTER 3. GETTING STARTED WITH MITGCM

In what follows the parameters are grouped into categories related to the computational domain, the
equations solved in the model, and the simulation controls.

3.6.1 Parameters: Computational domain, geometry and time-discretization

dimensions

The number of points in the x, y, and r directions are represented by the variables sNx, sNy and Nr
respectively which are declared and set in the file model/inc/SIZE.h. (Again, this assumes a mono-
processor calculation. For multiprocessor calculations see the section on parallel implementation.)

grid

Three different grids are available: cartesian, spherical polar, and curvilinear (which includes the
cubed sphere). The grid is set through the logical variables usingCartesianGrid, usingSpher-
icalPolarGrid, and usingCurvilinearGrid. In the case of spherical and curvilinear grids, the
southern boundary is defined through the variable ygOrigin which corresponds to the latitude of
the southern most cell face (in degrees). The resolution along the x and y directions is controlled
by the 1D arrays delx and dely (in meters in the case of a cartesian grid, in degrees otherwise).
The vertical grid spacing is set through the 1D array delz for the ocean (in meters) or delp for
the atmosphere (in Pa). The variable Ro SeaLevel represents the standard position of Sea-Level
in “R” coordinate. This is typically set to 0m for the ocean (default value) and 105Pa for the
atmosphere. For the atmosphere, also set the logical variable groundAtK1 to ’.TRUE.’ which
puts the first level (k=1) at the lower boundary (ground).

For the cartesian grid case, the Coriolis parameter f is set through the variables f0 and beta which
correspond to the reference Coriolis parameter (in s−1) and ∂f

∂y (in m−1s−1) respectively. If beta
is set to a nonzero value, f0 is the value of f at the southern edge of the domain.

topography - full and partial cells

The domain bathymetry is read from a file that contains a 2D (x,y) map of depths (in m) for
the ocean or pressures (in Pa) for the atmosphere. The file name is represented by the variable
bathyFile. The file is assumed to contain binary numbers giving the depth (pressure) of the
model at each grid cell, ordered with the x coordinate varying fastest. The points are ordered from
low coordinate to high coordinate for both axes. The model code applies without modification to
enclosed, periodic, and double periodic domains. Periodicity is assumed by default and is suppressed
by setting the depths to 0m for the cells at the limits of the computational domain (note: not sure
this is the case for the atmosphere). The precision with which to read the binary data is controlled
by the integer variable readBinaryPrec which can take the value 32 (single precision) or 64

(double precision). See the matlab program gendata.m in the input directories under verification
to see how the bathymetry files are generated for the case study experiments.

To use the partial cell capability, the variable hFacMin needs to be set to a value between 0 and
1 (it is set to 1 by default) corresponding to the minimum fractional size of the cell. For example if
the bottom cell is 500m thick and hFacMin is set to 0.1, the actual thickness of the cell (i.e. used
in the code) can cover a range of discrete values 50m apart from 50m to 500m depending on the
value of the bottom depth (in bathyFile) at this point.

Note that the bottom depths (or pressures) need not coincide with the models levels as deduced
from delz or delp. The model will interpolate the numbers in bathyFile so that they match the
levels obtained from delz or delp and hFacMin.

(Note: the atmospheric case is a bit more complicated than what is written here I think. To come
soon...)

time-discretization

The time steps are set through the real variables deltaTMom and deltaTtracer (in s) which
represent the time step for the momentum and tracer equations, respectively. For synchronous
integrations, simply set the two variables to the same value (or you can prescribe one time step
only through the variable deltaT). The Adams-Bashforth stabilizing parameter is set through the
variable abEps (dimensionless). The stagger baroclinic time stepping can be activated by setting
the logical variable staggerTimeStep to ’.TRUE.’.

3.6. CUSTOMIZING MITGCM 109

Name value Description Reference

buoyancyRelation buoyancyRelation = OCEANIC
fluidIsAir F fluid major constituent is Air
fluidIsWater T fuild major constituent is Water
usingPCoords F use p (or p
usingZCoords T use z (or z
tRef 2.0E+01 at K= top Reference temperature profile (oC or K)
sRef 3.0E+01 at K= top Reference salinity profile (psu)
viscAh 0.0E+00 Lateral eddy viscosity (m2/s)
viscAhMax 1.0E+21 Maximum lateral eddy viscosity (m2/s)
viscAhGrid 0.0E+00 Grid dependent lateral eddy viscosity (non-dim.)
useFullLeith F Use Full Form of Leith Viscosity on/off flag
useStrainTensionVisc F Use StrainTension Form of Viscous Operator on/off flag
useAreaViscLength F Use area for visc length instead of geom. mean
viscC2leith 0.0E+00 Leith harmonic visc. factor (on grad(vort),non-dim.)
viscC2leithD 0.0E+00 Leith harmonic viscosity factor (on grad(div),non-dim.)
viscC2smag 0.0E+00 Smagorinsky harmonic viscosity factor (non-dim.)
viscA4 0.0E+00 Lateral biharmonic viscosity (m4/s)
viscA4Max 1.0E+21 Maximum biharmonic viscosity (m2/s)
viscA4Grid 0.0E+00 Grid dependent biharmonic viscosity (non-dim.)
viscC4leith 0.0E+00 Leith biharm viscosity factor (on grad(vort), non-dim.)
viscC4leithD 0.0E+00 Leith biharm viscosity factor (on grad(div), non-dim.)
viscC4Smag 0.0E+00 Smagorinsky biharm viscosity factor (non-dim)
no slip sides T Viscous BCs: No-slip sides
sideDragFactor 2.0E+00 side-drag scaling factor (non-dim)
viscAr 0.0E+00 Vertical eddy viscosity (units of r2/s)
no slip bottom T Viscous BCs: No-slip bottom
bottomDragLinear 0.0E+00 linear bottom-drag coefficient (m/s)
bottomDragQuadratic 0.0E+00 quadratic bottom-drag coeff. (1)
diffKhT 0.0E+00 Laplacian diffusion of heat laterally (m2/s)
diffK4T 0.0E+00 Bihaarmonic diffusion of heat laterally (m4/s)
diffKhS 0.0E+00 Laplacian diffusion of salt laterally (m2/s)
diffK4S 0.0E+00 Bihaarmonic diffusion of salt laterally (m4/s)
diffKrNrT 0.0E+00 at K= top vertical profile of vertical diffusion of Temp (m2/s)
diffKrNrS 0.0E+00 at K= top vertical profile of vertical diffusion of Salt (m2/s)
diffKrBL79surf 0.0E+00 Surface diffusion for Bryan and Lewis 1979 (m2/s)
diffKrBL79deep 0.0E+00 Deep diffusion for Bryan and Lewis 1979 (m2/s)
diffKrBL79scl 2.0E+02 Depth scale for Bryan and Lewis 1979 (m)
diffKrBL79Ho -2.0E+03 Turning depth for Bryan and Lewis 1979 (m)
eosType LINEAR Equation of State
tAlpha 2.0E-04 Linear EOS thermal expansion coefficient (1/oC)

110 CHAPTER 3. GETTING STARTED WITH MITGCM

Name value Description Reference

sBeta 7.4E-04 Linear EOS haline contraction coef (1/psu)
rhonil 9.998E+02 Reference density (kg/m3)
rhoConst 9.998E+02 Reference density (kg/m3)
rhoConstFresh 9.998E+02 Reference density (kg/m3)
gravity 9.81E+00 Gravitational acceleration (m/s2)
gBaro 9.81E+00 Barotropic gravity (m/s2)
rotationPeriod 8.6164E+04 Rotation Period (s)
omega 7.292123516990375E-05 Angular velocity (rad/s)
f0 1.0E-04 Reference coriolis parameter (1/s)
beta 9.999999999999999E-12 Beta (1/(m.s))
freeSurfFac 1.0E+00 Implicit free surface factor
implicitFreeSurface T Implicit free surface on/off flag
rigidLid F Rigid lid on/off flag
implicSurfPress 1.0E+00 Surface Pressure implicit factor (0-1)
implicDiv2Dflow 1.0E+00 Barot. Flow Div. implicit factor (0-1)
exactConserv F Exact Volume Conservation on/off flag
uniformLin PhiSurf T use uniform Bo surf on/off flag
nonlinFreeSurf 0 Non-linear Free Surf. options (-1,0,1,2,3)
hFacInf 2.0E-01 lower threshold for hFac (nonlinFreeSurf only)
hFacSup 2.0E+00 upper threshold for hFac (nonlinFreeSurf only)
select rStar 0 r
useRealFreshWaterFlux F Real Fresh Water Flux on/off flag
convertFW2Salt 3.5E+01 convert F.W. Flux to Salt Flux (-1=use local S)
use3Dsolver F use 3-D pressure solver on/off flag
nonHydrostatic F Non-Hydrostatic on/off flag
nh Am2 1.0E+00 Non-Hydrostatic terms scaling factor
quasiHydrostatic F Quasi-Hydrostatic on/off flag
momStepping T Momentum equation on/off flag
vectorInvariantMomentum F Vector-Invariant Momentum on/off
momAdvection T Momentum advection on/off flag
momViscosity T Momentum viscosity on/off flag
momImplVertAdv F Momentum implicit vert. advection on/off
implicitViscosity F Implicit viscosity on/off flag
metricTerms F metric-Terms on/off flag
useNHMTerms F Non-Hydrostatic Metric-Terms on/off
useCoriolis T Coriolis on/off flag
useCDscheme F CD scheme on/off flag
useJamartWetPoints F Coriolis WetPoints method flag
useJamartMomAdv F V.I. Non-linear terms Jamart flag

3.6. CUSTOMIZING MITGCM 111

Name value Description Reference

SadournyCoriolis F Sadourny Coriolis discr. flag
upwindVorticity F Upwind bias vorticity flag
useAbsVorticity F Work with f
highOrderVorticity F High order interp. of vort. flag
upwindShear F Upwind vertical Shear advection flag
selectKEscheme 0 Kinetic Energy scheme selector
momForcing T Momentum forcing on/off flag
momPressureForcing T Momentum pressure term on/off flag
implicitIntGravWave F Implicit Internal Gravity Wave flag
staggerTimeStep F Stagger time stepping on/off flag
multiDimAdvection T enable/disable Multi-Dim Advection
useMultiDimAdvec F Multi-Dim Advection is/is-not used
implicitDiffusion F Implicit Diffusion on/off flag
tempStepping T Temperature equation on/off flag
tempAdvection T Temperature advection on/off flag
tempImplVertAdv F Temp. implicit vert. advection on/off
tempForcing T Temperature forcing on/off flag
saltStepping T Salinity equation on/off flag
saltAdvection T Salinity advection on/off flag
saltImplVertAdv F Sali. implicit vert. advection on/off
saltForcing T Salinity forcing on/off flag
readBinaryPrec 32 Precision used for reading binary files
writeBinaryPrec 32 Precision used for writing binary files
globalFiles F write ”global” (=not per tile) files
useSingleCpuIO F only master MPI process does I/O
debugMode F Debug Mode on/off flag
debLevA 1 1rst level of debugging
debLevB 2 2nd level of debugging
debugLevel 1 select debugging level
cg2dMaxIters 150 Upper limit on 2d con. grad iterations
cg2dChkResFreq 1 2d con. grad convergence test frequency
cg2dTargetResidual 1.0E-07 2d con. grad target residual
cg2dTargetResWunit -1.0E+00 CG2d target residual [W units]
cg2dPreCondFreq 1 Freq. for updating cg2d preconditioner
nIter0 0 Run starting timestep number
nTimeSteps 0 Number of timesteps
deltatTmom 6.0E+01 Momentum equation timestep (s)
deltaTfreesurf 6.0E+01 FreeSurface equation timestep (s)
dTtracerLev 6.0E+01 at K= top Tracer equation timestep (s)
deltatTClock 6.0E+01 Model clock timestep (s)

112 CHAPTER 3. GETTING STARTED WITH MITGCM

Name value Description Reference

cAdjFreq 0.0E+00 Convective adjustment interval (s)
momForcingOutAB 0 =1: take Momentum Forcing out of Adams-Bash.
tracForcingOutAB 0 =1: take T,S,pTr Forcing out of Adams-Bash.
momDissip In AB T put Dissipation Tendency in Adams-Bash.
doAB onGtGs T apply AB on Tendencies (rather than on T,S)
abEps 1.0E-02 Adams-Bashforth-2 stabilizing weight
baseTime 0.0E+00 Model base time (s).
startTime 0.0E+00 Run start time (s).
endTime 0.0E+00 Integration ending time (s).
pChkPtFreq 0.0E+00 Permanent restart/checkpoint file interval (s).
chkPtFreq 0.0E+00 Rolling restart/checkpoint file interval (s).
pickup write mdsio T Model IO flag.
pickup read mdsio T Model IO flag.
pickup write immed F Model IO flag.
dumpFreq 0.0E+00 Model state write out interval (s).
dumpInitAndLast T write out Initial and Last iter. model state
snapshot mdsio T Model IO flag.
monitorFreq 6.0E+01 Monitor output interval (s).
monitor stdio T Model IO flag.
externForcingPeriod 0.0E+00 forcing period (s)
externForcingCycle 0.0E+00 period of the cyle (s).
tauThetaClimRelax 0.0E+00 relaxation time scale (s)
tauSaltClimRelax 0.0E+00 relaxation time scale (s)
latBandClimRelax 3.703701E+05 max. Lat. where relaxation
usingCartesianGrid T Cartesian coordinates flag (True / False)
usingSphericalPolarGrid F Spherical coordinates flag (True / False)
usingCylindricalGrid F Spherical coordinates flag (True / False)
Ro SeaLevel 0.0E+00 r(1) (units of r)
rkSign -1.0E+00 index orientation relative to vertical coordinate
horiVertRatio 1.0E+00 Ratio on units : Horiz - Vertical
drC 5.0E+03 at K=1 C spacing (units of r)
drF 1.0E+04 at K= top W spacing (units of r)
delX 1.234567E+05 at I= east U spacing (m - cartesian, degrees - spherical)
delY 1.234567E+05 at J=1 V spacing (m - cartesian, degrees - spherical)
ygOrigin 0.0E+00 South edge Y-axis origin (cartesian: m, spherical: deg.)
xgOrigin 0.0E+00 West edge X-axis origin (cartesian: m, spherical: deg.)
rSphere 6.37E+06 Radius (ignored - cartesian, m - spherical)
xcoord 6.172835E+04 at I=1 P-point X coord (m - cartesian, degrees - spherical)
ycoord 6.172835E+04 at J=1 P-point Y coord (m - cartesian, degrees - spherical)
rcoord -5.0E+03 at K=1 P-point R coordinate (units of r)
rF 0.0E+00 at K=1 W-Interf. R coordinate (units of r)
dBdrRef 0.0E+00 at K= top Vertical gradient of reference boyancy [(m/s/r)2)]

3.6. CUSTOMIZING MITGCM 113

Name value Description Reference

dxF 1.234567E+05 at K= top dxF(:,1,:,1) (m - cartesian, degrees - spherical)
dyF 1.234567E+05 at I= east dyF(:,1,:,1) (m - cartesian, degrees - spherical)
dxG 1.234567E+05 at I= east dxG(:,1,:,1) (m - cartesian, degrees - spherical)
dyG 1.234567E+05 at I= east dyG(:,1,:,1) (m - cartesian, degrees - spherical)
dxC 1.234567E+05 at I= east dxC(:,1,:,1) (m - cartesian, degrees - spherical)
dyC 1.234567E+05 at I= east dyC(:,1,:,1) (m - cartesian, degrees - spherical)
dxV 1.234567E+05 at I= east dxV(:,1,:,1) (m - cartesian, degrees - spherical)
dyU 1.234567E+05 at I= east dyU(:,1,:,1) (m - cartesian, degrees - spherical)
rA 1.524155677489E+10 at I= east rA(:,1,:,1) (m - cartesian, degrees - spherical)
rAw 1.524155677489E+10 at K= top rAw(:,1,:,1) (m - cartesian, degrees - spherical)
rAs 1.524155677489E+10 at K= top rAs(:,1,:,1) (m - cartesian, degrees - spherical)

Name Default value Description Reference

tempAdvScheme 2 Temp. Horiz.Advection scheme selector
tempVertAdvScheme 2 Temp. Vert. Advection scheme selector
tempMultiDimAdvec F use Muti-Dim Advec method for Temp
tempAdamsBashforth T use Adams-Bashforth time-stepping for Temp
saltAdvScheme 2 Salt. Horiz.advection scheme selector
saltVertAdvScheme 2 Salt. Vert. Advection scheme selector
saltMultiDimAdvec F use Muti-Dim Advec method for Salt
saltAdamsBashforth T use Adams-Bashforth time-stepping for Salt

3.6.2 Parameters: Equation of state

First, because the model equations are written in terms of perturbations, a reference thermodynamic
state needs to be specified. This is done through the 1D arrays tRef and sRef. tRef specifies the
reference potential temperature profile (in oC for the ocean and oK for the atmosphere) starting from the
level k=1. Similarly, sRef specifies the reference salinity profile (in ppt) for the ocean or the reference
specific humidity profile (in g/kg) for the atmosphere.

The form of the equation of state is controlled by the character variables buoyancyRelation and
eosType. buoyancyRelation is set to ’OCEANIC’ by default and needs to be set to ’ATMOSPHERIC’

for atmosphere simulations. In this case, eosType must be set to ’IDEALGAS’. For the ocean, two forms
of the equation of state are available: linear (set eosType to ’LINEAR’) and a polynomial approxima-
tion to the full nonlinear equation (set eosType to ’POLYNOMIAL’). In the linear case, you need to
specify the thermal and haline expansion coefficients represented by the variables tAlpha (in K−1) and
sBeta (in ppt−1). For the nonlinear case, you need to generate a file of polynomial coefficients called
POLY3.COEFFS. To do this, use the program utils/knudsen2/knudsen2.f under the model tree (a Make-
file is available in the same directory and you will need to edit the number and the values of the vertical
levels in knudsen2.f so that they match those of your configuration).

There there are also higher polynomials for the equation of state:

’UNESCO’: The UNESCO equation of state formula of Fofonoff and Millard Fofonoff and Millard [1983].
This equation of state assumes in-situ temperature, which is not a model variable; its use is therefore
discouraged, and it is only listed for completeness.

’JMD95Z’: A modified UNESCO formula by Jackett and McDougall Jackett and McDougall [1995], which
uses the model variable potential temperature as input. The ’Z’ indicates that this equation of
state uses a horizontally and temporally constant pressure p0 = −gρ0z.

’JMD95P’: A modified UNESCO formula by Jackett and McDougall Jackett and McDougall [1995], which
uses the model variable potential temperature as input. The ’P’ indicates that this equation of
state uses the actual hydrostatic pressure of the last time step. Lagging the pressure in this way
requires an additional pickup file for restarts.

114 CHAPTER 3. GETTING STARTED WITH MITGCM

’MDJWF’: The new, more accurate and less expensive equation of state by McDougall et al. McDougall
et al. [2003]. It also requires lagging the pressure and therefore an additional pickup file for restarts.

For none of these options an reference profile of temperature or salinity is required.

3.6.3 Parameters: Momentum equations

In this section, we only focus for now on the parameters that you are likely to change, i.e. the ones
relative to forcing and dissipation for example. The details relevant to the vector-invariant form of the
equations and the various advection schemes are not covered for the moment. We assume that you use
the standard form of the momentum equations (i.e. the flux-form) with the default advection scheme.
Also, there are a few logical variables that allow you to turn on/off various terms in the momentum
equation. These variables are called momViscosity, momAdvection, momForcing, useCoriolis,
momPressureForcing, momStepping and metricTerms and are assumed to be set to ’.TRUE.’

here. Look at the file model/inc/PARAMS.h for a precise definition of these variables.

initialization

The initial horizontal velocity components can be specified from binary files uVelInitFile and
vVelInitFile. These files should contain 3D data ordered in an (x,y,r) fashion with k=1 as the first
vertical level (surface level). If no file names are provided, the velocity is initialised to zero. The
initial vertical velocity is always derived from the horizontal velocity using the continuity equation,
even in the case of non-hydrostatic simulation (see, e.g.: tutorial deep convection/input/data).

In the case of a restart (from the end of a previous simulation), the velocity field is read from a
pickup file (see section on simulation control parameters) and the initial velocity files are ignored.

forcing

This section only applies to the ocean. You need to generate wind-stress data into two files zonal-
WindFile and meridWindFile corresponding to the zonal and meridional components of the wind
stress, respectively (if you want the stress to be along the direction of only one of the model hori-
zontal axes, you only need to generate one file). The format of the files is similar to the bathymetry
file. The zonal (meridional) stress data are assumed to be in Pa and located at U-points (V-points).
As for the bathymetry, the precision with which to read the binary data is controlled by the variable
readBinaryPrec. See the matlab program gendata.m in the input directories under verification
to see how simple analytical wind forcing data are generated for the case study experiments.

There is also the possibility of prescribing time-dependent periodic forcing. To do this, concatenate
the successive time records into a single file (for each stress component) ordered in a (x,y,t) fashion
and set the following variables: periodicExternalForcing to ’.TRUE.’, externForcingPeriod
to the period (in s) of which the forcing varies (typically 1 month), and externForcingCycle to
the repeat time (in s) of the forcing (typically 1 year – note: externForcingCycle must be a
multiple of externForcingPeriod). With these variables set up, the model will interpolate the
forcing linearly at each iteration.

dissipation

The lateral eddy viscosity coefficient is specified through the variable viscAh (in m2s−1). The
vertical eddy viscosity coefficient is specified through the variable viscAz (in m2s−1) for the ocean
and viscAp (in Pa2s−1) for the atmosphere. The vertical diffusive fluxes can be computed implicitly
by setting the logical variable implicitViscosity to ’.TRUE.’. In addition, biharmonic mixing can
be added as well through the variable viscA4 (in m4s−1). On a spherical polar grid, you might
also need to set the variable cosPower which is set to 0 by default and which represents the
power of cosine of latitude to multiply viscosity. Slip or no-slip conditions at lateral and bottom
boundaries are specified through the logical variables no slip sides and no slip bottom. If set
to ’.FALSE.’, free-slip boundary conditions are applied. If no-slip boundary conditions are applied
at the bottom, a bottom drag can be applied as well. Two forms are available: linear (set the
variable bottomDragLinear in m/s) and quadratic (set the variable bottomDragQuadratic,
dimensionless).

The Fourier and Shapiro filters are described elsewhere.

3.6. CUSTOMIZING MITGCM 115

C-D scheme

If you run at a sufficiently coarse resolution, you will need the C-D scheme for the computation of
the Coriolis terms. The variable tauCD, which represents the C-D scheme coupling timescale (in
s) needs to be set.

calculation of pressure/geopotential

First, to run a non-hydrostatic ocean simulation, set the logical variable nonHydrostatic to
’.TRUE.’. The pressure field is then inverted through a 3D elliptic equation. (Note: this ca-
pability is not available for the atmosphere yet.) By default, a hydrostatic simulation is assumed
and a 2D elliptic equation is used to invert the pressure field. The parameters controlling the be-
haviour of the elliptic solvers are the variables cg2dMaxIters and cg2dTargetResidual for the
2D case and cg3dMaxIters and cg3dTargetResidual for the 3D case. You probably won’t need
to alter the default values (are we sure of this?).

For the calculation of the surface pressure (for the ocean) or surface geopotential (for the at-
mosphere) you need to set the logical variables rigidLid and implicitFreeSurface (set one to
’.TRUE.’ and the other to ’.FALSE.’ depending on how you want to deal with the ocean upper
or atmosphere lower boundary).

3.6.4 Parameters: Tracer equations

This section covers the tracer equations i.e. the potential temperature equation and the salinity (for the
ocean) or specific humidity (for the atmosphere) equation. As for the momentum equations, we only
describe for now the parameters that you are likely to change. The logical variables tempDiffusion
tempAdvection tempForcing, and tempStepping allow you to turn on/off terms in the temperature
equation (same thing for salinity or specific humidity with variables saltDiffusion, saltAdvection etc.).
These variables are all assumed here to be set to ’.TRUE.’. Look at file model/inc/PARAMS.h for a
precise definition.

initialization

The initial tracer data can be contained in the binary files hydrogThetaFile and hydrogSaltFile.
These files should contain 3D data ordered in an (x,y,r) fashion with k=1 as the first vertical level.
If no file names are provided, the tracers are then initialized with the values of tRef and sRef
mentioned above (in the equation of state section). In this case, the initial tracer data are uniform
in x and y for each depth level.

forcing

This part is more relevant for the ocean, the procedure for the atmosphere not being completely
stabilized at the moment.

A combination of fluxes data and relaxation terms can be used for driving the tracer equations.
For potential temperature, heat flux data (in W/m2) can be stored in the 2D binary file surfQfile.
Alternatively or in addition, the forcing can be specified through a relaxation term. The SST data
to which the model surface temperatures are restored to are supposed to be stored in the 2D binary
file thetaClimFile. The corresponding relaxation time scale coefficient is set through the variable
tauThetaClimRelax (in s). The same procedure applies for salinity with the variable names
EmPmRfile, saltClimFile, and tauSaltClimRelax for freshwater flux (in m/s) and surface
salinity (in ppt) data files and relaxation time scale coefficient (in s), respectively. Also for salinity,
if the CPP key USE NATURAL BCS is turned on, natural boundary conditions are applied
i.e. when computing the surface salinity tendency, the freshwater flux is multiplied by the model
surface salinity instead of a constant salinity value.

As for the other input files, the precision with which to read the data is controlled by the variable
readBinaryPrec. Time-dependent, periodic forcing can be applied as well following the same
procedure used for the wind forcing data (see above).

dissipation

116 CHAPTER 3. GETTING STARTED WITH MITGCM

Lateral eddy diffusivities for temperature and salinity/specific humidity are specified through the
variables diffKhT and diffKhS (in m2/s). Vertical eddy diffusivities are specified through the
variables diffKzT and diffKzS (in m2/s) for the ocean and diffKpT and diffKpS (in Pa2/s)
for the atmosphere. The vertical diffusive fluxes can be computed implicitly by setting the logical
variable implicitDiffusion to ’.TRUE.’. In addition, biharmonic diffusivities can be specified
as well through the coefficients diffK4T and diffK4S (in m4/s). Note that the cosine power
scaling (specified through cosPower—see the momentum equations section) is applied to the tracer
diffusivities (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization for
oceanic tracers is described in the package section. Finally, note that tracers can be also subject to
Fourier and Shapiro filtering (see the corresponding section on these filters).

ocean convection

Two options are available to parameterize ocean convection: one is to use the convective adjustment
scheme. In this case, you need to set the variable cadjFreq, which represents the frequency (in
s) with which the adjustment algorithm is called, to a non-zero value (if set to a negative value
by the user, the model will set it to the tracer time step). The other option is to parameterize
convection with implicit vertical diffusion. To do this, set the logical variable implicitDiffusion
to ’.TRUE.’ and the real variable ivdc kappa to a value (in m2/s) you wish the tracer vertical
diffusivities to have when mixing tracers vertically due to static instabilities. Note that cadjFreq
and ivdc kappacan not both have non-zero value.

3.6.5 Parameters: Simulation controls

The model ”clock” is defined by the variable deltaTClock (in s) which determines the IO frequencies
and is used in tagging output. Typically, you will set it to the tracer time step for accelerated runs
(otherwise it is simply set to the default time step deltaT). Frequency of checkpointing and dumping of
the model state are referenced to this clock (see below).

run duration

The beginning of a simulation is set by specifying a start time (in s) through the real variable
startTime or by specifying an initial iteration number through the integer variable nIter0. If
these variables are set to nonzero values, the model will look for a ”pickup” file pickup.0000nIter0
to restart the integration. The end of a simulation is set through the real variable endTime (in
s). Alternatively, you can specify instead the number of time steps to execute through the integer
variable nTimeSteps.

frequency of output

Real variables defining frequencies (in s) with which output files are written on disk need to be set
up. dumpFreq controls the frequency with which the instantaneous state of the model is saved.
chkPtFreq and pchkPtFreq control the output frequency of rolling and permanent checkpoint
files, respectively. See section 1.5.1 Output files for the definition of model state and checkpoint files.
In addition, time-averaged fields can be written out by setting the variable taveFreq (in s). The
precision with which to write the binary data is controlled by the integer variable writeBinaryPrec
(set it to 32 or 64).

3.7. TESTING 117

3.7 Testing

A script (testreport) for automated testing is included in the model within the verification directory.
While intended mostly for advanced users, the script can be helpful for beginners.

3.7.1 Using testreport

On many systems, the program can be run with the command:

% cd verification

% ./testreport

which will do the following:

1. Locate all “valid” test directories. Here, valid tests are defined to be those directories within the
current directory (which is generally verification) that contain a subdirectory and file with the
names results/output.txt.

2. Then within each valid test:

(a) run genmake2 to produce a Makefile

(b) build an executable

(c) run the executable

(d) compare and the output of the executable with the contents of certain variables within TEST-
NAME/results/output.txt

(e) print and, if requested (with the -addr=EMAIL ADDRESS option), send a MIME-encoded email
with the testing results

For further details, please see the MITgcm Developers’ HOWTO at:

http://mitgcm.org/public/docs.html

3.7.2 Automated testing

Automated testing results are produced on a regular basis and they can be viewed at:

http://mitgcm.org/public/testing.html

which also includes links to various scripts for batch job submission on a variety of different machines.

118 CHAPTER 3. GETTING STARTED WITH MITGCM

3.8 Example experiments

The full MITgcm distribution comes with a set of pre-configured numerical experiments. Some of these
example experiments are tests of individual parts of the model code, but many are fully fledged numerical
simulations. Full tutorials exist for a few of the examples, and are documented in sections 3.9 - 3.21. The
other examples follow the same general structure as the tutorial examples. However, they only include
brief instructions in a text file called README. The examples are located in subdirectories under the
directory verification. Each example is briefly described below.

3.8.1 Full list of model examples

1. tutorial advection in gyre - Test of various advection schemes in a single-layer double-gyre
experiment. This experiment is described in detail in section 3.11.

2. tutorial baroclinic gyre - Four layer, ocean double gyre. This experiment is described in detail
in section 3.10.

3. tutorial barotropic gyre - Single layer, ocean double gyre (barotropic with free-surface). This
experiment is described in detail in section 3.9.

4. tutorial cfc offline - Offline form of the MITgcm to study advection of a passive tracer and
CFCs. This experiment is described in detail in section 3.20.5.

5. tutorial deep convection - Non-uniformly forced ocean convection in a doubly periodic box.
This experiment is described in detail in section 3.15.

6. tutorial dic adoffline - Offline form of MITgcm dynamics coupled to the dissolved inorganic
carbon biogeochemistry model; adjoint set-up.

7. tutorial global oce biogeo - Ocean model coupled to the dissolved inorganic carbon biogeo-
chemistry model. This experiment is described in detail in section 3.17.

8. tutorial global oce in p - Global ocean simulation in pressure coordinate (non-Boussinesq ocean
model). Described in detail in section 3.13.

9. tutorial global oce latlon - 4x4 degree global ocean simulation with steady climatological forc-
ing. This experiment is described in detail in section 3.12.

10. tutorial global oce optim - Global ocean state estimation at 4◦ resolution. This experiment is
described in detail in section 3.18.

11. tutorial held suarez cs - 3D atmosphere dynamics using Held and Suarez (1994) forcing on
cubed sphere grid. This experiment is described in detail in section 3.14.

12. tutorial offline - Offline form of the MITgcm to study advection of a passive tracer. This
experiment is described in detail in section 3.20.

13. tutorial plume on slope - Gravity Plume on a continental slope. This experiment is described
in detail in section 3.16.

14. tutorial tracer adjsens - Simple passive tracer experiment. Includes derivative calculation.
This experiment is described in detail in section 3.19.
Also contains an additional set-up using Secon Order Moment (SOM) advection scheme (input ad.som81/).

15. 1D ocean ice column - Oceanic column with seaice on top.

16. adjustment.128x64x1 - Barotropic adjustment problem on latitude longitude grid with 128x64
grid points (2.8◦ resolution).

17. adjustment.cs-32x32x1 - Barotropic adjustment problem on cube sphere grid with 32x32 points
per face (roughly 2.8◦ resolution).
Also contains a non-linear free-surface adjustment version (input.nlfs/).

3.8. MITGCM EXAMPLE EXPERIMENTS 119

18. advect cs - Two-dimensional passive advection test on cube sphere grid (32x32 grid points per
face, roughly 2.8◦ resolution)

19. advect xy - Two-dimensional (horizontal plane) passive advection test on Cartesian grid.
Also contains an additional set-up using Adams-Bashforth 3 (input.ab3 c4/).

20. advect xz - Two-dimensional (vertical plane) passive advection test on Cartesian grid.
Also contains an additional set-up using non-linear free-surface with divergent barotropic flow and
implicit vertical advection (input.nlfs/).

21. aim.5l Equatorial Channel - 5-levels Intermediate Atmospheric physics, 3D Equatorial Channel
configuration.

22. aim.5l LatLon - 5-levels Intermediate Atmospheric physics, Global configuration, on latitude lon-
gitude grid with 128x64x5 grid points (2.8◦ resolution).

23. aim.5l cs - 5-levels Intermediate Atmospheric physics, Global configuration on cube sphere grid
(32x32 grid points per face, roughly 2.8◦).
Also contains an additional set-up with a slab-ocean and thermodynamic sea-ice (input.thSI/).

24. bottom ctrl 5x5 - Adjoint test using the bottom topography as the control parameter.

25. cfc example - Global ocean with online computation and advection of CFC11 and CFC12.

26. cheapAML box - Example using cheap atmospheric mixed layer (cheapAML) package.

27. cpl aim+ocn - Coupled Ocean - Atmosphere realistic configuration on cubed-sphere cs32 horizontal
grid, using Intermediate Atmospheric physics (pkg/aim v23) thermodynamic seaice (pkg/thsice) and
land packages. on cubed-sphere cs32 in a realistic configuration.

28. cpl atm2d+ocn - Coupled Ocean - Atmosphere realistic configuration using 2-D Atmospheric Model
(pkg/atm2d).

29. deep anelastic - Convection simulation on a giant planet: relax both the Boussinesq approxima-
tion (anelastic) and the thin atmosphere approximation (deep atmosphere).

30. dome - Idealized 3D test of a density-driven bottom current.

31. exp2 - Old version of the global ocean experiment (no GM, no partial-cells).
Also contains an additional set-up with rigid-lid (input.rigidLid/).

32. exp4 - Flow over a Gaussian bump in open-water or channel with open boundaries.
Also contains an additional set-up using non-linear free-surface (input.nlfs/).

33. fizhi-cs-32x32x40 - Global atmospheric simulation with realistic topography, 40 vertical levels,
a cubed sphere grid and the full atmospheric physics package.

34. fizhi-cs-aqualev20 - Global atmospheric simulation on an aqua planet with full atmospheric
physics. Run is perpetual march with an analytical SST distribution. This is the configuration for
the APE (Aqua Planet Experiment) participation experiment.

35. fizhi-gridalt-hs - Global atmospheric simulation Held-Suarez (1994) forcing, with the physical
forcing and the dynamical forcing running on different vertical grids.

36. flt example - Example of using float package.

37. front relax - Relaxation of an ocean thermal front (test for Gent/McWilliams scheme). 2D (y-z).
Also contains additional set-ups:

(a) using the Boundary-Value Problem method (Ferrari et al., 2010) (input.bvp/).

(b) with Mixed-Layer Eddy parameterization (Ferrari & McWilliams, 2007) (input.mxl/).

120 CHAPTER 3. GETTING STARTED WITH MITGCM

38. global ocean.90x40x15 - Global ocean simulation at 4x4 degree resolution. Similar to tuto-
rial global oce latlon, but using z∗ coordinates with quasi-non-hydrostatic and non-hydrostatic
metric terms. This experiment also illustrate the use of SBO package. Also contains additional
set-ups:

(a) using down-slope package (pkg/down slope) (input.dwnslp/)

(b) an Open-AD adjoint set-up (code oad/, input oad/).

(c) four TAF adjoint set-ups (code ad/):

i. standard experiment (input ad/).

ii. with bottom drag as a control (input ad.bottomdrag/).

iii. with kappa GM as a control (input ad.kapgm/).

iv. with kappa Redi as a control (input ad.kapredi/).

39. global ocean.cs32x15 - Global ocean experiment on the cubed sphere grid.
Also contains additional forward set-ups:

(a) non-hydrostatic with biharmonic viscosity (input.viscA4/)

(b) using thermodynamic sea ice and bulk force (input.thsice/)

(c) using thermodynamic (pkg/thsice) dynamic (pkg/seaice) sea-ice and exf package (input.icedyn/)

(d) using thermodynamic - dynamic (pkg/seaice) sea-ice with exf package (input.seaice/)

and few additional adjoint set-ups (code ad/):

(a) standard experiment without sea-ice (input ad/).

(b) using thermodynamic - dynamic sea-ice (input ad.seaice/)

(c) same as above without adjoint sea-ice dynamics (input ad.seaice dynmix/)

(d) using thermodynamic sea-ice from thsice package (input ad.thsice/)

40. global ocean ebm - Global ocean experiment on a lat-lon grid coupled to an atmospheric energy
balance model. Similar to global ocean.90x40x15 experiment.
Also contains an adjoint set-up (code ad/, input ad/).

41. global with exf - Global ocean experiment on a lat-lon grid using the exf package. Similar to
tutorial global oce latlon experiment.
Also contains a secondary set-up with yearly exf fields (input ad.yearly/).

42. halfpipe streamice - Example using package ”streamice”.
Also contains adjoint set-ups using TAF (code ad/, input ad/) and using Open-AD (code oad/,
input oad/).

43. hs94.128x64x5 - 3D atmosphere dynamics on lat-lon grid, using Held and Suarez ’94 forcing.

44. hs94.1x64x5 - Zonal averaged atmosphere dynamics using Held and Suarez ’94 forcing.
Also contains adjoint set-ups using TAF (code ad/, input ad/) and using Open-AD (code oad/,
input oad/).

45. hs94.cs-32x32x5 - 3D atmosphere dynamics using Held and Suarez (1994) forcing on the cubed
sphere, similar to tutorial held suarez cs experiment but using linear free-surface and only 5 levels.
Also contains an additional set-up with Implicit Internal gravity waves treatment and Adams-
Bashforth 3 (input.impIGW/).

46. ideal 2D oce - Idealized 2D global ocean simulation on an aqua planet.

47. internal wave - Ocean internal wave forced by open boundary conditions.
Also contains an additional set-up using pkg/kl10 (see section 6.4.5, Klymak and Legg, 2010) (in-
put.kl10/).

48. inverted barometer - Simple test of ocean response to atmospheric pressure loading.

3.8. MITGCM EXAMPLE EXPERIMENTS 121

49. isomip - ISOMIP like set-up including ice-shelf cavities (pkg/shelfice).
Also contains additional set-ups:

(a) with ”htd” (input.htd/) but only Martin knows what ”htd” stands for.

(b) using package icefront (input.icefront)

and also adjoint set-ups using TAF (code ad/, input ad/, input ad.htd/) or using Open-AD (code oad/,
input oad/).

50. lab sea - Regional Labrador Sea simulation on a lat-lon grid using the sea ice package.
Also contains additional set-ups:

(a) using the simple ”free-drift” assumption for seaice (input.fd/)

(b) using EVP dynamics (instead of LSR solver) and Hibler & Bryan (1987) sea-ice ocean stress
(input.hb87/)

(c) using package salt plume (input.salt plume/)

and also 3 adjoint set-ups (code ad/, input ad/, input ad.noseaicedyn/, input ad.noseaice/).

51. matrix example - Test of experimental method to accelerated convergence towards equilibrium.

52. MLAdjust - Simple tests for different viscosity formulations.
Also contains additional set-ups (see: verification/MLAdjust/README):

(a) (input.A4FlxF/)

(b) (input.AhFlxF/)

(c) (input.AhVrDv/)

(d) (input.AhStTn/)

53. natl box - Eastern subtropical North Atlantic with KPP scheme; 1 month integration

54. obcs ctrl - Adjoint test using Open-Boundary conditions as control parameters.

55. offline exf seaice - Seaice on top of oceanic surface layer in an idealized channel. Forcing is
computed by bulk-formulae (pkg/exf) with temperature relaxation to prescribed SST (offline ocean).
Also contains additional set-ups:

(a) sea-ice dynamics-only using JFNK solver and pkg/thsice advection (input.dyn jfnk/)

(b) sea-ice dynamics-only using LSR solver and pkg/seaice advection (input.dyn lsr/)

(c) sea-ice thermodynamics-only using pkg/seaice (input.thermo/)

(d) sea-ice thermodynamics-only using pkg/thsice (input.thsice/)

and also 2 adjoint set-ups (code ad/, input ad/, input ad.thsice/).

56. OpenAD - Simple Adjoint experiment (used also to test Open-AD compiler)

57. rotating tank - Rotating tank simulation in cylindrical coordinates. This experiment is described
in detail in section 3.21.

58. seaice itd - Seaice example using Ice Thickness Distribution (ITD).
Also contains additional set-ups:

(a) (input.thermo/)

(b) (input.lipscomb07/)

59. seaice obcs - Similar to ”lab sea” (input.salt plume/) experiment with only a fraction of the
domain and open-boundary conditions derived from ”lab sea” experiment.
Also contains additional set-ups:

(a) (input.seaiceSponge/)

122 CHAPTER 3. GETTING STARTED WITH MITGCM

(b) (input.tides/)

60. short surf wave - Short surface wave adjusment (non-hydrostatic) in homogeneous 2-D vertical
section (x-z).

61. so box biogeo - Open-boundary Southern ocean box around Drake passage, using same model
parameters and forcing as experiment ”tutorial global oce biogeo” from which initial conditions
and OB conditions have been extracted.

62. solid-body.cs-32x32x1 - Solid body rotation test for cube sphere grid.

63. tidal basin 2d - 2-D vertical section (x-z) with tidal forcing (untested)

64. vermix - Simple test in a small domain (3 columns) for ocean vertical mixing schemes. The standard
set-up (input/) uses KPP scheme [Large et al., 1994].
Also contains additional set-ups:

(a) with Double Diffusion scheme from KPP (input.dd/)

(b) with Gaspar et al. [1990] (pkg/ggl90) scheme (input.ggl90/)

(c) with Mellor and Yamada [1982] level 2. (pkg/my82) scheme (input.my82/)

(d) with Paluszkiewicz and Romea [1997] (pkg/opps) scheme (input.opps/)

(e) with Pacanowski and Philander [1981] (pkg/pp81) scheme (input.pp81/)

3.8.2 Directory structure of model examples

Each example directory has the following subdirectories:

• code: contains the code particular to the example. At a minimum, this directory includes the
following files:

– code/packages.conf: declares the list of packages or package groups to be used. If not
included, the default version is located in pkg/pkg default. Package groups are simply con-
venient collections of commonly used packages which are defined in pkg/pkg default. Some
packages may require other packages or may require their absence (that is, they are incompat-
ible) and these package dependencies are listed in pkg/pkg depend.

– code/CPP EEOPTIONS.h: declares CPP keys relative to the “execution environment” part of
the code. The default version is located in eesupp/inc.

– code/CPP OPTIONS.h: declares CPP keys relative to the “numerical model” part of the code.
The default version is located in model/inc.

– code/SIZE.h: declares size of underlying computational grid. The default version is located
in model/inc.

In addition, other include files and subroutines might be present in code depending on the particular
experiment. See Section 2 for more details.

• input: contains the input data files required to run the example. At a minimum, the input

directory contains the following files:

– input/data: this file, written as a namelist, specifies the main parameters for the experiment.

– input/data.pkg: contains parameters relative to the packages used in the experiment.

– input/eedata: this file contains “execution environment” data. At present, this consists of a
specification of the number of threads to use in X and Y under multi-threaded execution.

In addition, you will also find in this directory the forcing and topography files as well as the files
describing the initial state of the experiment. This varies from experiment to experiment. See the
verification directories refered to in this chapter for more details.

3.8. MITGCM EXAMPLE EXPERIMENTS 123

• results: this directory contains the output file output.txt produced by the simulation example.
This file is useful for comparison with your own output when you run the experiment.

• build: this directory is initially empty and is used to compile and load the model, and to generate
the executable.

• run: this directory is initially empty and is used to run the executable.

Once you have chosen the example you want to run, you are ready to compile the code.

124 CHAPTER 3. GETTING STARTED WITH MITGCM

3.9 Barotropic Ocean Gyre In Cartesian Coordinates

(in directory: verification/tutorial barotropic gyre/)

This example experiment demonstrates using the MITgcm to simulate a Barotropic, wind-forced,
ocean gyre circulation. The files for this experiment can be found in the verification directory tuto-
rial barotropic gyre. The experiment is a numerical rendition of the gyre circulation problem similar to
the problems described analytically by Stommel in 1966 Stommel [1948] and numerically in Holland et.
al Holland and Lin [975a].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, 1200 ×
1200 km in lateral extent. The fluid is 5 km deep and is forced by a constant in time zonal wind stress,
τx, that varies sinusoidally in the “north-south” direction. Topologically the grid is Cartesian and the
coriolis parameter f is defined according to a mid-latitude beta-plane equation

f(y) = f0 + βy (3.1)

where y is the distance along the “north-south” axis of the simulated domain. For this experiment f0 is
set to 10−4s−1 in (3.1) and β = 10−11s−1m−1.

The sinusoidal wind-stress variations are defined according to

τx(y) = τ0 sin(π
y

Ly
) (3.2)

where Ly is the lateral domain extent (1200 km) and τ0 is set to 0.1Nm−2.

Figure 3.1 summarizes the configuration simulated.

3.9.1 Equations Solved

The model is configured in hydrostatic form. The implicit free surface form of the pressure equation
described in Marshall et. al Marshall et al. [1997b] is employed. A horizontal Laplacian operator ∇2

h

provides viscous dissipation. The wind-stress momentum input is added to the momentum equation for
the “zonal flow”, u. Other terms in the model are explicitly switched off for this experiment configuration
(see section 3.9.3), yielding an active set of equations solved in this configuration as follows

Du

Dt
− fv + g

∂η

∂x
−Ah∇2

hu =
τx

ρ0∆z
(3.3)

Dv

Dt
+ fu+ g

∂η

∂y
−Ah∇2

hv = 0 (3.4)

∂η

∂t
+ ∇h · ~u = 0 (3.5)

where u and v and the x and y components of the flow vector ~u.

3.9.2 Discrete Numerical Configuration

The domain is discretised with a uniform grid spacing in the horizontal set to ∆x = ∆y = 20 km, so that
there are sixty grid cells in the x and y directions. Vertically the model is configured with a single layer
with depth, ∆z, of 5000 m.

3.9.2.1 Numerical Stability Criteria

The Laplacian dissipation coefficient, Ah, is set to 400ms−1. This value is chosen to yield a Munk layer
width Adcroft [1995],

Mw = π(
Ah

β
)

1
3 (3.6)

3.9. BAROTROPIC GYRE MITGCM EXAMPLE 125

5km

Ly=1200km

Lx=1200km

xτ

=0.1=0 xτxτ

1111

14
0

10

10
−−−

−−

=

=

ms

sf

β

0ff =

yLff β+= 0

x
y

z

Figure 3.1: Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical
experiment. The domain is enclosed bu solid walls at x = 0,1200km and at y = 0,1200km.

126 CHAPTER 3. GETTING STARTED WITH MITGCM

of ≈ 100km. This is greater than the model resolution ∆x, ensuring that the frictional boundary layer is
well resolved.

The model is stepped forward with a time step δt = 1200secs. With this time step the stability parameter
to the horizontal Laplacian friction Adcroft [1995]

Sl = 4
Ahδt

∆x2 (3.7)

evaluates to 0.012, which is well below the 0.3 upper limit for stability.

The numerical stability for inertial oscillations Adcroft [1995]

Si = f2δt2 (3.8)

evaluates to 0.0144, which is well below the 0.5 upper limit for stability.

The advective CFL Adcroft [1995] for an extreme maximum horizontal flow speed of |~u| = 2ms−1

Sa =
|~u|δt
∆x

(3.9)

evaluates to 0.12. This is approaching the stability limit of 0.5 and limits δt to 1200s.

3.9.3 Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial barotropic gyre/.
The experiment files

• input/data

• input/data.pkg

• input/eedata,

• input/windx.sin y,

• input/topog.box,

• code/CPP EEOPTIONS.h

• code/CPP OPTIONS.h,

• code/SIZE.h.

contain the code customizations and parameter settings for this experiments. Below we describe the
customizations to these files associated with this experiment.

3.9.3.1 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters
that are significant for this configuration are

• Line 7,

viscAh=4.E2,

this line sets the Laplacian friction coefficient to 400m2s−1

• Line 10,

3.9. BAROTROPIC GYRE MITGCM EXAMPLE 127

beta=1.E-11,

this line sets β (the gradient of the coriolis parameter, f) to 10−11s−1m−1

• Lines 15 and 16

rigidLid=.FALSE.,

implicitFreeSurface=.TRUE.,

these lines suppress the rigid lid formulation of the surface pressure inverter and activate the implicit
free surface form of the pressure inverter.

• Line 27,

startTime=0,

this line indicates that the experiment should start from t = 0 and implicitly suppresses searching
for checkpoint files associated with restarting an numerical integration from a previously saved
state.

• Line 29,

endTime=12000,

this line indicates that the experiment should start finish at t = 12000s. A restart file will be
written at this time that will enable the simulation to be continued from this point.

• Line 30,

deltaTmom=1200,

This line sets the momentum equation timestep to 1200s.

• Line 39,

usingCartesianGrid=.TRUE.,

This line requests that the simulation be performed in a Cartesian coordinate system.

• Line 41,

delX=60*20E3,

This line sets the horizontal grid spacing between each x-coordinate line in the discrete grid. The
syntax indicates that the discrete grid should be comprise of 60 grid lines each separated by 20×103m
(20 km).

• Line 42,

delY=60*20E3,

This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to
20 × 103m (20 km).

• Line 43,

delZ=5000,

This line sets the vertical grid spacing between each z-coordinate line in the discrete grid to 5000m
(5 km).

128 CHAPTER 3. GETTING STARTED WITH MITGCM

• Line 46,

bathyFile=’topog.box’

This line specifies the name of the file from which the domain bathymetry is read. This file is a
two-dimensional (x, y) map of depths. This file is assumed to contain 64-bit binary numbers giving
the depth of the model at each grid cell, ordered with the x coordinate varying fastest. The points
are ordered from low coordinate to high coordinate for both axes. The units and orientation of
the depths in this file are the same as used in the MITgcm code. In this experiment, a depth
of 0m indicates a solid wall and a depth of −5000m indicates open ocean. The matlab program
input/gendata.m shows an example of how to generate a bathymetry file.

• Line 49,

zonalWindFile=’windx.sin_y’

This line specifies the name of the file from which the x-direction surface wind stress is read. This
file is also a two-dimensional (x, y) map and is enumerated and formatted in the same manner as
the bathymetry file. The matlab program input/gendata.m includes example code to generate a
valid zonalWindFile file.

other lines in the file input/data are standard values that are described in the MITgcm Getting Started
and MITgcm Parameters notes.

1 # Model parameters

2 # Continuous equation parameters

3 &PARM01

4 tRef=20.,

5 sRef=10.,

6 viscAz=1.E-2,

7 viscAh=4.E2,

8 diffKhT=4.E2,

9 diffKzT=1.E-2,

10 beta=1.E-11,

11 tAlpha=2.E-4,

12 sBeta =0.,

13 gravity=9.81,

14 gBaro=9.81,

15 rigidLid=.FALSE.,

16 implicitFreeSurface=.TRUE.,

17 eosType=’LINEAR’,

18 readBinaryPrec=64,

19 &

20 # Elliptic solver parameters

21 &PARM02

22 cg2dMaxIters=1000,

23 cg2dTargetResidual=1.E-7,

24 &

25 # Time stepping parameters

26 &PARM03

27 startTime=0,

28 #endTime=311040000,

29 endTime=12000.0,

30 deltaTmom=1200.0,

31 deltaTtracer=1200.0,

32 abEps=0.1,

33 pChkptFreq=2592000.0,

34 chkptFreq=120000.0,

35 dumpFreq=2592000.0,

36 &

3.9. BAROTROPIC GYRE MITGCM EXAMPLE 129

37 # Gridding parameters

38 &PARM04

39 usingCartesianGrid=.TRUE.,

40 usingSphericalPolarGrid=.FALSE.,

41 delX=60*20E3,

42 delY=60*20E3,

43 delZ=5000.,

44 &

45 &PARM05

46 bathyFile=’topog.box’,

47 hydrogThetaFile=,

48 hydrogSaltFile=,

49 zonalWindFile=’windx.sin_y’,

50 meridWindFile=,

51 &

3.9.3.2 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

3.9.3.3 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

3.9.3.4 File input/windx.sin y

The input/windx.sin y file specifies a two-dimensional (x, y) map of wind stress ,τx, values. The units
used are Nm−2. Although τx is only a function of yn in this experiment this file must still define a
complete two-dimensional map in order to be compatible with the standard code for loading forcing
fields in MITgcm. The included matlab program input/gendata.m gives a complete code for creating the
input/windx.sin y file.

3.9.3.5 File input/topog.box

The input/topog.box file specifies a two-dimensional (x, y) map of depth values. For this experiment
values are either 0m or -delZm, corresponding respectively to a wall or to deep ocean. The file contains
a raw binary stream of data that is enumerated in the same way as standard MITgcm two-dimensional,
horizontal arrays. The included matlab program input/gendata.m gives a complete code for creating the
input/topog.box file.

3.9.3.6 File code/SIZE.h

Two lines are customized in this file for the current experiment

• Line 39,

sNx=60,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

• Line 40,

sNy=60,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

1 C $Header: /u/gcmpack/manual/s_examples/barotropic_gyre/code/SIZE.h.tex,v 1.1.1.1 2001/08/08 16:15:58 adcroft

2 C $Name: $

3 C

4 C /==\

130 CHAPTER 3. GETTING STARTED WITH MITGCM

5 C | SIZE.h Declare size of underlying computational grid. |

6 C |==|

7 C | The design here support a three-dimensional model grid |

8 C | with indices I,J and K. The three-dimensional domain |

9 C | is comprised of nPx*nSx blocks of size sNx along one axis|

10 C | nPy*nSy blocks of size sNy along another axis and one |

11 C | block of size Nz along the final axis. |

12 C | Blocks have overlap regions of size OLx and OLy along the|

13 C | dimensions that are subdivided. |

14 C \==/

15 C Voodoo numbers controlling data layout.

16 C sNx - No. X points in sub-grid.

17 C sNy - No. Y points in sub-grid.

18 C OLx - Overlap extent in X.

19 C OLy - Overlat extent in Y.

20 C nSx - No. sub-grids in X.

21 C nSy - No. sub-grids in Y.

22 C nPx - No. of processes to use in X.

23 C nPy - No. of processes to use in Y.

24 C Nx - No. points in X for the total domain.

25 C Ny - No. points in Y for the total domain.

26 C Nr - No. points in R for full process domain.

27 INTEGER sNx

28 INTEGER sNy

29 INTEGER OLx

30 INTEGER OLy

31 INTEGER nSx

32 INTEGER nSy

33 INTEGER nPx

34 INTEGER nPy

35 INTEGER Nx

36 INTEGER Ny

37 INTEGER Nr

38 PARAMETER (

39 & sNx = 60,

40 & sNy = 60,

41 & OLx = 3,

42 & OLy = 3,

43 & nSx = 1,

44 & nSy = 1,

45 & nPx = 1,

46 & nPy = 1,

47 & Nx = sNx*nSx*nPx,

48 & Ny = sNy*nSy*nPy,

49 & Nr = 1)

50 C MAX_OLX - Set to the maximum overlap region size of any array

51 C MAX_OLY that will be exchanged. Controls the sizing of exch

52 C routine buufers.

53 INTEGER MAX_OLX

54 INTEGER MAX_OLY

55 PARAMETER (MAX_OLX = OLx,

56 & MAX_OLY = OLy)

3.9.3.7 File code/CPP OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

3.9.3.8 File code/CPP EEOPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

3.10. BAROCLINIC GYRE MITGCM EXAMPLE 131

3.10 Four Layer Baroclinic Ocean Gyre In Spherical Coordi-

nates

(in directory: verification/tutorial baroclinic gyre/)

This document describes an example experiment using MITgcm to simulate a baroclinic ocean gyre
for four layers in spherical polar coordinates. The files for this experiment can be found in the verification
directory under tutorial baroclinic gyre.

3.10.1 Overview

This example experiment demonstrates using the MITgcm to simulate a baroclinic, wind-forced, ocean
gyre circulation. The experiment is a numerical rendition of the gyre circulation problem similar to the
problems described analytically by Stommel in 1966 Stommel [1948] and numerically in Holland et. al
Holland and Lin [975a].

In this experiment the model is configured to represent a mid-latitude enclosed sector of fluid on a
sphere, 60◦× 60◦ in lateral extent. The fluid is 2 km deep and is forced by a constant in time zonal wind
stress, τλ, that varies sinusoidally in the north-south direction. Topologically the simulated domain is a
sector on a sphere and the coriolis parameter, f , is defined according to latitude, ϕ

f(ϕ) = 2Ω sin(ϕ) (3.10)

with the rotation rate, Ω set to 2π
86400s .

The sinusoidal wind-stress variations are defined according to

τλ(ϕ) = τ0 sin(π
ϕ

Lϕ
) (3.11)

where Lϕ is the lateral domain extent (60◦) and τ0 is set to 0.1Nm−2.

Figure 3.2 summarizes the configuration simulated. In contrast to the example in section 3.9, the
current experiment simulates a spherical polar domain. As indicated by the axes in the lower left of the
figure the model code works internally in a locally orthogonal coordinate (x, y, z). For this experiment
description the local orthogonal model coordinate (x, y, z) is synonymous with the coordinates (λ, ϕ, r)
shown in figure 1.16

The experiment has four levels in the vertical, each of equal thickness, ∆z = 500 m. Initially the fluid
is stratified with a reference potential temperature profile, θ250 = 20◦ C, θ750 = 10◦ C, θ1250 = 8◦ C,
θ1750 = 6◦ C. The equation of state used in this experiment is linear

ρ = ρ0(1 − αθθ
′

) (3.12)

which is implemented in the model as a density anomaly equation

ρ
′

= −ρ0αθθ
′

(3.13)

with ρ0 = 999.8 kgm−3 and αθ = 2 × 10−4 degrees−1. Integrated forward in this configuration the
model state variable theta is equivalent to either in-situ temperature, T , or potential temperature, θ.
For consistency with later examples, in which the equation of state is non-linear, we use θ to represent
temperature here. This is the quantity that is carried in the model core equations.

3.10.2 Equations solved

For this problem the implicit free surface, HPE (see section 1.3.4.2) form of the equations described in
Marshall et. al Marshall et al. [1997b] are employed. The flow is three-dimensional with just temperature,
θ, as an active tracer. The equation of state is linear. A horizontal Laplacian operator ∇2

h provides viscous
dissipation and provides a diffusive sub-grid scale closure for the temperature equation. A wind-stress

132 CHAPTER 3. GETTING STARTED WITH MITGCM

2km

60o

60o

xτ

=0.1=0 xτxτ

0=f

)60sin(2Ω=f

x
y

z

C°= 6θ

°= 0φ

°= 60φ N

C°= 8θ
C°=10θ

C°= 20θ

s86400

π=Ω

Figure 3.2: Schematic of simulation domain and wind-stress forcing function for the four-layer gyre
numerical experiment. The domain is enclosed by solid walls at 0◦ E, 60◦ E, 0◦ N and 60◦ N. An initial
stratification is imposed by setting the potential temperature, θ, in each layer. The vertical spacing, ∆z,
is constant and equal to 500m.

3.10. BAROCLINIC GYRE MITGCM EXAMPLE 133

momentum forcing is added to the momentum equation for the zonal flow, u. Other terms in the model
are explicitly switched off for this experiment configuration (see section 3.10.4). This yields an active
set of equations solved in this configuration, written in spherical polar coordinates as follows

Du

Dt
− fv +

1

ρ

∂p′

∂λ
−Ah∇2

hu−Az
∂2u

∂z2
= Fλ (3.14)

Dv

Dt
+ fu+

1

ρ

∂p′

∂ϕ
−Ah∇2

hv −Az
∂2v

∂z2
= 0 (3.15)

∂η

∂t
+
∂Hû

∂λ
+
∂Hv̂

∂ϕ
= 0 (3.16)

Dθ

Dt
−Kh∇2

hθ −Kz
∂2θ

∂z2
= 0 (3.17)

p′ = gρ0η +

∫ 0

−z

ρ′dz (3.18)

ρ′ = −αθρ0θ
′ (3.19)

Fλ|s =
τλ

ρ0∆zs
(3.20)

Fλ|i = 0 (3.21)

where u and v are the components of the horizontal flow vector ~u on the sphere (u = λ̇, v = ϕ̇). The
terms Hû and Hv̂ are the components of the vertical integral term given in equation 1.35 and explained
in more detail in section 2.4. However, for the problem presented here, the continuity relation (equation
3.16) differs from the general form given in section 2.4, equation 2.15, because the source terms P−E+R
are all 0.

The pressure field, p′, is separated into a barotropic part due to variations in sea-surface height, η,
and a hydrostatic part due to variations in density, ρ′, integrated through the water column.

The suffices s, i indicate surface layer and the interior of the domain. The windstress forcing, Fλ, is
applied in the surface layer by a source term in the zonal momentum equation. In the ocean interior this
term is zero.

In the momentum equations lateral and vertical boundary conditions for the ∇2
h and ∂2

∂z2 operators
are specified when the numerical simulation is run - see section 3.10.4. For temperature the boundary
condition is “zero-flux” e.g. ∂θ

∂ϕ = ∂θ
∂λ = ∂θ

∂z = 0.

3.10.3 Discrete Numerical Configuration

The domain is discretised with a uniform grid spacing in latitude and longitude ∆λ = ∆ϕ = 1◦, so
that there are sixty grid cells in the zonal and meridional directions. Vertically the model is configured
with four layers with constant depth, ∆z, of 500 m. The internal, locally orthogonal, model coordinate
variables x and y are initialized from the values of λ, ϕ, ∆λ and ∆ϕ in radians according to

x = r cos(ϕ)λ, ∆x = r cos(ϕ)∆λ (3.22)

y = rϕ, ∆y = r∆ϕ (3.23)

The procedure for generating a set of internal grid variables from a spherical polar grid specification
is discussed in section 2.11.4.
S/R INI SPHERICAL POLAR GRID (model/src/ini spherical polar grid.F)
Ac, Aζ , Aw, As: rAc, rAz, rAw, rAs (GRID.h)
∆xg, ∆yg: DXg, DYg (GRID.h)
∆xc, ∆yc: DXc, DYc (GRID.h)
∆xf , ∆yf : DXf, DYf (GRID.h)
∆xv, ∆yu: DXv, DYu (GRID.h)

As described in 2.16, the time evolution of potential temperature, θ, (equation 3.17) is evaluated
prognostically. The centered second-order scheme with Adams-Bashforth time stepping described in

134 CHAPTER 3. GETTING STARTED WITH MITGCM

section 2.16.1 is used to step forward the temperature equation. Prognostic terms in the momentum
equations are solved using flux form as described in section 2.14. The pressure forces that drive the fluid

motions, (∂p
′

∂λ and ∂p
′

∂ϕ), are found by summing pressure due to surface elevation η and the hydrostatic
pressure. The hydrostatic part of the pressure is diagnosed explicitly by integrating density. The sea-
surface height, η, is diagnosed using an implicit scheme. The pressure field solution method is described
in sections 2.4 and 1.3.6.

3.10.3.1 Numerical Stability Criteria

The Laplacian viscosity coefficient, Ah, is set to 400ms−1. This value is chosen to yield a Munk layer
width,

Mw = π(
Ah

β
)

1
3 (3.24)

of ≈ 100km. This is greater than the model resolution in mid-latitudes ∆x = r cos(ϕ)∆λ ≈ 80 km at
ϕ = 45◦, ensuring that the frictional boundary layer is well resolved.

The model is stepped forward with a time step δt = 1200secs. With this time step the stability parameter
to the horizontal Laplacian friction

Sl = 4
Ahδt

∆x2 (3.25)

evaluates to 0.012, which is well below the 0.3 upper limit for stability for this term under ABII time-
stepping.

The vertical dissipation coefficient, Az , is set to 1 × 10−2m2s−1. The associated stability limit

Sl = 4
Azδt

∆z2 (3.26)

evaluates to 4.8× 10−5 which is again well below the upper limit. The values of Ah and Az are also used
for the horizontal (Kh) and vertical (Kz) diffusion coefficients for temperature respectively.

The numerical stability for inertial oscillations

Si = f2δt2 (3.27)

evaluates to 0.0144, which is well below the 0.5 upper limit for stability.

The advective CFL for a extreme maximum horizontal flow speed of |~u| = 2ms−1

Ca =
|~u|δt
∆x

(3.28)

evaluates to 5 × 10−2. This is well below the stability limit of 0.5.

The stability parameter for internal gravity waves propagating at 2 m s−1

Sc =
cgδt

∆x
(3.29)

evaluates to ≈ 5 × 10−2. This is well below the linear stability limit of 0.25.

3.10. BAROCLINIC GYRE MITGCM EXAMPLE 135

3.10.4 Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial barotropic gyre/.
The experiment files

• input/data

• input/data.pkg

• input/eedata,

• input/windx.sin y,

• input/topog.box,

• code/CPP EEOPTIONS.h

• code/CPP OPTIONS.h,

• code/SIZE.h.

contain the code customisations and parameter settings for this experiment. Below we describe the
customisations to these files associated with this experiment.

3.10.4.1 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters
that are significant for this configuration are

• Line 4,

tRef=20.,10.,8.,6.,

this line sets the initial and reference values of potential temperature at each model level in units
of ◦C. The entries are ordered from surface to depth. For each depth level the initial and reference
profiles will be uniform in x and y. The values specified here are read into the variable tRef in the
model code, by procedure INI PARMS

S/R INI THETA(ini theta.F) ini theta.F

• Line 6,

viscAz=1.E-2,

this line sets the vertical Laplacian dissipation coefficient to 1 × 10−2m2s−1. Boundary conditions
for this operator are specified later. The variable viscAz is read in the routine ini parms.F and is
copied into model general vertical coordinate variable viscAr At each time step, the viscous term
contribution to the momentum equations is calculated in routine CALC DIFFUSIVITY

S/R CALC DIFFUSIVITY(calc diffusivity.F)

• Line 7,

viscAh=4.E2,

this line sets the horizontal laplacian frictional dissipation coefficient to 1 × 10−2m2s−1. Boundary
conditions for this operator are specified later. The variable viscAh is read in the routine INI PARMS

and applied in routine MOM FLUXFORM.

S/R MOM FLUXFORM(mom fluxform.F)

• Line 8,

file:../code_reference/vdb/byname/tRef.html
file:../code_reference/vdb/byname/model-src-ini_parms.F.html
file:../code_reference/vdb/byname/model-src-ini_theta.F.html
file:../code_reference/vdb/byname/viscAz.html
file:../code_reference/vdb/byname/model-src-ini_parms.F.html
file:../code_reference/vdb/byname/viscAr.html
file:../code_reference/vdb/byname/CALC_DIFFUSIVITY.html
file:../code_reference/vdb/byname/viscAh.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/MOM_FLUXFORM.html

136 CHAPTER 3. GETTING STARTED WITH MITGCM

no_slip_sides=.FALSE.

this line selects a free-slip lateral boundary condition for the horizontal laplacian friction operator
e.g. ∂u

∂y =0 along boundaries in y and ∂v
∂x=0 along boundaries in x. The variable no slip sides is

read in the routine INI PARMS and the boundary condition is evaluated in routine

S/R MOM FLUXFORM(mom fluxform.F) mom fluxform.F

• Lines 9,

no_slip_bottom=.TRUE.

this line selects a no-slip boundary condition for bottom boundary condition in the vertical laplacian
friction operator e.g. u = v = 0 at z = −H , where H is the local depth of the domain. The variable
no slip bottom is read in the routine INI PARMS and is applied in the routine MOM FLUXFORM.

S/R MOM FLUXFORM(mom fluxform.F) mom fluxform.F

• Line 10,

diffKhT=4.E2,

this line sets the horizontal diffusion coefficient for temperature to 400 m2s−1. The boundary
condition on this operator is ∂

∂x = ∂
∂y = 0 at all boundaries. The variable diffKhT is read in the

routine INI PARMS and used in routine CALC GT.

S/R CALC GT(calc gt.F) calc gt.F

• Line 11,

diffKzT=1.E-2,

this line sets the vertical diffusion coefficient for temperature to 10−2 m2s−1. The boundary con-
dition on this operator is ∂

∂z = 0 on all boundaries. The variable diffKzT is read in the routine
INI PARMS. It is copied into model general vertical coordinate variable diffKrT which is used in
routine CALC DIFFUSIVITY.

S/R CALC DIFFUSIVITY(calc diffusivity.F) calc diffusivity.F

• Line 13,

tAlpha=2.E-4,

This line sets the thermal expansion coefficient for the fluid to 2 × 10−4 degrees−1 The variable
tAlpha is read in the routine INI PARMS. The routine FIND RHO makes use of tAlpha.

S/R FIND RHO(find rho.F) find rho.F

• Line 18,

eosType=’LINEAR’

This line selects the linear form of the equation of state. The variable eosType is read in the routine
INI PARMS. The values of eosType sets which formula in routine FIND RHO is used to calculate
density.

S/R FIND RHO(find rho.F) find rho.F

• Line 40,

usingSphericalPolarGrid=.TRUE.,

file:../code_reference/vdb/byname/no_slip_sides.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/pkg-mom_fluxform-mom_fluxform.F.html
file:../code_reference/vdb/byname/no_slip_bottom.html
file:../code_reference/vdb/byname/model-src-ini_parms.F.html
file:../code_reference/vdb/byname/MOM_FLUXFORM.html
file:../code_reference/vdb/byname/pkg-mom_fluxform-mom_fluxform.F.html
file:../code_reference/vdb/byname/diffKhT.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/CALC_GT.html
file:../code_reference/vdb/byname/model-src-calc_gt.F.html
file:../code_reference/vdb/byname/diffKzT.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/diffKrT.html
file:../code_reference/vdb/byname/CALC_DIFFUSIVITY.html
file:../code_reference/vdb/byname/model-src-calc_diffusivity.F.html
file:../code_reference/vdb/byname/tAlpha.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/FIND_RHO.html
file:../code_reference/vdb/byname/model-src-find_rho.F.html
file:../code_reference/vdb/byname/eosType.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/model-src-find_rho.F.html

3.10. BAROCLINIC GYRE MITGCM EXAMPLE 137

This line requests that the simulation be performed in a spherical polar coordinate system. It
affects the interpretation of grid input parameters, for example delX and delY and causes the grid
generation routines to initialize an internal grid based on spherical polar geometry. The variable
usingSphericalPolarGrid is read in the routine INI PARMS. When set to .TRUE. the settings of
delX and delY are taken to be in degrees. These values are used in the routine

S/R INI SPEHRICAL POLAR GRID(ini spherical polar grid.F) ini spherical polar grid.F

• Line 41,

ygOrigin=0.,

This line sets the southern boundary of the modeled domain to 0◦ latitude. This value affects
both the generation of the locally orthogonal grid that the model uses internally and affects the
initialization of the coriolis force. Note - it is not required to set a longitude boundary, since the
absolute longitude does not alter the kernel equation discretisation. The variable ygOrigin is read
in the routine INI PARMS and is used in routine

S/R INI SPEHRICAL POLAR GRID(ini spherical polar grid.F) ini spherical polar grid.F

• Line 42,

delX=60*1.,

This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to 1◦

in longitude. The variable delX is read in the routine INI PARMS and is used in routine

S/R INI SPEHRICAL POLAR GRID(ini spherical polar grid.F) ini spherical polar grid.F

• Line 43,

delY=60*1.,

This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to 1◦

in latitude. The variable delY is read in the routine INI PARMS and is used in routine

S/R INI SPEHRICAL POLAR GRID(ini spherical polar grid.F) ini spherical polar grid.F

• Line 44,

delZ=500.,500.,500.,500.,

This line sets the vertical grid spacing between each z-coordinate line in the discrete grid to 500 m,
so that the total model depth is 2 km. The variable delZ is read in the routine INI PARMS. It is
copied into the internal model coordinate variable delR which is used in routine

S/R INI VERTICAL GRID(ini vertical grid.F) ini vertical grid.F

• Line 47,

bathyFile=’topog.box’

This line specifies the name of the file from which the domain bathymetry is read. This file is a
two-dimensional (x, y) map of depths. This file is assumed to contain 64-bit binary numbers giving
the depth of the model at each grid cell, ordered with the x coordinate varying fastest. The points
are ordered from low coordinate to high coordinate for both axes. The units and orientation of
the depths in this file are the same as used in the MITgcm code. In this experiment, a depth
of 0m indicates a solid wall and a depth of −2000m indicates open ocean. The matlab program
input/gendata.m shows an example of how to generate a bathymetry file. The variable bathyFile

is read in the routine INI PARMS. The bathymetry file is read in the routine

S/R INI DEPTHS(ini depths.F) ini depths.F

file:../code_reference/vdb/byname/usingSphericalPolarGrid.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/model-src-ini_spherical_polar_grid.F.html
file:../code_reference/vdb/byname/ygOrigin.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/model-src-ini_spherical_polar_grid.F.html
file:../code_reference/vdb/byname/delX.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/model-src-ini_spherical_polar_grid.F.html
file:../code_reference/vdb/byname/delY.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/model-src-ini_spherical_polar_grid.F.html
file:../code_reference/vdb/byname/delZ.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/delR.html
file:../code_reference/vdb/byname/model-src-ini_vertical_grid.F.html
file:../code_reference/vdb/byname/bathyFile.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/model-src-ini_depths.F.html

138 CHAPTER 3. GETTING STARTED WITH MITGCM

• Line 50,

zonalWindFile=’windx.sin_y’

This line specifies the name of the file from which the x-direction (zonal) surface wind stress is read.
This file is also a two-dimensional (x, y) map and is enumerated and formatted in the same manner
as the bathymetry file. The matlab program input/gendata.m includes example code to generate
a valid zonalWindFile file. The variable zonalWindFile is read in the routine INI PARMS. The
wind-stress file is read in the routine

S/R EXTERNAL FIELDS LOAD(external fields load.F) external fields load.F

other lines in the file input/data are standard values.

1 # Model parameters

2 # Continuous equation parameters

3 &PARM01

4 tRef=20.,10.,8.,6.,

5 sRef=10.,10.,10.,10.,

6 viscAz=1.E-2,

7 viscAh=4.E2,

8 no_slip_sides=.FALSE.,

9 no_slip_bottom=.TRUE.,

10 diffKhT=4.E2,

11 diffKzT=1.E-2,

12 beta=1.E-11,

13 tAlpha=2.E-4,

14 sBeta =0.,

15 gravity=9.81,

16 rigidLid=.FALSE.,

17 implicitFreeSurface=.TRUE.,

18 eosType=’LINEAR’,

19 readBinaryPrec=64,

20 &

21 # Elliptic solver parameters

22 &PARM02

23 cg2dMaxIters=1000,

24 cg2dTargetResidual=1.E-13,

25 &

26 # Time stepping parameters

27 &PARM03

28 startTime=0.,

29 endTime=12000.,

30 deltaTmom=1200.0,

31 deltaTtracer=1200.0,

32 abEps=0.1,

33 pChkptFreq=17000.0,

34 chkptFreq=0.0,

35 dumpFreq=2592000.0,

36 &

37 # Gridding parameters

38 &PARM04

39 usingCartesianGrid=.FALSE.,

40 usingSphericalPolarGrid=.TRUE.,

41 ygOrigin=0.,

42 delX=60*1.,

43 delY=60*1.,

44 delZ=500.,500.,500.,500.,

45 &

46 &PARM05

47 bathyFile=’topog.box’,

file:../code_reference/vdb/byname/zonalWindFile.html
file:../code_reference/vdb/byname/INI_PARMS.html
file:../code_reference/vdb/byname/model-src-external_fields_load.F.html

3.10. BAROCLINIC GYRE MITGCM EXAMPLE 139

48 hydrogThetaFile=,

49 hydrogSaltFile=,

50 zonalWindFile=’windx.sin_y’,

51 meridWindFile=,

52 &

3.10.4.2 File input/data.pkg

This file uses standard default values and does not contain customisations for this experiment.

3.10.4.3 File input/eedata

This file uses standard default values and does not contain customisations for this experiment.

3.10.4.4 File input/windx.sin y

The input/windx.sin y file specifies a two-dimensional (x, y) map of wind stress ,τx, values. The units used
are Nm−2 (the default for MITgcm). Although τx is only a function of latitude, y, in this experiment
this file must still define a complete two-dimensional map in order to be compatible with the standard
code for loading forcing fields in MITgcm (routine EXTERNAL FIELDS LOAD. The included matlab
program input/gendata.m gives a complete code for creating the input/windx.sin y file.

3.10.4.5 File input/topog.box

The input/topog.box file specifies a two-dimensional (x, y) map of depth values. For this experiment values
are either 0 m or −2000 m, corresponding respectively to a wall or to deep ocean. The file contains a
raw binary stream of data that is enumerated in the same way as standard MITgcm two-dimensional,
horizontal arrays. The included matlab program input/gendata.m gives a complete code for creating the
input/topog.box file.

3.10.4.6 File code/SIZE.h

Two lines are customized in this file for the current experiment

• Line 39,

sNx=60,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

• Line 40,

sNy=60,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

• Line 49,

Nr=4,

this line sets the vertical domain extent in grid points.

140 CHAPTER 3. GETTING STARTED WITH MITGCM

3.10.4.7 File code/CPP OPTIONS.h

This file uses standard default values and does not contain customisations for this experiment.

3.10.4.8 File code/CPP EEOPTIONS.h

This file uses standard default values and does not contain customisations for this experiment.

3.10.4.9 Other Files

Other files relevant to this experiment are

• model/src/ini cori.F. This file initializes the model coriolis variables fCorU and fCorV.

• model/src/ini spherical polar grid.F This file initializes the model grid discretisation variables dxF,
dyF, dxG, dyG, dxC, dyC.

• model/src/ini parms.F.

3.10.5 Running The Example

3.10.5.1 Code Download

In order to run the examples you must first download the code distribution. Instructions for downloading
the code can be found in section 3.2.

3.10.5.2 Experiment Location

This example experiments is located under the release sub-directory

verification/exp2/

3.10.5.3 Running the Experiment

To run the experiment

1. Set the current directory to input/

% cd input

2. Verify that current directory is now correct

% pwd

You should see a response on the screen ending in

verification/exp2/input

3. Run the genmake script to create the experiment Makefile

% ../../../tools/genmake -mods=../code

4. Create a list of header file dependencies in Makefile

% make depend

5. Build the executable file.

% make

6. Run the mitgcmuv executable

% ./mitgcmuv

3.11. GYRE ADVECTION EXAMPLE 141

3.11 Ocean Gyre Advection Schemes

(in directory: verification/tutorial advection in gyre/)

Author: Oliver Jahn and Chris Hill

This set of examples is based on the barotropic and baroclinic gyre MITgcm configurations, that are
described in the tutorial sections 3.9 and 3.10. The examples in this section explain how to introduce
a passive tracer into the flow field of the barotropic and baroclinic gyre setups and looks at how the
time evolution of the passive tracer depends on the advection or transport scheme that is selected for the
tracer.

Passive tracers are useful in many numerical experiments. In some cases tracers are used to track
flow pathways, for example in Dutay et al. [2002] a passive tracer is used to track pathways of CFC-11
in 13 global ocean models, using a numerical configuration similar to the example described in section
3.20.5). In other cases tracers are used as a way to infer bulk mixing coefficients for a turbulent flow field,
for example in Marshall et al. [2006] a tracer is used to infer eddy mixing coefficients in the Antarctic
Circumpolar Current region. In biogeochemical and ecological simulations large numbers of tracers are
used that carry the concentrations of biological nutrients and concentrations of biological species, for
example in When using tracers for these and other purposes it is useful to have a feel for the
role that the advection scheme employed plays in determining properties of the tracer distribution. In
particular, in a discrete numerical model tracer advection only approximates the continuum behavior in
space and time and different advection schemes introduce diferent approximations so that the resulting
tracer distributions vary. In the following text we illustrate how to use the different advection schemes
available in MITgcm here, and discuss which properties are well represented by each one. The advection
schemes selections also apply to active tracers (e.g. T and S) and the character of the schemes also affect
their distributions and behavior.

3.11.1 Advection and tracer transport

In general, the tracer problem we want to solve can be written

∂C

∂t
= −U · ∇C + S (3.30)

where C is the tracer concentration in a model cell, U is the model three-dimensional flow field (U =
(u, v, w)). In (3.30) S represents source, sink and tendency terms not associated with advective transport.
Example of terms in S include (i) air-sea fluxes for a dissolved gas, (ii) biological grazing and growth
terms (for a biogeochemical problem) or (iii) convective mixing and other sub-grid parameterizations of
mixing. In this section we are primarily concerned with

1. how to introduce the tracer term, C, into an integration

2. the different discretized forms of the −U · ∇C term that are available

3.11.2 Introducing a tracer into the flow

The MITgcm ptracers package (see section 6.3.3 for a more complete discussion of the ptracers package
and section 6.1 for a general introduction to MITgcm packages) provides pre-coded support for a simple
passive tracer with an initial distribution at simulation time t = 0 of C0(x, y, z). The steps required to
use this capability are

1. Activating the ptracers package. This simply requires adding the line ptracers to the
packages.conf file in the code/ directory for the experiment.

2. Setting an initial tracer distribution.

Once the two steps above are complete we can proceed to examine how the tracer we have created
is carried by the flow field and what properties of the tracer distribution are preserved under different
advection schemes.

142 CHAPTER 3. GETTING STARTED WITH MITGCM

1

0 5 10 15

x 10−3

2

0 5 10 15

x 10−3

3

0 5 10 15

x 10−3

4

0 5 10 15

x 10−3

7

0 5 10 15

x 10−3

33

0 5 10 15

x 10−3

77

0 5 10 15

x 10−3

30

0 5 10 15

x 10−3

82

0 5 10 15

x 10−3

81

0 5 10 15

x 10−3

Figure 3.3: Dye evolving in a double gyre with different advection schemes. The figure shows the dye
concentration one year after injection into a single grid cell near the left boundary. Stream lines are also
shown.

3.11.3 Selecting an advection scheme

- flags in data and data.ptracers
- overlap width
- CPP GAD ALLOW SOM ADVECT required for SOM case

3.11.4 Comparison of different advection schemes

1. Conservation

2. Dispersion

3. Diffusion

4. Positive definite

3.11.5 Code and Parameters files for this tutorial

The code and parameters for the experiments can be found in the MITgcm example experiments directory
verification/tutorial advection in gyre/.

3.12. GLOBAL OCEAN MITGCM EXAMPLE 143

0 50 100
10

−4

10
−3

10
−2

10
−1

10
0

t

m
ax

 1
 2
 3
 4
 7
30
33
77
80
81

0 50 100

−10
−2

−10
−4

−10
−6

−10
−8

−10
−10

t

m
in

0 50 100
10

−5

10
−4

10
−3

10
−2

t

sd

Figure 3.4: Maxima, minima and standard deviation (from left) as a function of time (in months) for the
gyre circulation experiment from figure 3.3.

3.12 Global Ocean Simulation at 4◦ Resolution

(in directory: verification/tutorial global oce latlon/)

WARNING: the description of this experiment is not complete. In particular, many pa-
rameters are not yet described.

This example experiment demonstrates using the MITgcm to simulate the planetary ocean circu-
lation. The simulation is configured with realistic geography and bathymetry on a 4◦ × 4◦ spherical
polar grid. The files for this experiment are in the verification directory under tutorial global oce latlon.
Fifteen levels are used in the vertical, ranging in thickness from 50 m at the surface to 690 m at depth,
giving a maximum model depth of 5200 m. Different time-steps are used to accelerate the convergence
to equilibrium [Bryan, 1984] so that, at this resolution, the configuration can be integrated forward for
thousands of years on a single processor desktop computer.

3.12.1 Overview

The model is forced with climatological wind stress data from Trenberth et al. [1990] and NCEP surface
flux data from Kalnay et al. [1996]. Climatological data [Levitus and T.P.Boyer, 1994b] is used to initialize
the model hydrography. Levitus and T.P.Boyer seasonal climatology data is also used throughout the
calculation to provide additional air-sea fluxes. These fluxes are combined with the NCEP climatological
estimates of surface heat flux, resulting in a mixed boundary condition of the style described in Haney
[1971]. Altogether, this yields the following forcing applied in the model surface layer.

Fu =
τx

ρ0∆zs
(3.31)

Fv =
τy

ρ0∆zs
(3.32)

Fθ = −λθ(θ − θ∗) − 1

Cpρ0∆zs
Q (3.33)

Fs = −λs(S − S∗) +
S0

∆zs
(E − P −R) (3.34)

144 CHAPTER 3. GETTING STARTED WITH MITGCM

where Fu, Fv, Fθ, Fs are the forcing terms in the zonal and meridional momentum and in the potential
temperature and salinity equations respectively. The term ∆zs represents the top ocean layer thickness in
meters. It is used in conjunction with a reference density, ρ0 (here set to 999.8 kgm−3), a reference salinity,
S0 (here set to 35 ppt), and a specific heat capacity, Cp (here set to 4000 J ◦C−1 kg−1), to convert input
dataset values into time tendencies of potential temperature (with units of ◦C s−1), salinity (with units
ppt s−1) and velocity (with units m s−2). The externally supplied forcing fields used in this experiment
are τx, τy, θ∗, S∗, Q and E−P−R. The wind stress fields (τx, τy) have units of N m−2. The temperature
forcing fields (θ∗ and Q) have units of ◦C and W m−2 respectively. The salinity forcing fields (S∗ and
E − P −R) have units of ppt and m s−1 respectively. The source files and procedures for ingesting this
data into the simulation are described in the experiment configuration discussion in section 3.12.3.

3.12.2 Discrete Numerical Configuration

The model is configured in hydrostatic form. The domain is discretised with a uniform grid spacing in
latitude and longitude on the sphere ∆φ = ∆λ = 4◦, so that there are ninety grid cells in the zonal
and forty in the meridional direction. The internal model coordinate variables x and y are initialized
according to

x = r cos(φ), ∆x = r cos(∆φ) (3.35)

y = rλ, ∆y = r∆λ (3.36)

Arctic polar regions are not included in this experiment. Meridionally the model extends from 80◦S to
80◦N. Vertically the model is configured with fifteen layers with the following thicknesses: ∆z1 = 50 m,
∆z2 = 70 m, ∆z3 = 100 m, ∆z4 = 140 m, ∆z5 = 190 m, ∆z6 = 240 m, ∆z7 = 290 m, ∆z8 = 340 m,
∆z9 = 390 m, ∆z10 = 440 m, ∆z11 = 490 m, ∆z12 = 540 m, ∆z13 = 590 m, ∆z14 = 640 m, ∆z15 = 690 m
(here the numeric subscript indicates the model level index number, k) to give a total depth, H , of
−5200m. The implicit free surface form of the pressure equation described in Marshall et al. [1997b] is
employed. A Laplacian operator, ∇2, provides viscous dissipation. Thermal and haline diffusion is also
represented by a Laplacian operator.

Wind-stress forcing is added to the momentum equations in (3.37) for both the zonal flow, u and the
meridional flow v, according to equations (3.31) and (3.32). Thermodynamic forcing inputs are added to
the equations in (3.37) for potential temperature, θ, and salinity, S, according to equations (3.33) and
(3.34). This produces a set of equations solved in this configuration as follows:

Du

Dt
− fv +

1

ρ

∂p
′

∂x
−∇h ·Ah∇hu− ∂

∂z
Az

∂u

∂z
=

{
Fu (surface)

0 (interior)
(3.37)

Dv

Dt
+ fu+

1

ρ

∂p
′

∂y
−∇h · Ah∇hv −

∂

∂z
Az

∂v

∂z
=

{
Fv (surface)

0 (interior)
(3.38)

∂η

∂t
+ ∇h · ~u = 0 (3.39)

Dθ

Dt
−∇h ·Kh∇hθ −

∂

∂z
Γ(Kz)

∂θ

∂z
=

{
Fθ (surface)

0 (interior)
(3.40)

Ds

Dt
−∇h ·Kh∇hs−

∂

∂z
Γ(Kz)

∂s

∂z
=

{
Fs (surface)

0 (interior)
(3.41)

gρ0η +

∫ 0

−z

ρ
′

dz = p
′

(3.42)

where u = Dx
Dt = r cos(φ)Dλ

Dt and v = Dy
Dt = rDφ

Dt are the zonal and meridional components of the flow
vector, ~u, on the sphere. As described in MITgcm Numerical Solution Procedure 2, the time evolution
of potential temperature, θ, equation is solved prognostically. The total pressure, p, is diagnosed by
summing pressure due to surface elevation η and the hydrostatic pressure.

3.12. GLOBAL OCEAN MITGCM EXAMPLE 145

3.12.2.1 Numerical Stability Criteria

The Laplacian dissipation coefficient, Ah, is set to 5 × 105ms−1. This value is chosen to yield a Munk
layer width [Adcroft, 1995],

Mw = π(
Ah

β
)

1
3 (3.43)

of ≈ 600km. This is greater than the model resolution in low-latitudes, ∆x ≈ 400km, ensuring that the
frictional boundary layer is adequately resolved.

The model is stepped forward with a time step ∆tθ = 24 hours for thermodynamic variables and ∆tv =
30 minutes for momentum terms. With this time step, the stability parameter to the horizontal Laplacian
friction [Adcroft, 1995]

Sl = 4
Ah∆tv

∆x2 (3.44)

evaluates to 0.6 at a latitude of φ = 80◦, which is above the 0.3 upper limit for stability, but the zonal
grid spacing ∆x is smallest at φ = 80◦ where ∆x = r cos(φ)∆φ ≈ 77km and the stability criterion is
already met 1 grid cell equatorwards (at φ = 76◦).
The vertical dissipation coefficient, Az , is set to 1 × 10−3m2s−1. The associated stability limit

Sl = 4
Az∆tv

∆z2 (3.45)

evaluates to 0.0029 for the smallest model level spacing (∆z1 = 50m) which is well below the upper
stability limit.

The numerical stability for inertial oscillations [Adcroft, 1995]

Si = f2∆tv
2 (3.46)

evaluates to 0.07 for f = 2ω sin(80◦) = 1.43×10−4 s−1, which is below the Si < 1 upper limit for stability.

The advective CFL [Adcroft, 1995] for a extreme maximum horizontal flow speed of |~u| = 2ms−1

Sa =
|~u|∆tv

∆x
(3.47)

evaluates to 5 × 10−2. This is well below the stability limit of 0.5.

The stability parameter for internal gravity waves propagating with a maximum speed of cg = 10 ms−1

[Adcroft, 1995]

Sc =
cg∆tv
∆x

(3.48)

evaluates to 2.3 × 10−1. This is close to the linear stability limit of 0.5.

3.12.3 Experiment Configuration

The model configuration for this experiment resides under the directory tutorial global oce latlon/. The
experiment files

• input/data

• input/data.pkg

146 CHAPTER 3. GETTING STARTED WITH MITGCM

• input/eedata,

• input/trenberth taux.bin,

• input/trenberth tauy.bin,

• input/lev s.bin,

• input/lev t.bin,

• input/lev sss.bin,

• input/lev sst.bin,

• input/bathymetry.bin,

• code/SIZE.h.

contain the code customizations and parameter settings for these experiments. Below we describe the
customizations to these files associated with this experiment.

3.12.3.1 Driving Datasets

Figures (3.5-3.10) show the relaxation temperature (θ∗) and salinity (S∗) fields, the wind stress compo-
nents (τx and τy), the heat flux (Q) and the net fresh water flux (E−P−R) used in equations (3.31-3.34).
The figures also indicate the lateral extent and coastline used in the experiment. Figure (— missing figure
—) shows the depth contours of the model domain.

3.12.3.2 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters
that are significant for this configuration are

• Lines 7–8

tRef= 15*20.,

sRef= 15*35.,

set reference values for potential temperature and salinity at each model level in units of ◦C and
ppt. The entries are ordered from surface to depth. Density is calculated from anomalies at each
level evaluated with respect to the reference values set here.

S/R INI THETA(ini theta.F)
S/R INI SALT(ini salt.F)

• Line 9,

viscAr=1.E-3,

this line sets the vertical Laplacian dissipation coefficient to 1 × 10−3m2s−1. Boundary conditions
for this operator are specified later.

S/R CALC DIFFUSIVITY(calc diffusivity.F)

• Line 10,

viscAh=5.E5,

this line sets the horizontal Laplacian frictional dissipation coefficient to 5 × 105m2s−1. Boundary
conditions for this operator are specified later.

• Lines 11 and 13,

3.12. GLOBAL OCEAN MITGCM EXAMPLE 147

diffKhT=0.,

diffKhS=0.,

set the horizontal diffusion coefficient for temperature and salinity to 0, since package GMREDI is
used.

• Lines 12 and 14,

diffKrT=3.E-5,

diffKrS=3.E-5,

set the vertical diffusion coefficient for temperature and salinity to 3 × 10−5 m2s−1. The boundary
condition on this operator is ∂

∂z = 0 at both the upper and lower boundaries.

• Lines 15–17

rhonil=1035.,

rhoConstFresh=1000.,

eosType = ’JMD95Z’,

set the reference densities for sea water and fresh water, and selects the equation of state [Jackett and

McDougall, 1995]

S/R FIND RHO (find rho.F)
S/R FIND ALPHA (find alpha.F)
S/R CALC PHI HYD (calc phi hyd.F)
S/R INI CG2D (ini cg2d.F)
S/R INI CG3D (ini cg3d.F)
S/R INI PARMS (ini parms.F)
S/R SOLVE FOR PRESSURE (solve for pressure.F)

• Lines 18–19,

ivdc_kappa=100.,

implicitDiffusion=.TRUE.,

specify an “implicit diffusion” scheme with increased vertical diffusivity of 100 m2/s in case of
instable stratification.

• . . .

• Line 28,

readBinaryPrec=32,

Sets format for reading binary input datasets holding model fields to use 32-bit representation for
floating-point numbers.

S/R READ WRITE FLD (read write fld.F)
S/R READ WRITE REC (read write rec.F)

• Line 33,

cg2dMaxIters=500,

Sets maximum number of iterations the two-dimensional, conjugate gradient solver will use, irre-
spective of convergence criteria being met.

S/R CG2D (cg2d.F)

• Line 34,

148 CHAPTER 3. GETTING STARTED WITH MITGCM

cg2dTargetResidual=1.E-13,

Sets the tolerance which the two-dimensional, conjugate gradient solver will use to test for conver-
gence in equation 2.20 to 1× 10−13. Solver will iterate until tolerance falls below this value or until
the maximum number of solver iterations is reached.
S/R CG2D (cg2d.F)

• Line 39,

nIter0=0,

Sets the starting time for the model internal time counter. When set to non-zero this option
implicitly requests a checkpoint file be read for initial state. By default the checkpoint file is named
according to the integer number of time step value nIter0. The internal time counter works in
seconds. Alternatively, startTime can be set.

• Line 40,

nTimeSteps=20,

Sets the time step number at which this simulation will terminate. At the end of a simulation
a checkpoint file is automatically written so that a numerical experiment can consist of multiple
stages. Alternatively endTime can be set.

• Line 44,

deltaTmom=1800.,

Sets the timestep ∆tv used in the momentum equations to 30 mins. See section 2.2.

S/R TIMESTEP(timestep.F)

• Line 45,

tauCD=321428.,

Sets the D-grid to C-grid coupling time scale τCD used in the momentum equations.

S/R INI PARMS(ini parms.F)
S/R MOM FLUXFORM(mom fluxform.F)

• Lines 46–48,

deltaTtracer=86400.,

deltaTClock = 86400.,

deltaTfreesurf= 86400.,

Sets the default timestep, ∆tθ, for tracer equations and implicit free surface equations to 24 hours.
See section 2.2.

S/R TIMESTEP TRACER(timestep tracer.F)

• Line 76,

bathyFile=’bathymetry.bin’

This line specifies the name of the file from which the domain bathymetry is read. This file is a
two-dimensional (x, y) map of depths. This file is assumed to contain 32-bit binary numbers giving
the depth of the model at each grid cell, ordered with the x coordinate varying fastest. The points
are ordered from low coordinate to high coordinate for both axes. The units and orientation of the
depths in this file are the same as used in the MITgcm code. In this experiment, a depth of 0m
indicates a solid wall and a depth of < 0m indicates open ocean.

3.12. GLOBAL OCEAN MITGCM EXAMPLE 149

• Lines 79–80,

zonalWindFile=’trenberth_taux.bin’

meridWindFile=’trenberth_tauy.bin’

These lines specify the names of the files from which the x- and y- direction surface wind stress is
read. These files are also three-dimensional (x, y, time) maps and are enumerated and formatted in
the same manner as the bathymetry file.

other lines in the file input/data are standard values that are described in the MITgcm Getting Started
and MITgcm Parameters notes.

1 # ====================

2 # | Model parameters |

3 # ====================

4 #

5 # Continuous equation parameters

6 &PARM01

7 tRef = 15*20.,

8 sRef = 15*35.,

9 viscAr=1.E-3,

10 viscAh=5.E5,

11 diffKhT=0.,

12 diffKrT=3.E-5,

13 diffKhS=0.,

14 diffKrS=3.E-5,

15 rhonil=1035.,

16 rhoConstFresh=1000.,

17 eosType = ’JMD95Z’,

18 ivdc_kappa=100.,

19 implicitDiffusion=.TRUE.,

20 allowFreezing=.TRUE.,

21 exactConserv=.TRUE.,

22 useRealFreshWaterFlux=.TRUE.,

23 useCDscheme=.TRUE.,

24 # turn on looped cells

25 hFacMin=.05,

26 hFacMindr=50.,

27 # set precision of data files

28 readBinaryPrec=32,

29 &

30

31 # Elliptic solver parameters

32 &PARM02

33 cg2dMaxIters=500,

34 cg2dTargetResidual=1.E-13,

35 &

36

37 # Time stepping parameters

38 &PARM03

39 nIter0= 0,

40 nTimeSteps = 20,

41 # 100 years of integration will yield a reasonable flow field

42 # startTime = 0.,

43 # endTime = 3110400000.,

44 deltaTmom = 1800.,

45 tauCD = 321428.,

46 deltaTtracer= 86400.,

47 deltaTClock = 86400.,

48 deltaTfreesurf= 86400.,

49 abEps = 0.1,

150 CHAPTER 3. GETTING STARTED WITH MITGCM

50 pChkptFreq= 1728000.,

51 dumpFreq= 864000.,

52 taveFreq= 864000.,

53 monitorFreq=1.,

54 # 2 months restoring timescale for temperature

55 tauThetaClimRelax= 5184000.,

56 # 6 months restoring timescale for salinity

57 tauSaltClimRelax = 15552000.,

58 periodicExternalForcing=.TRUE.,

59 externForcingPeriod=2592000.,

60 externForcingCycle=31104000.,

61 &

62

63 # Gridding parameters

64 &PARM04

65 usingSphericalPolarGrid=.TRUE.,

66 delR= 50., 70., 100., 140., 190.,

67 240., 290., 340., 390., 440.,

68 490., 540., 590., 640., 690.,

69 ygOrigin=-80.,

70 dySpacing=4.,

71 dxSpacing=4.,

72 &

73

74 # Input datasets

75 &PARM05

76 bathyFile= ’bathymetry.bin’,

77 hydrogThetaFile=’lev_t.bin’,

78 hydrogSaltFile= ’lev_s.bin’,

79 zonalWindFile= ’trenberth_taux.bin’,

80 meridWindFile= ’trenberth_tauy.bin’,

81 thetaClimFile= ’lev_sst.bin’,

82 saltClimFile= ’lev_sss.bin’,

83 surfQFile= ’ncep_qnet.bin’,

84 the_run_name= ’global_oce_latlon’,

85 # fresh water flux is turned on, comment next line to it turn off

86 # (maybe better with surface salinity restoring)

87 EmPmRFile= ’ncep_emp.bin’,

88 &

3.12.3.3 File input/data.pkg

This file uses standard default values and does not contain customisations for this experiment.

3.12.3.4 File input/eedata

This file uses standard default values and does not contain customisations for this experiment.

3.12.3.5 Filesinput/trenberth taux.bin and input/trenberth tauy.bin

The input/trenberth taux.bin and input/trenberth tauy.bin files specify a three-dimensional (x, y, time)
map of wind stress, (τx, τy), values [Trenberth et al., 1990]. The units used are Nm−2.

3.12.3.6 File input/bathymetry.bin

The input/bathymetry.bin file specifies a two-dimensional (x, y) map of depth values. For this experiment
values range between 0 and −5200 m, and have been derived from ETOPO5. The file contains a raw binary
stream of data that is enumerated in the same way as standard MITgcm two-dimensional, horizontal
arrays.

3.12. GLOBAL OCEAN MITGCM EXAMPLE 151

3.12.3.7 File code/SIZE.h

Four lines are customized in this file for the current experiment

• Line 40,

sNx=45,

this line sets the number of grid points of each tile (or sub-domain) along the x-coordinate axis.

• Line 41,

sNy=40,

this line sets the number of grid points of each tile (or sub-domain) along the y-coordinate axis.

• Lines 46 and 44,

nPx=1,

nSx=2,

theses lines set, respectively, the number of processes and the number of tiles per process along
the x-coordinate axis. Therefore, the total number of grid points along the x-coordinate axis
corresponding to the full domain extent is Nx = sNx ∗ sNx ∗ nPx = 90

• Line 50,

Nr=15

this line sets the vertical domain extent in grid points.

1 C $Header: /u/gcmpack/MITgcm/verification/tutorial_global_oce_latlon/code/SIZE.h,v 1.1 2006/07/14 20:35:22

2 C $Name: $

3

4 C

5 C /==\

6 C | SIZE.h Declare size of underlying computational grid. |

7 C |==|

8 C | The design here support a three-dimensional model grid |

9 C | with indices I,J and K. The three-dimensional domain |

10 C | is comprised of nPx*nSx blocks of size sNx along one axis|

11 C | nPy*nSy blocks of size sNy along another axis and one |

12 C | block of size Nz along the final axis. |

13 C | Blocks have overlap regions of size OLx and OLy along the|

14 C | dimensions that are subdivided. |

15 C \==/

16 C Voodoo numbers controlling data layout.

17 C sNx - No. X points in sub-grid.

18 C sNy - No. Y points in sub-grid.

19 C OLx - Overlap extent in X.

20 C OLy - Overlat extent in Y.

21 C nSx - No. sub-grids in X.

22 C nSy - No. sub-grids in Y.

23 C nPx - No. of processes to use in X.

24 C nPy - No. of processes to use in Y.

25 C Nx - No. points in X for the total domain.

26 C Ny - No. points in Y for the total domain.

27 C Nr - No. points in Z for full process domain.

28 INTEGER sNx

29 INTEGER sNy

30 INTEGER OLx

152 CHAPTER 3. GETTING STARTED WITH MITGCM

31 INTEGER OLy

32 INTEGER nSx

33 INTEGER nSy

34 INTEGER nPx

35 INTEGER nPy

36 INTEGER Nx

37 INTEGER Ny

38 INTEGER Nr

39 PARAMETER (

40 & sNx = 45,

41 & sNy = 40,

42 & OLx = 2,

43 & OLy = 2,

44 & nSx = 2,

45 & nSy = 1,

46 & nPx = 1,

47 & nPy = 1,

48 & Nx = sNx*nSx*nPx,

49 & Ny = sNy*nSy*nPy,

50 & Nr = 15)

51

52 C MAX_OLX - Set to the maximum overlap region size of any array

53 C MAX_OLY that will be exchanged. Controls the sizing of exch

54 C routine buufers.

55 INTEGER MAX_OLX

56 INTEGER MAX_OLY

57 PARAMETER (MAX_OLX = OLx,

58 & MAX_OLY = OLy)

59

3.12.3.8 Other Files

3.13. P COORDINATE GLOBAL OCEAN MITGCM EXAMPLE 153

3.13 Global Ocean Simulation at 4◦ Resolution in Pressure Co-

ordinates

(in directory: verification/tutorial global oce in p/)

This example experiment demonstrates using the MITgcm to simulate the planetary ocean circula-
tion in pressure coordinates, that is, without making the Boussinesq approximations. The files for this
experiment can be found in the verification directory under tutorial global oce in p. The simulation
is configured as a near copy of tutorial global oce latlon (Section 3.12). with realistic geography and
bathymetry on a 4◦ × 4◦ spherical polar grid. Fifteen levels are used in the vertical, ranging in thickness
from 50.4089dbar ≈ 50m at the surface to 710.33dbar ≈ 690m at depth, giving a maximum model
depth of 5302.3122dbar ≈ 5200km. At this resolution, the configuration can be integrated forward for
thousands of years on a single processor desktop computer.

3.13.1 Overview

The model is forced with climatological wind stress data from Trenberth et al. [1990] and surface flux
data from Jiang et al. [1999]. Climatological data [Levitus and T.P.Boyer, 1994b] is used to initialize
the model hydrography. Levitus and T.P.Boyer seasonal climatology data is also used throughout the
calculation to provide additional air-sea fluxes. These fluxes are combined with the Jiang climatological
estimates of surface heat flux, resulting in a mixed boundary condition of the style described in Haney
[1971]. Altogether, this yields the following forcing applied in the model surface layer.

Fu = g
τx

∆ps
(3.49)

Fv = g
τy

∆ps
(3.50)

Fθ = −gλθ(θ − θ∗) − 1

Cp∆ps
Q (3.51)

Fs = +gρFW
S

ρ∆ps
(E − P −R) (3.52)

where Fu, Fv, Fθ, Fs are the forcing terms in the zonal and meridional momentum and in the potential
temperature and salinity equations respectively. The term ∆ps represents the top ocean layer thickness
in Pa. It is used in conjunction with a reference density, ρFW (here set to 999.8 kgm−3), the surface
salinity, S, and a specific heat capacity, Cp (here set to 4000 J ◦C−1 kg−1), to convert input dataset
values into time tendencies of potential temperature (with units of ◦C s−1), salinity (with units ppt s−1)
and velocity (with units m s−2). The externally supplied forcing fields used in this experiment are τx,
τy, θ∗, Q and E − P −R. The wind stress fields (τx, τy) have units of N m−2. The temperature forcing
fields (θ∗ and Q) have units of ◦C and W m−2 respectively. The salinity forcing fields (E − P −R) has
units of m s−1 respectively. The source files and procedures for ingesting these data into the simulation
are described in the experiment configuration discussion in section 3.12.3.

3.13.2 Discrete Numerical Configuration

Due to the pressure coordinate, the model can only be hydrostatic [de Szoeke and Samelson, 2002]. The
domain is discretized with a uniform grid spacing in latitude and longitude on the sphere ∆φ = ∆λ = 4◦,
so that there are ninety grid cells in the zonal and forty in the meridional direction. The internal model
coordinate variables x and y are initialized according to

x = r cos(φ), ∆x = r cos(∆φ) (3.53)

y = rλ, ∆y = r∆λ (3.54)

Arctic polar regions are not included in this experiment. Meridionally the model extends from 80◦S

154 CHAPTER 3. GETTING STARTED WITH MITGCM

to 80◦N. Vertically the model is configured with fifteen layers with the following thicknesses

∆p1 = 7103300.720021Pa,

∆p2 = 6570548.440790Pa,

∆p3 = 6041670.010249Pa,

∆p4 = 5516436.666057Pa,

∆p5 = 4994602.034410Pa,

∆p6 = 4475903.435290Pa,

∆p7 = 3960063.245801Pa,

∆p8 = 3446790.312651Pa,

∆p9 = 2935781.405664Pa,

∆p10 = 2426722.705046Pa,

∆p11 = 1919291.315988Pa,

∆p12 = 1413156.804970Pa,

∆p13 = 1008846.750166Pa,

∆p14 = 705919.025481Pa,

∆p15 = 504089.693499Pa,

(here the numeric subscript indicates the model level index number, k; note, that the surface layer
has the highest index number 15) to give a total depth, H , of −5200m. In pressure, this is p0

b =
53023122.566084Pa. The implicit free surface form of the pressure equation described in Marshall et al.
[1997b] with the nonlinear extension by Campin et al. [2004] is employed. A Laplacian operator, ∇2,
provides viscous dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.

Wind-stress forcing is added to the momentum equations in (3.55) for both the zonal flow, u and the
meridional flow v, according to equations (3.49) and (3.50). Thermodynamic forcing inputs are added to
the equations in (3.55) for potential temperature, θ, and salinity, S, according to equations (3.51) and
(3.52). This produces a set of equations solved in this configuration as follows:

Du

Dt
− fv +

1

ρ

∂Φ
′

∂x
−∇h ·Ah∇hu− (gρ0)

2 ∂

∂p
Ar

∂u

∂p
=

{
Fu (surface)

0 (interior)
(3.55)

Dv

Dt
+ fu+

1

ρ

∂Φ
′

∂y
−∇h · Ah∇hv − (gρ0)

2 ∂

∂p
Ar

∂v

∂p
=

{
Fv (surface)

0 (interior)
(3.56)

∂pb

∂t
+ ∇h · ~u = 0 (3.57)

Dθ

Dt
−∇h ·Kh∇hθ − (gρ0)

2 ∂

∂p
Γ(Kr)

∂θ

∂p
=

{
Fθ (surface)

0 (interior)
(3.58)

Ds

Dt
−∇h ·Kh∇hs− (gρ0)

2 ∂

∂p
Γ(Kr)

∂S

∂p
=

{
Fs (surface)

0 (interior)
(3.59)

Φ
′(0)
−H + α0pb +

∫ p

0

α′dp = Φ′ (3.60)

where u = Dx
Dt = r cos(φ)Dλ

Dt and v = Dy
Dt = rDφ

Dt are the zonal and meridional components of the flow
vector, ~u, on the sphere. As described in MITgcm Numerical Solution Procedure 2, the time evolution of
potential temperature, θ, equation is solved prognostically. The full geopotential height, Φ, is diagnosed
by summing the geopotential height anomalies Φ′ due to bottom pressure pb and density variations. The
integration of the hydrostatic equation is started at the bottom of the domain. The condition of p = 0 at
the sea surface requires a time-independent integration constant for the height anomaly due to density

variations Φ
′(0)
−H , which is provided as an input field.

3.13. P COORDINATE GLOBAL OCEAN MITGCM EXAMPLE 155

3.13.3 Experiment Configuration

The model configuration for this experiment resides under the directory tutorial examples/global ocean circulation/.
The experiment files

• input/data

• input/data.pkg

• input/eedata,

• input/topog.bin,

• input/deltageopotjmd95.bin,

• input/lev s.bin,

• input/lev t.bin,

• input/trenberth taux.bin,

• input/trenberth tauy.bin,

• input/lev sst.bin,

• input/shi qnet.bin,

• input/shi empmr.bin,

• code/CPP EEOPTIONS.h

• code/CPP OPTIONS.h,

• code/SIZE.h.

contain the code customizations and parameter settings for these experiments. Below we describe the
customizations to these files associated with this experiment.

3.13.3.1 Driving Datasets

Figures (3.5-3.10) show the relaxation temperature (θ∗) and salinity (S∗) fields, the wind stress compo-
nents (τx and τy), the heat flux (Q) and the net fresh water flux (E −P −R) used in equations 3.49-3.52.
The figures also indicate the lateral extent and coastline used in the experiment. Figure (3.11) shows the
depth contours of the model domain.

3.13.3.2 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters
that are significant for this configuration are

• Line 15,

viscAr=1.721611620915750E+05,

this line sets the vertical Laplacian dissipation coefficient to 1.72161162091575× 105Pa2s−1. Note
that, the factor (gρ)2 needs to be included in this line. Boundary conditions for this operator are
specified later. This variable is copied into model general vertical coordinate variable viscAr.

S/R CALC DIFFUSIVITY(calc diffusivity.F)

• Line 9–10,

viscAh=3.E5,

no_slip_sides=.TRUE.

156 CHAPTER 3. GETTING STARTED WITH MITGCM

0 5 10 15 20 25

longitude [°E]

la
tit

ud
e

[° N
]

0 50 100 150 200 250 300 350
−80

−60

−40

−20

0

20

40

60

80

Figure 3.5: Annual mean of relaxation temperature [◦C]

these lines set the horizontal Laplacian frictional dissipation coefficient to 3×105m2s−1 and specify
a no-slip boundary condition for this operator, that is, u = 0 along boundaries in y and v = 0 along
boundaries in x.

• Lines 11-13,

viscAr =1.721611620915750e5,

#viscAz =1.67E-3,

no_slip_bottom=.FALSE.,

These lines set the vertical Laplacian frictional dissipation coefficient to 1.721611620915750 ×
105 Pa2s−1, which corresponds to 1.67 × 10−3 m2s−1 in the commented line, and specify a free
slip boundary condition for this operator, that is, ∂u

∂p = ∂v
∂p = 0 at p = p0

b , where p0
b is the local

bottom pressure of the domain at rest. Note that, the factor (gρ)2 needs to be included in this line.

• Line 14,

diffKhT=1.E3,

this line sets the horizontal diffusion coefficient for temperature to 1000 m2s−1. The boundary
condition on this operator is ∂

∂x = ∂
∂y = 0 on all boundaries.

• Line 15–16,

diffKrT=5.154525811125000e3,

#diffKzT=0.5E-4,

3.13. P COORDINATE GLOBAL OCEAN MITGCM EXAMPLE 157

30 31 32 33 34 35 36 37

longitude [°E]

la
tit

ud
e

[° N
]

0 50 100 150 200 250 300 350
−80

−60

−40

−20

0

20

40

60

80

Figure 3.6: Annual mean of relaxation salinity [PSU]

this line sets the vertical diffusion coefficient for temperature to 5.154525811125 × 103 Pa2s−1,
which corresponds to 5 × 10−4 m2s−1 in the commented line. Note that, the factor (gρ)2 needs to
be included in this line. The boundary condition on this operator is ∂

∂p = 0 at both the upper and
lower boundaries.

• Line 17–19,

diffKhS=1.E3,

diffKrS=5.154525811125000e3,

#diffKzS=0.5E-4,

These lines set the same values for the diffusion coefficients for salinity as for temperature.

• Line 20–22,

implicitDiffusion=.TRUE.,

ivdc_kappa=1.030905162225000E9,

#ivdc_kappa=10.0,

Select implicit diffusion as a convection scheme and set coefficient for implicit vertical diffusion to
1.030905162225× 109 Pa2s−1, which corresponds to 10m2 s−1.

• Line 23-24,

gravity=9.81,

gravitySign=-1.D0,

158 CHAPTER 3. GETTING STARTED WITH MITGCM

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

longitude [°E]

la
tit

ud
e

[° N
]

0 50 100 150 200 250 300 350
−80

−60

−40

−20

0

20

40

60

80

Figure 3.7: Annual mean of zonal wind stress component [Nm m−2]

These lines set the gravitational acceleration coefficient to 9.81ms−1 and define the upward direction
relative to the direction of increasing vertical coordinate (in pressure coordinates, up is in the
direction of decreasing pressure)

• Line 25,

rhoNil=1035.,

sets the reference density of sea water to 1035kgm−3.

S/R CALC PHI HYD (calc phi hyd.F)
S/R INI CG2D (ini cg2d.F)
S/R INI CG3D (ini cg3d.F)
S/R INI PARMS (ini parms.F)
S/R SOLVE FOR PRESSURE (solve for pressure.F)

• Line 28

eosType=’JMD95P’,

Selects the full equation of state according to Jackett and McDougall [1995]. The only other sensible
choice is the equation of state by McDougall et al. [2003], ’MDJFW’. All other equations of state
do not make sense in this configuration.

S/R FIND RHO (find rho.F)
S/R FIND ALPHA (find alpha.F)

• Line 28-29,

3.13. P COORDINATE GLOBAL OCEAN MITGCM EXAMPLE 159

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

longitude [°E]

la
tit

ud
e

[° N
]

0 50 100 150 200 250 300 350
−80

−60

−40

−20

0

20

40

60

80

Figure 3.8: Annual mean of meridional wind stress component [Nmm−2]

rigidLid=.FALSE.,

implicitFreeSurface=.TRUE.,

Selects the barotropic pressure equation to be the implicit free surface formulation.

• Line 30

exactConserv=.TRUE.,

Select a more accurate conservation of properties at the surface layer by including the horizontal
velocity divergence to update the free surface.

• Line 31–33

nonlinFreeSurf=3,

hFacInf=0.2,

hFacSup=2.0,

Select the nonlinear free surface formulation and set lower and upper limits for the free surface
excursions.

• Line 34

useRealFreshWaterFlux=.FALSE.,

Select virtual salt flux boundary condition for salinity. The freshwater flux at the surface only affect
the surface salinity, but has no mass flux associated with it

160 CHAPTER 3. GETTING STARTED WITH MITGCM

−200 −150 −100 −50 0 50 100 150 200

longitude [°E]

la
tit

ud
e

[° N
]

0 50 100 150 200 250 300 350
−80

−60

−40

−20

0

20

40

60

80

Figure 3.9: Annual mean heat flux [Wm−2]

• Line 35–36,

readBinaryPrec=64,

writeBinaryPrec=64,

Sets format for reading binary input datasets and writing binary output datasets holding model
fields to use 64-bit representation for floating-point numbers.

S/R READ WRITE FLD (read write fld.F)
S/R READ WRITE REC (read write rec.F)

• Line 42,

cg2dMaxIters=200,

Sets maximum number of iterations the two-dimensional, conjugate gradient solver will use, irre-
spective of convergence criteria being met.

S/R CG2D (cg2d.F)

• Line 43,

cg2dTargetResidual=1.E-13,

Sets the tolerance which the two-dimensional, conjugate gradient solver will use to test for conver-
gence in equation 2.20 to 1× 10−9. Solver will iterate until tolerance falls below this value or until
the maximum number of solver iterations is reached.
S/R CG2D (cg2d.F)

3.13. P COORDINATE GLOBAL OCEAN MITGCM EXAMPLE 161

−1 −0.5 0 0.5 1

x 10
−7

longitude [°E]

la
tit

ud
e

[° N
]

0 50 100 150 200 250 300 350
−80

−60

−40

−20

0

20

40

60

80

Figure 3.10: Annual mean fresh water flux (Evaporation-Precipitation) [m s−1]

• Line 48,

startTime=0,

Sets the starting time for the model internal time counter. When set to non-zero this option
implicitly requests a checkpoint file be read for initial state. By default the checkpoint file is named
according to the integer number of time steps in the startTime value. The internal time counter
works in seconds.

• Line 49–50,

endTime=8640000.,

#endTime=62208000000,

Sets the time (in seconds) at which this simulation will terminate. At the end of a simulation
a checkpoint file is automatically written so that a numerical experiment can consist of multiple
stages. The commented out setting for endTime is for a 2000 year simulation.

• Line 51–53,

deltaTmom = 1200.0,

deltaTtracer = 172800.0,

deltaTfreesurf = 172800.0,

162 CHAPTER 3. GETTING STARTED WITH MITGCM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
7

longitude [°E]

la
tit

ud
e

[° N
]

0 50 100 150 200 250 300 350
−80

−60

−40

−20

0

20

40

60

80

Figure 3.11: Model bathymetry in pressure units [Pa]

Sets the timestep δtv used in the momentum equations to 20 mins and the timesteps δtθ in the
tracer equations and δtη in the implicit free surface equation to 48 hours. See section 2.2.

S/R TIMESTEP(timestep.F)
S/R INI PARMS(ini parms.F)
S/R MOM FLUXFORM(mom fluxform.F)
S/R TIMESTEP TRACER(timestep tracer.F)

• Line 55,

pChkptFreq =3110400000.,

write a pick-up file every 100 years of integration.

• Line 56–58

dumpFreq = 3110400000.,

taveFreq = 3110400000.,

monitorFreq = 31104000.,

write model output and time-averaged model output every 100 years, and monitor statisitics every
year.

• Line 59–61

3.13. P COORDINATE GLOBAL OCEAN MITGCM EXAMPLE 163

periodicExternalForcing=.TRUE.,

externForcingPeriod=2592000.,

externForcingCycle=31104000.,

Allow periodic external forcing, set forcing period, during which one set of data is valid, to 1 month
and the repeat cycle to 1 year.

S/R EXTERNAL FORCING SURF(external forcing surf.F)

• Line 62

tauThetaClimRelax=5184000.0,

Set the restoring timescale to 2 months.

S/R EXTERNAL FORCING SURF(external forcing surf.F)

• Line 63

abEps=0.1,

Adams-Bashford factor (see section 2.5)

• Line 68–69

usingCartesianGrid=.FALSE.,

usingSphericalPolarGrid=.TRUE.,

Select spherical grid.

• Line 70–71

dXspacing=4.,

dYspacing=4.,

Set the horizontal grid spacing in degrees spherical distance.

• Line 72

Ro_SeaLevel=53023122.566084,

specifies the total height (in r-units, i.e., pressure units) of the sea surface at rest. This is a reference
value.

• Line 73

groundAtK1=.TRUE.,

specifies the reversal of the vertical indexing. The vertical index is 1 at the bottom of the doman
and maximal (i.e., 15) at the surface.

• Line 74–78

delR=7103300.720021, \ldots

set the layer thickness in pressure units, starting with the bottom layer.

• Line 84–93,

164 CHAPTER 3. GETTING STARTED WITH MITGCM

bathyFile=’topog.box’

ploadFile=’deltageopotjmd95.bin’

hydrogThetaFile=’lev_t.bin’,

hydrogSaltFile =’lev_s.bin’,

zonalWindFile =’trenberth_taux.bin’,

meridWindFile =’trenberth_tauy.bin’,

thetaClimFile =’lev_sst.bin’,

surfQFile =’shi_qnet.bin’,

EmPmRFile =’shi_empmr.bin’,

This line specifies the names of the files holding the bathymetry data set, the time-independent
geopotential height anomaly at the bottom, initial conditions of temperature and salinity, wind
stress forcing fields, sea surface temperature climatology, heat flux, and fresh water flux (evaporation
minus precipitation minus run-off) at the surface. See file descriptions in section 3.13.3.

other lines in the file input/data are standard values that are described in the MITgcm Getting Started
and MITgcm Parameters notes.

1 # ====================

2 # | Model parameters |

3 # ====================

4 #

5 # Continuous equation parameters

6 &PARM01

7 tRef=15*20.,

8 sRef=15*35.,

9 viscAh =3.E5,

10 no_slip_sides=.TRUE.,

11 viscAr =1.721611620915750e5,

12 #viscAz =1.67E-3,

13 no_slip_bottom=.FALSE.,

14 diffKhT=1.E3,

15 diffKrT=5.154525811125000e3,

16 #diffKzT=0.5E-4,

17 diffKhS=1.E3,

18 diffKrS=5.154525811125000e3,

19 #diffKzS=0.5E-4,

20 implicitDiffusion=.TRUE.,

21 ivdc_kappa=1.030905162225000e9,

22 #ivdc_kappa=10.0,

23 gravity=9.81,

24 gravitySign=-1.D0,

25 rhonil=1035.,

26 buoyancyRelation=’OCEANICP’,

27 eosType=’JMD95P’,

28 rigidLid=.FALSE.,

29 implicitFreeSurface=.TRUE.,

30 exactConserv=.TRUE.,

31 nonlinFreeSurf=3,

32 hFacInf=0.2,

33 hFacSup=2.0,

34 useRealFreshWaterFlux=.FALSE.,

35 readBinaryPrec=64,

36 writeBinaryPrec=64,

37 cosPower=0.5,

38 &

39

40 # Elliptic solver parameters

41 &PARM02

42 cg2dMaxIters=200,

3.13. P COORDINATE GLOBAL OCEAN MITGCM EXAMPLE 165

43 cg2dTargetResidual=1.E-9,

44 &

45

46 # Time stepping parameters

47 &PARM03

48 startTime = 0.,

49 endTime = 8640000.,

50 #endTime = 62208000000.,

51 deltaTmom = 1200.0,

52 deltaTtracer = 172800.0,

53 deltaTfreesurf = 172800.0,

54 deltaTClock = 172800.0,

55 pChkptFreq = 3110400000.,

56 dumpFreq = 3110400000.,

57 taveFreq = 3110400000.,

58 monitorFreq = 31104000.,

59 periodicExternalForcing=.TRUE.,

60 externForcingPeriod=2592000.,

61 externForcingCycle=31104000.,

62 tauThetaClimRelax=5184000.0,

63 abEps=0.1,

64 &

65

66 # Gridding parameters

67 &PARM04

68 usingCartesianGrid=.FALSE.,

69 usingSphericalPolarGrid=.TRUE.,

70 dXspacing=4.,

71 dYspacing=4.,

72 Ro_SeaLevel=53023122.566084,

73 groundAtK1=.TRUE.,

74 delR=7103300.720021, 6570548.440790, 6041670.010249,

75 5516436.666057, 4994602.034410, 4475903.435290,

76 3960063.245801, 3446790.312651, 2935781.405664,

77 2426722.705046, 1919291.315988, 1413156.804970,

78 1008846.750166, 705919.025481, 504089.693499,

79 ygOrigin=-80.,

80 &

81

82 # Input datasets

83 &PARM05

84 topoFile =’topog.bin’,

85 pLoadFile =’deltageopotjmd95.bin’,

86 hydrogThetaFile=’lev_t.bin’,

87 hydrogSaltFile =’lev_s.bin’,

88 zonalWindFile =’trenberth_taux.bin’,

89 meridWindFile =’trenberth_tauy.bin’,

90 thetaClimFile =’lev_sst.bin’,

91 #saltClimFile =’lev_sss.bin’,

92 surfQFile =’shi_qnet.bin’,

93 EmPmRFile =’shi_empmr.bin’,

94 &

3.13.3.3 File input/data.pkg

This file uses standard default values and does not contain customisations for this experiment.

3.13.3.4 File input/eedata

This file uses standard default values and does not contain customisations for this experiment.

166 CHAPTER 3. GETTING STARTED WITH MITGCM

3.13.3.5 File input/topog.bin

This file is a two-dimensional (x, y) map of depths. This file is assumed to contain 64-bit binary numbers
giving the depth of the model at each grid cell, ordered with the x coordinate varying fastest. The points
are ordered from low coordinate to high coordinate for both axes. The units and orientation of the depths
in this file are the same as used in the MITgcm code (Pa for this experiment). In this experiment, a
depth of 0 Pa indicates a land point wall and a depth of > 0Pa indicates open ocean.

3.13.3.6 File input/deltageopotjmd95.box

The file contains 12 identical two dimensional maps (x, y) of geopotential height anomaly at the bottom
at rest. The values have been obtained by vertically integrating the hydrostatic equation with the initial
density field (from input/lev t/s.bin). This file has to be consitent with the temperature and salinity field
at rest and the choice of equation of state!

3.13.3.7 File input/lev t/s.bin

The files input/lev t/s.bin specify the initial conditions for temperature and salinity for every grid point
in a three dimensional array (x, y, z). The data are obtain by interpolating monthly mean values [Levitus
and T.P.Boyer, 1994b] for January onto the model grid. Keep in mind, that the first index corresponds
to the bottom layer and highest index to the surface layer.

3.13.3.8 File input/trenberth taux/y.bin

Each of the input/trenberth taux/y.bin files specifies 12 two-dimensional (x, y, t) maps of zonal and merid-
ional wind stress values, τx and τy, that is monthly mean values from Trenberth et al. [1990]. The units
used are Nm−2.

3.13.3.9 File input/lev sst.bin

The file input/lev sst.bin contains 12 monthly surface temperature climatologies [Levitus and T.P.Boyer,
1994b] in a three dimensional array (x, y, t).

3.13.3.10 File input/shi qnet/empmr.bin

The files input/shi qnet/empmr.bin contain 12 monthly surface fluxes of heat (qnet) and freshwater
(empmr) by Jiang et al. [1999] in three dimensional arrays (x, y, t). Both fluxes are normalized so that
of one year there is no net flux into the ocean. The freshwater flux is actually constant in time.

3.13.3.11 File code/SIZE.h

Three lines are customized in this file for the current experiment

• Line 39,

sNx=90,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

• Line 40,

sNy=40,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

• Line 49,

Nr=15,

this line sets the vertical domain extent in grid points.

3.13. P COORDINATE GLOBAL OCEAN MITGCM EXAMPLE 167

2 C $Name: $

3 C

4 C /==\

5 C | SIZE.h Declare size of underlying computational grid. |

6 C |==|

7 C | The design here support a three-dimensional model grid |

8 C | with indices I,J and K. The three-dimensional domain |

9 C | is comprised of nPx*nSx blocks of size sNx along one axis|

10 C | nPy*nSy blocks of size sNy along another axis and one |

11 C | block of size Nz along the final axis. |

12 C | Blocks have overlap regions of size OLx and OLy along the|

13 C | dimensions that are subdivided. |

14 C \==/

15 C Voodoo numbers controlling data layout.

16 C sNx - No. X points in sub-grid.

17 C sNy - No. Y points in sub-grid.

18 C OLx - Overlap extent in X.

19 C OLy - Overlat extent in Y.

20 C nSx - No. sub-grids in X.

21 C nSy - No. sub-grids in Y.

22 C nPx - No. of processes to use in X.

23 C nPy - No. of processes to use in Y.

24 C Nx - No. points in X for the total domain.

25 C Ny - No. points in Y for the total domain.

26 C Nr - No. points in Z for full process domain.

27 INTEGER sNx

28 INTEGER sNy

29 INTEGER OLx

30 INTEGER OLy

31 INTEGER nSx

32 INTEGER nSy

33 INTEGER nPx

34 INTEGER nPy

35 INTEGER Nx

36 INTEGER Ny

37 INTEGER Nr

38 PARAMETER (

39 & sNx = 90,

40 & sNy = 40,

41 & OLx = 3,

42 & OLy = 3,

43 & nSx = 1,

44 & nSy = 1,

45 & nPx = 1,

46 & nPy = 1,

47 & Nx = sNx*nSx*nPx,

48 & Ny = sNy*nSy*nPy,

49 & Nr = 15)

50 C MAX_OLX - Set to the maximum overlap region size of any array

51 C MAX_OLY that will be exchanged. Controls the sizing of exch

52 C routine buufers.

53 INTEGER MAX_OLX

54 INTEGER MAX_OLY

55 PARAMETER (MAX_OLX = OLx,

56 & MAX_OLY = OLy)

3.13.3.12 File code/CPP OPTIONS.h

This file uses mostly standard default values except for:

• #define ATMOSPHERIC_LOADING

168 CHAPTER 3. GETTING STARTED WITH MITGCM

enable pressure loading which is abused to include the initial geopotential height anomaly

• #define EXACT_CONSERV

enable more accurate conservation properties to include the horizontal mass divergence in the free
surface

• #define NONLIN_FRSURF

enable the nonlinear free surface

3.13.3.13 File code/CPP EEOPTIONS.h

This file uses standard default values and does not contain customisations for this experiment.

3.14. HELD-SUAREZ ATMOSPHERE MITGCM EXAMPLE 169

3.14 Held-Suarez atmospheric simulation on cube-sphere grid

with 32 square cube faces.

(in directory: verification/tutorial held suarez cs/)

This example illustrates the use of the MITgcm as an Atmospheric GCM, using simple Held and Suarez
[1994] forcing to simulate Atmospheric Dynamics on global scale. The set-up use the rescaled pressure
coordinate (p∗)[Adcroft and Campin, 2004] in the vertical direction, with 20 equaly-spaced levels, and
the conformal cube-sphere grid (C32) [Adcroft et al., 2004a]. The files for this experiment can be found
in the verification directory under tutorial held suarez cs.

3.14.1 Overview

This example demonstrates using the MITgcm to simulate the planetary atmospheric circulation, with
flat orography and simplified forcing. In particular, only dry air processes are considered and radiation
effects are represented by a simple newtownien cooling, Thus this example does not rely on any particular
atmospheric physics package. This kind of simplified atmospheric simulation has been widely used in
GFD-type experiments and in intercomparison projects of AGCM dynamical cores [Held and Suarez,
1994].

The horizontal grid is obtain from the projection of a uniform gridded cube to the sphere. Each of the
6 faces has the same resolution, with 32 × 32 grid points. The equator line coincide with a grid line and
crosses, right in the midle, 4 of the 6 faces, leaving 2 faces for the Northern and Southern polar regions.
This curvilinear grid requires the use of the 2nd generation exchange topology (pkg/exch2) to connect
tile and face edges, but without any limitation on the number of processors.

The use of the p∗ coordinate with 20 equally spaced levels (20 × 50 mb, from p∗ = 1000,mb to 0 at
the top of the atmosphere) follows the choice of Held and Suarez [1994]. Note that without topography,
the p∗ coordinate and the normalized pressure coordinate (σp) coincide exactly. No viscosity and zero
diffusion are used here, but a 8th order Shapiro [1970] filter is applied to both momentum and potential
temperature, to remove selectively grid scale noise. Apart from the horizontal grid, this experiment is
made very similar to the grid-point model case used in Held and Suarez [1994] study.

At this resolution, the configuration can be integrated forward for many years on a single processor
desktop computer.

3.14.2 Forcing

The model is forced by relaxation to a radiative equilibrium temperature from Held and Suarez [1994]. A
linear frictional drag (Rayleigh damping) is applied in the lower part of the atmosphere and account from
surface friction and momentum dissipation in the boundary layer. Altogether, this yields the following
forcing [from Held and Suarez, 1994] that is applied to the fluid:

~Fv = −kv(p)~vh (3.61)

Fθ = −kθ(ϕ, p)[θ − θeq(ϕ, p)] (3.62)

where ~Fv, Fθ, are the forcing terms in the zonal and meridional momentum and in the potential temper-
ature equations respectively. The term kv in equation (3.61) applies a Rayleigh damping that is active
within the planetary boundary layer. It is defined so as to decay as pressure decreases according to

kv = kf max[0, (p∗/P 0
s − σb)/(1 − σb)]

σb = 0.7 and kf = 1/86400 s−1

where p∗ is the pressure level of the cell center and P 0
s is the pressure at the base of the atmospheric

column, which is constant and uniform here (= 105Pa), in the absence of topography.

170 CHAPTER 3. GETTING STARTED WITH MITGCM

The Equilibrium temperature θeq and relaxation time scale kθ are set to:

θeq(ϕ, p
∗) = max{200.K(P 0

s /p
∗)κ, (3.63)

315.K − ∆Ty sin2(ϕ) − ∆θz cos2(ϕ) log(p∗/P 0
s)}

kθ(ϕ, p
∗) = ka + (ks − ka) cos4(ϕ) max[0, (p∗/P 0

s − σb)/(1 − σb)] (3.64)

with:

∆Ty = 60.K ka = 1/(40 · 86400) s−1

∆θz = 10.K ks = 1/(4 · 86400) s−1

Initial conditions correspond to a resting state with horizontally uniform stratified fluid. The initial
temperature profile is simply the horizontally average of the radiative equilibrium temperature.

3.14.3 Set-up description

The model is configured in hydrostatic form, using non-boussinesq p∗ coordinate. The vertical resolution
is uniform, ∆p∗ = 50.102Pa, with 20 levels, from p∗ = 105Pa to 0 at the top. The domain is discretised
using C32 cube-sphere grid [Adcroft et al., 2004a] that cover the whole sphere with a relatively uniform
grid-spacing. The resolution at the equator or along the Greenwitch meridian is similar to the 128 × 64
equaly spaced longitude-latitude grid, but requires 25% less grid points. Grid spacing and grid-point
location are not computed by the model but read from files.

The vector-invariant form of the momentum equation (see section 2.15) is used so that no explicit
metrics are necessary.

Applying the vector-invariant discretization to the atmospheric equations 1.59, and adding the forcing
term (3.61, 3.62) on the right-hand-side, leads to the set of equations that are solved in this configuration:

∂~vh

∂t
+ (f + ζ)k̂ × ~vh + ∇p(ke) + ω

∂~vh

∂p
+ ∇pΦ

′ = −kv~vh (3.65)

∂Φ′

∂p
+
∂Π

∂p
θ′ = 0 (3.66)

∇p · ~vh +
∂ω

∂p
= 0 (3.67)

∂θ

∂t
+ ∇p · (θ~vh) +

∂(θω)

∂p
= −kθ[θ − θeq] (3.68)

where ~vh and ω = Dp
Dt are the horizontal velocity vector and the vertical velocity in pressure coordinate,

ζ is the relative vorticity and f the Coriolis parameter, k̂ is the vertical unity vector, ke is the kinetic
energy, Φ is the geopotential and Π the Exner function (Π = Cp(p/pc)

κ with pc = 105Pa). Variables
marked with ’ corresponds to anomaly from the resting, uniformly stratified state.

As described in MITgcm Numerical Solution Procedure 2, the continuity equation is integrated ver-
tically, to give a prognostic equation for the surface pressure ps:

∂ps

∂t
+ ∇h ·

∫ ps

0

~vhdp = 0 (3.69)

The implicit free surface form of the pressure equation described in Marshall et al. [1997b] is employed
to solve for ps; Integrating vertically the hydrostatic balance gives the geopotential Φ′ and allow to step
forward the momentum equation 3.65. The potential temperature, θ, is stepped forward using the new
velocity field (staggered time-step, section 2.8).

3.14.3.1 Numerical Stability Criteria

The numerical stability for inertial oscillations Adcroft [1995]

3.14. HELD-SUAREZ ATMOSPHERE MITGCM EXAMPLE 171

Si = f2∆t2 (3.70)

evaluates to 4.× 10−3 at the poles, for f = 2Ω sin(π/2) = 1.45× 10−4 s−1, which is well below the Si < 1
upper limit for stability.

The advective CFL Adcroft [1995] for a extreme maximum horizontal flow speed of |~u| = 90.m/s and
the smallest horizontal grid spacing ∆x = 1.1 × 105m :

Sa =
|~u|∆t
∆x

(3.71)

evaluates to 0.37, which is close to the stability limit of 0.5.

The stability parameter for internal gravity waves propagating with a maximum speed of cg = 100 m/s
Adcroft [1995]

Sc =
cg∆t

∆x
(3.72)

evaluates to 4 × 10−1. This is close to the linear stability limit of 0.5.

3.14.4 Experiment Configuration

The model configuration for this experiment resides under the directory verification/tutorial held suarez cs.
The experiment files

• input/data

• input/data.pkg

• input/eedata,

• input/data.shap,

• code/packages.conf,

• code/CPP OPTIONS.h,

• code/SIZE.h,

• code/DIAGNOSTICS SIZE.h,

• code/external forcing.F,

contain the code customizations and parameter settings for these experiments. Below we describe the
customizations to these files associated with this experiment.

3.14.4.1 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters
that are significant for this configuration are:

• Lines 7,

tRef=295.2, 295.5, 295.9, 296.3, 296.7, 297.1, 297.6, 298.1, 298.7, 299.3,

· · ·
set reference values for potential temperature (in Kelvin units) at each model level. The entries are
ordered like model level, from surface up to the top. Density is calculated from anomalies at each
level evaluated with respect to the reference values set here.

S/R INI THETA(ini theta.F)

172 CHAPTER 3. GETTING STARTED WITH MITGCM

• Line 10,

no_slip_sides=.FALSE.,

this line selects a free-slip lateral boundary condition for the horizontal Laplacian friction operator
e.g. ∂u

∂y =0 along boundaries in y and ∂v
∂x=0 along boundaries in x.

• Lines 11,

no_slip_bottom=.FALSE.,

this line selects a free-slip boundary condition at the top, in the vertical Laplacian friction operator
e.g. ∂u

∂p = ∂v
∂p = 0

• Line 12,

buoyancyRelation=’ATMOSPHERIC’,

this line sets the type of fluid and the type of vertical coordinate to use, which, in this case, is air
with a pressure like coordinate (p or p∗).

• Line 13,

eosType=’IDEALG’,

Selects the Ideal gas equation of state.

• Line 15,

implicitFreeSurface=.TRUE.,

Selects the way the barotropic equation is solved, using here the implicit free-surface formulation.

S/R SOLVE FOR PRESSURE (solve for pressure.F)

• Line 16,

exactConserv=.TRUE.,

Explicitly calculate again the surface pressure changes from the divergence of the vertically inte-
grated horizontal flow, after the implicit free surface solver and filters are applied.

S/R INTEGR CONTINUITY (integr continuity.F)

• Line 17 and Line 18,

nonlinFreeSurf=4,

select_rStar=2,

Select the Non-Linear free surface formulation, using r∗ vertical coordinate (here p∗). Note that, ex-
cept for the default (= 0), other values of those 2 parameters are only permitted for testing/debuging
purpose.

S/R CALC R STAR (calc r star.F)
S/R UPDATE R STAR (update r star.F)

• Line 21

uniformLin_PhiSurf=.FALSE.,

3.14. HELD-SUAREZ ATMOSPHERE MITGCM EXAMPLE 173

Select the linear relation between surface geopotential anomaly and surface pressure anomaly to be
evaluated from ∂Φs

∂ps
= 1/ρ(θRef) (see section 2.10.2.1). Note that using the default (=TRUE), the

constant 1/ρ0 is used instead, and is not necessary consistent with other parts of the geopotential
that relies on θRef .

S/R INI LINEAR PHISURF (ini linear phisurf.F)

• Line 23 and Line 24

saltStepping=.FALSE.,

momViscosity=.FALSE.,

Do not step forward Water vapour and do not compute viscous terms. This allow to save some
computer time.

• Line 25

vectorInvariantMomentum=.TRUE.,

Select the vector-invariant form to solve the momentum equation.

S/R MOM VECINV (mom vecinv.F)

• Line 26

staggerTimeStep=.TRUE.,

Select the staggered time-stepping (rather than syncronous time stepping).

• Line 27 and 28

readBinaryPrec=64,

writeBinaryPrec=64,

Sets format for reading binary input datasets and writing output fields to use 64-bit representation
for floating-point numbers.

S/R READ WRITE FLD (read write fld.F)
S/R READ WRITE REC (read write rec.F)

• Line 33,

cg2dMaxIters=200,

Sets maximum number of iterations the two-dimensional, conjugate gradient solver will use, irre-
spective of convergence criteria being met.

S/R CG2D (cg2d.F)

• Line 35,

cg2dTargetResWunit=1.E-17,

Sets the tolerance (in units of ω) which the two-dimensional, conjugate gradient solver will use to
test for convergence in equation 2.20 to 1×10−17Pa/s. Solver will iterate until tolerance falls below
this value or until the maximum number of solver iterations is reached.
S/R CG2D (cg2d.F)

• Line 40,

deltaT=450.,

174 CHAPTER 3. GETTING STARTED WITH MITGCM

Sets the timestep ∆t used in the model to 450 s (= 1/8h).

S/R TIMESTEP(timestep.F)
S/R TIMESTEP TRACER(timestep tracer.F)

• Line 42,

startTime=124416000.,

Sets the starting time, in seconds, for the model time counter. A non-zero starting time requires
to read the initial state from a pickup file. By default the pickup file is named according to the
integer number (nIter0) of time steps in the startTime value (nIter0 = startT ime/deltaT).

• Line 44,

#nTimeSteps=69120,

A commented out setting for the length of the simulation (in number of time-step) that corresponds
to 1 year simulation.

• Line 54 and 55,

nTimeSteps=16,

monitorFreq=1.,

Sets the length of the simulation (in number of time-step) and the frequency (in seconds) for
”monitor” output. to 16 iterations and 1 seconds respectively. This choice corresponds to a short
simulation test.

• Line 48,

pChkptFreq=31104000.,

Sets the time interval, in seconds, bewteen 2 consecutive ”permanent” pickups (”permanent check-
point frequency”) that are used to restart the simuilation, to 1 year.

• Line 49,

chkptFreq=2592000.,

Sets the time interval, in seconds, bewteen 2 consecutive ”temporary” pickups (”checkpoint fre-
quency”) to 1 month. The ”temporary” pickup file name is alternatively ”ckptA” and ”ckptB” ;
thoses pickup (as opposed to the permanent ones) are designed to be over-written by the model as
the simulation progresses.

• Line 50,

dumpFreq=2592000.,

Set the frequencies (in seconds) for the snap-shot output to 1 month.

• Line 51,

#monitorFreq=43200.,

A commented out line setting the frequency (in seconds) for the ”monitor” output to 12.h. This
frequency fits better the longer simulation of 1 year.

• Line 60,

usingCurvilinearGrid=.TRUE.,

3.14. HELD-SUAREZ ATMOSPHERE MITGCM EXAMPLE 175

Set the horizontal type of grid to Curvilinear-Grid.

• Line 61,

horizGridFile=’grid_cs32’,

Set the root for the grid file name to ”grid cs32”. The grid-file names are derived from the root,
adding a suffix with the face number (e.g.: .face001.bin, .face002.bin · · ·)

S/R INI CURVILINEAR GRID (ini curvilinear grid.F)

• Lines 63 and XXX,

delR=20*50.E2,

Ro_SeaLevel=1.E5,

Those 2 lines define the vertical discretization, in pressure units. The 1rst one sets the increments
in pressure units (Pa), to 20 equally thick levels of 50× 102Pa each. The 2nd one sets the reference
pressure at the sea-level, to 105Pa. This define the origin (interface k = 1) of the vertical pressure
axis, with decreasing pressure as the level index k increases.

S/R INI VERTICAL GRID (ini vertical grid.F)

• Line 68,

#topoFile=’topo.cs.bin’

This commented out line would allow to set the file name of a 2-D orography file, in meters units,
to ’topo.cs.bin’.

S/R INI DEPTH (ini depth.F)

other lines in the file input/data are standard values that are described in the MITgcm Getting Started
and MITgcm Parameters notes.

1 # ====================

2 # | Model parameters |

3 # ====================

4 #

5 # Continuous equation parameters

6 &PARM01

7 tRef=295.2, 295.5, 295.9, 296.3, 296.7, 297.1, 297.6, 298.1, 298.7, 299.3,

8 300.0, 300.7, 301.9, 304.1, 308.0, 315.1, 329.5, 362.3, 419.2, 573.8,

9 sRef=20*0.0,

10 no_slip_sides=.FALSE.,

11 no_slip_bottom=.FALSE.,

12 buoyancyRelation=’ATMOSPHERIC’,

13 eosType=’IDEALG’,

14 rotationPeriod=86400.,

15 implicitFreeSurface=.TRUE.,

16 exactConserv=.TRUE.,

17 nonlinFreeSurf=4,

18 select_rStar=2,

19 hFacInf=0.2,

20 hFacSup=2.0,

21 uniformLin_PhiSurf=.FALSE.,

22 #hFacMin=0.2,

23 saltStepping=.FALSE.,

24 momViscosity=.FALSE.,

25 vectorInvariantMomentum=.TRUE.,

26 staggerTimeStep=.TRUE.,

27 readBinaryPrec=64,

176 CHAPTER 3. GETTING STARTED WITH MITGCM

28 writeBinaryPrec=64,

29 &

30

31 # Elliptic solver parameters

32 &PARM02

33 cg2dMaxIters=200,

34 #cg2dTargetResidual=1.E-12,

35 cg2dTargetResWunit=1.E-17,

36 &

37

38 # Time stepping parameters

39 &PARM03

40 deltaT=450.,

41 #nIter0=276480,

42 startTime=124416000.,

43 #- run for 1 year (192.iterations x 450.s = 1.day, 360*192=69120):

44 #nTimeSteps=69120,

45 #forcing_In_AB=.FALSE.,

46 tracForcingOutAB=1,

47 abEps=0.1,

48 pChkptFreq=31104000.,

49 chkptFreq=2592000.,

50 dumpFreq=2592000.,

51 #monitorFreq=43200.,

52 taveFreq=0.,

53 #- to run a short test (2.h):

54 nTimeSteps=16,

55 monitorFreq=1.,

56 &

57

58 # Gridding parameters

59 &PARM04

60 usingCurvilinearGrid=.TRUE.,

61 horizGridFile=’grid_cs32’,

62 radius_fromHorizGrid=6370.E3,

63 delR=20*50.E2,

64 &

65

66 # Input datasets

67 &PARM05

68 #topoFile=’topo.cs.bin’,

69 &

3.14.4.2 File input/data.pkg

This file, reproduced completely below, specifies the additional packages that the model uses for the
experiment. Note that some packages are used by default (e.g.: pkg/generic advdiff) and some others are
selected according to parameter in input/data (e.g.: pkg/mom vecinv). The additional packages that are
used for this configuration are

• Line 3,

useSHAP_FILT=.TRUE.,

This line selects the Shapiro filter Shapiro [1970] (pkg/shap filt) to be used in this experiment.

• Line 4,

useDiagnostics=.TRUE.,

This line selects the pkg/diagnostics to be used in this experiment.

3.14. HELD-SUAREZ ATMOSPHERE MITGCM EXAMPLE 177

• Line 5,

#useMNC=.TRUE.,

This line that would selects the pkg/mnc for I/O is commented out.

The entire file input/data.pkg is reproduced here below:

1 # Packages

2 &PACKAGES

3 useSHAP_FILT=.TRUE.,

4 useDiagnostics=.TRUE.,

5 #useMNC=.TRUE.,

6 &

3.14.4.3 File input/eedata

This file uses standard default values except line 6:

useCubedSphereExchange=.TRUE.,

This line selects the cubed-sphere specific exchanges to to connect tiles and faces edges.

3.14.4.4 File input/data.shap

This file, reproduced completely below, specifies the parameters that the model uses for the Shapiro filter
package (Shapiro [1970], section 2.20). The parameters that are significant for this configuration are:

• Line 5,

Shap_funct=2,

This line selects the shapiro filter function to use, here S2 in this experiment (see section 2.20).

• Lines 6 and 7,

nShapT=0,

nShapUV=4,

Those lines select the order of the shapiro filter for active tracer (θ and q) and momentum (u, v)
respectively. In this case, no filter is applied to active tracers. Regarding the momentum, this sets
the integer parameter n to 4, in the equations of section 2.20, which corresponds to a 8th order
filter.

• Line 9,

nShapUVPhys=4,

This line selects the order of the physical space filter (filter function S2g, in section 2.20) that applies
to u, v. The difference nShapUV - nShapUVPhys corresponds to the order of the computational
filter (filter function S2c, in section 2.20).

• Lines 12 and 13,

#Shap_Trtau=5400.,

#Shap_uvtau=1800.,

Those commented lines would have set the time scale of the filter (in seconds), for θ and q and for u
and v respectively, to 5400 s (90 min) and 1800 s (30 min) respectively. Without explicitly setting
those timescales, the default is used which corresponds to the model time-step.

178 CHAPTER 3. GETTING STARTED WITH MITGCM

The entire file input/data.shap is reproduced here below:

1 # Shapiro Filter parameters

2 &SHAP_PARM01

3 shap_filt_uvStar=.FALSE.,

4 shap_filt_TrStagg=.TRUE.,

5 Shap_funct=2,

6 nShapT=0,

7 nShapUV=4,

8 #nShapTrPhys=0,

9 nShapUVPhys=4,

10 #Shap_TrLength=140000.,

11 #Shap_uvLength=110000.,

12 #Shap_Trtau=5400.,

13 #Shap_uvtau=1800.,

14 #Shap_diagFreq=2592000.,

15 &

3.14.4.5 File code/SIZE.h

Four lines are customized in this file for the current experiment

• Line 39,

sNx=32,

sets the lateral domain extent in grid points along the x-direction, for 1 face.

• Line 40,

sNy=32,

sets the lateral domain extent in grid points along the y-direction, for 1 face.

• Line 43,

nSx=6,

sets the number of tiles in the x-direction, for the model domain decomposition. In this simple case
(one processor and 1 tile per face), this number corresponds to the total number of faces.

• Line 49,

Nr=20,

sets the vertical domain extent in grid points.

3.14.4.6 File code/packages.conf

This file, reproduced completely below, specifies the packages that are compiled and made available for
this experiment. The additional packages that are used for this configuration are

• Line 4,

gfd

This line selects the standard set of packages that are used by default.

• Line 5,

shap_filt

3.14. HELD-SUAREZ ATMOSPHERE MITGCM EXAMPLE 179

This line makes the Shapiro filter package available for this experiment.

• Line 6,

exch2

This line selects the exch2 pacakge to be compiled and used in this experiment. Note that, with
the present structure of the model, the parameter useEXCH2 does not exists and therefore, this
package is always used when it is compiled.

• Line 7,

diagnostics

This line selects the pkg/diagnostics to be compiled, and makes it available for this experiment.

• Line 8,

mnc

This line selects the pkg/mnc to be compiled, and makes it available for this experiment.

The entire file code/packages.conf is reproduced here below:

1 # $Header: /u/gcmpack/MITgcm/verification/tutorial_held_suarez_cs/code/packages.conf,v 1.2 2014/08/20 20:24:09

2 # $Name: $

3

4 gfd

5 shap_filt

6 exch2

7 diagnostics

8 mnc

3.14.4.7 File code/CPP OPTIONS.h

This file uses standard default except for Line 40
(diff CPP OPTIONS.h ../../../model/inc):

#define NONLIN_FRSURF

This line allow to use the non-linear free-surface part of the code, which is required for the p∗ coordinate
formulation.

3.14.4.8 Other Files

Other files relevant to this experiment are

• code/external forcing.F

• input/grid cs32.face00[n].bin, with n = 1, 2, 3, 4, 5, 6

contain the code customisations and binary input files for this experiments. Below we describe the cus-
tomisations to these files associated with this experiment.

The file code/external forcing.F contains 4 subroutines that calculate the forcing terms (Right-Hand
side term) in the momentum equation (3.61, S/R EXTERNAL FORCING U and EXTERNAL FORCING V)
and in the potential temperature equation (3.62, S/R EXTERNAL FORCING T). The water-vapour
forcing subroutine (S/R EXTERNAL FORCING S) is left empty for this experiment.

The grid-files input/grid cs32.face00[n].bin, with n = 1, 2, 3, 4, 5, 6, are binary files (direct-access, big-
endian 64.bits real) that contains all the cubed-sphere grid lengths, areas and grid-point positions, with
one file per face. Each file contains 18 2-D arrays (dimension 33 × 33) that correspond to the model
variables: XC YC DXF DYF RA XG YG DXV DYU RAZ DXC DYC RAW RAS DXG DYG AngleCS
AngleSN (see GRID.h file)

180 CHAPTER 3. GETTING STARTED WITH MITGCM

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

3.2 km

1000 m

z

x

y

Figure 3.12: Schematic of simulation domain for the surface driven convection experiment. The domain
is doubly periodic with an initially uniform temperature of 20 oC.

3.15 Surface Driven Convection

(in directory: verification/tutorial deep convection/)

This experiment, figure 3.12, showcasing MITgcm’s non-hydrostatic capability, was designed to explore
the temporal and spatial characteristics of convection plumes as they might exist during a period of
oceanic deep convection. The files for this experiment can be found in the verification directory under
tutorial deep convection. It is

• non-hydrostatic

• doubly-periodic with cubic geometry

• has 50 m resolution

• Cartesian

• is on an f -plane

• with a linear equation of state

3.15.1 Overview

The model domain consists of an approximately 3 km square by 1 km deep box of initially unstratified,
resting fluid. The domain is doubly periodic.

The experiment has 20 levels in the vertical, each of equal thickness ∆z = 50 m (the horizontal
resolution is also 50 m). The fluid is initially unstratified with a uniform reference potential temperature
θ = 20 oC. The equation of state used in this experiment is linear

ρ = ρ0(1 − αθθ
′

) (3.73)

which is implemented in the model as a density anomaly equation

ρ
′

= −ρ0αθθ
′

(3.74)

with ρ0 = 1000 kgm−3 and αθ = 2 × 10−4 degrees−1. Integrated forward in this configuration the model
state variable theta is equivalent to either in-situ temperature, T , or potential temperature, θ. For
consistency with other examples, in which the equation of state is non-linear, we use θ to represent
temperature here. This is the quantity that is carried in the model core equations.

As the fluid in the surface layer is cooled (at a mean rate of 800 Wm2), it becomes convectively
unstable and overturns, at first close to the grid-scale, but, as the flow matures, on larger scales (figures
3.13 and 3.14), under the influence of rotation (fo = 10−4 s−1) .

3.15. SURFACE DRIVEN CONVECTION 181

19.97

19.975

19.98

19.985

19.99

19.995

20

0.5 1 1.5 2 2.5 3

100

200

300

400

500

600

700

800

900

x km

de
pt

h
km

Figure 3.13:

19.96

19.965

19.97

19.975

19.98

19.985

19.99

19.995

20

20.005

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

x km

y
km

Figure 3.14:

182 CHAPTER 3. GETTING STARTED WITH MITGCM

Model parameters are specified in file input/data. The grid dimensions are prescribed in code/SIZE.h.
The forcing (file input/Qsurf.bin) is specified in a binary data file generated using the Matlab script
input/gendata.m.

3.15.2 Equations solved

The model is configured in nonhydrostatic form, that is, all terms in the Navier Stokes equations are
retained and the pressure field is found, subject to appropriate bounday condintions, through inversion
of a three-dimensional elliptic equation.

The implicit free surface form of the pressure equation described in Marshall et. al Marshall et al.
[1997b] is employed. A horizontal Laplacian operator ∇2

h provides viscous dissipation. The thermody-
namic forcing appears as a sink in the potential temperature, θ, equation (3.79). This produces a set of
equations solved in this configuration as follows:

Du

Dt
− fv +

1

ρ

∂p
′

∂x
−∇h · Ah∇hu− ∂

∂z
Az

∂u

∂z
=

{
0 (surface)

0 (interior)
(3.75)

Dv

Dt
+ fu+

1

ρ

∂p
′

∂y
−∇h · Ah∇hv −

∂

∂z
Az

∂v

∂z
=

{
0 (surface)

0 (interior)
(3.76)

Dw

Dt
+ g

ρ
′

ρ
+

1

ρ

∂p
′

∂z
−∇h · Ah∇hw − ∂

∂z
Az

∂w

∂z
=

{
0 (surface)

0 (interior)
(3.77)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
+ = 0 (3.78)

Dθ

Dt
−∇h ·Kh∇hθ −

∂

∂z
Kz

∂θ

∂z
=

{
Fθ (surface)

0 (interior)
(3.79)

where u = Dx
Dt , v = Dy

Dt and w = Dz
Dt are the components of the flow vector in directions x, y and z.

The pressure is diagnosed through inversion (subject to appropriate boundary conditions) of a 3-D el-
liptic equation derived from the divergence of the momentum equations and continuity (see section 1.3.6).

3.15.3 Discrete numerical configuration

The domain is discretised with a uniform grid spacing in each direction. There are 64 grid cells in
directions x and y and 20 vertical levels thus the domain comprises a total of just over 80 000 gridpoints.

3.15.4 Numerical stability criteria and other considerations

For a heat flux of 800 Wm2 and a rotation rate of 10−4 s−1 the plume-scale can be expected to be a few
hundred meters guiding our choice of grid resolution. This in turn restricts the timestep we can take. It
is also desirable to minimise the level of diffusion and viscosity we apply.

For this class of problem it is generally the advective time-scale which restricts the timestep.

For an extreme maximum flow speed of |~u| = 1ms−1, at a resolution of 50 m, the implied maximum
timestep for stability, δtu is

(3.80)

The choice of δt = 10 s is a safe 20 percent of this maximum.

Interpreted in terms of a mixing-length hypothesis, a magnitude of Laplacian diffusion coefficient
κh(= κv) = 0.1 m2s−1 is consistent with an eddy velocity of 2 mm s−1 correlated over 50 m.

3.15. SURFACE DRIVEN CONVECTION 183

3.15.5 Experiment configuration

The model configuration for this experiment resides under the directory verification/convection/. The
experiment files

• code/CPP EEOPTIONS.h

• code/CPP OPTIONS.h,

• code/SIZE.h.

• input/data

• input/data.pkg

• input/eedata,

• input/Qsurf.bin,

contain the code customisations and parameter settings for this experiment. Below we describe these
experiment-specific customisations.

3.15.5.1 File code/CPP EEOPTIONS.h

This file uses standard default values and does not contain customisations for this experiment.

3.15.5.2 File code/CPP OPTIONS.h

This file uses standard default values and does not contain customisations for this experiment.

3.15.5.3 File code/SIZE.h

Three lines are customized in this file. These prescribe the domain grid dimensions.

• Line 36,

sNx=64,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

• Line 37,

sNy=64,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

• Line 46,

Nr=20,

this line sets the vertical domain extent in grid points.

1 C /==\

2 C | SIZE.h Declare size of underlying computational grid. |

3 C |==|

4 C | The design here support a three-dimensional model grid |

5 C | with indices I,J and K. The three-dimensional domain |

6 C | is comprised of nPx*nSx blocks of size sNx along one axis|

7 C | nPy*nSy blocks of size sNy along another axis and one |

8 C | block of size Nz along the final axis. |

9 C | Blocks have overlap regions of size OLx and OLy along the|

10 C | dimensions that are subdivided. |

11 C \==/

184 CHAPTER 3. GETTING STARTED WITH MITGCM

12 C Voodoo numbers controlling data layout.

13 C sNx - No. X points in sub-grid.

14 C sNy - No. Y points in sub-grid.

15 C OLx - Overlap extent in X.

16 C OLy - Overlat extent in Y.

17 C nSx - No. sub-grids in X.

18 C nSy - No. sub-grids in Y.

19 C nPx - No. of processes to use in X.

20 C nPy - No. of processes to use in Y.

21 C Nx - No. points in X for the total domain.

22 C Ny - No. points in Y for the total domain.

23 C Nr - No. points in Z for full process domain.

24 INTEGER sNx

25 INTEGER sNy

26 INTEGER OLx

27 INTEGER OLy

28 INTEGER nSx

29 INTEGER nSy

30 INTEGER nPx

31 INTEGER nPy

32 INTEGER Nx

33 INTEGER Ny

34 INTEGER Nr

35 PARAMETER (

36 & sNx = 64,

37 & sNy = 64,

38 & OLx = 3,

39 & OLy = 3,

40 & nSx = 1,

41 & nSy = 1,

42 & nPx = 1,

43 & nPy = 1,

44 & Nx = sNx*nSx*nPx,

45 & Ny = sNy*nSy*nPy,

46 & Nr = 20)

47 C MAX_OLX - Set to the maximum overlap region size of any array

48 C MAX_OLY that will be exchanged. Controls the sizing of exch

49 C routine buufers.

50 INTEGER MAX_OLX

51 INTEGER MAX_OLY

52 PARAMETER (MAX_OLX = OLx,

53 & MAX_OLY = OLy)

3.15.5.4 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters
that are significant for this configuration are

• Line 4,

4 tRef=20*20.0,

this line sets the initial and reference values of potential temperature at each model level in units
of ◦C. Here the value is arbitrary since, in this case, the flow evolves independently of the absolute
magnitude of the reference temperature. For each depth level the initial and reference profiles will
be uniform in x and y. The values specified are read into the variable tRef in the model code,
by procedure S/R INI PARMS (ini parms.F) . The temperature field is initialised, by procedure
S/R INI THETA (ini theta.F) .

3.15. SURFACE DRIVEN CONVECTION 185

• Line 5,

5 sRef=20*35.0,

this line sets the initial and reference values of salinity at each model level in units of ppt. In this case
salinity is set to an (arbitrary) uniform value of 35.0 ppt. However since, in this example, density
is independent of salinity, an appropriatly defined initial salinity could provide a useful passive
tracer. For each depth level the initial and reference profiles will be uniform in x and y. The values
specified are read into the variable sRef in the model code, by procedure S/R INI PARMS
(ini parms.F) . The salinity field is initialised, by procedure S/R INI SALT (ini salt.F) .

• Line 6,

6 viscAh=0.1,

this line sets the horizontal laplacian dissipation coefficient to 0.1 m2s−1. Boundary conditions for
this operator are specified later. The variable viscAh is read in the routine S/R INI PARMS
(ini params.F) and applied in routines S/R CALC MOM RHS (calc mom rhs.F) and S/R
CALC GW (calc gw.F) .

• Line 7,

7 viscAz=0.1,

this line sets the vertical laplacian frictional dissipation coefficient to 0.1 m2s−1. Boundary con-
ditions for this operator are specified later. The variable viscAz is read in the routine S/R
INI PARMS (ini parms.F) and is copied into model general vertical coordinate variable viscAr
. At each time step, the viscous term contribution to the momentum equations is calculated in
routine S/R CALC DIFFUSIVITY (calc diffusivity.F) .

• Line 8,

no_slip_sides=.FALSE.

this line selects a free-slip lateral boundary condition for the horizontal laplacian friction operator
e.g. ∂u

∂y =0 along boundaries in y and ∂v
∂x=0 along boundaries in x. The variable no slip sides is

read in the routine S/R INI PARMS (ini parms.F) and the boundary condition is evaluated in
routine S/R CALC MOM RHS (calc mom rhs.F) .

• Lines 9,

no_slip_bottom=.TRUE.

this line selects a no-slip boundary condition for the bottom boundary condition in the vertical
laplacian friction operator e.g. u = v = 0 at z = −H , where H is the local depth of the domain.
The variable no slip bottom is read in the routine S/R INI PARMS (ini parms.F) and is
applied in the routine S/R CALC MOM RHS (calc mom rhs.F) .

• Line 11,

diffKhT=0.1,

this line sets the horizontal diffusion coefficient for temperature to 0.1 m2s−1. The boundary
condition on this operator is ∂

∂x = ∂
∂y = 0 at all boundaries. The variable diffKhT is read in

the routine S/R INI PARMS (ini parms.F) and used in routine S/R CALC GT (calc gt.F) .

• Line 12,

diffKzT=0.1,

186 CHAPTER 3. GETTING STARTED WITH MITGCM

this line sets the vertical diffusion coefficient for temperature to 0.1 m2s−1. The boundary condition
on this operator is ∂

∂z = 0 on all boundaries. The variable diffKzT is read in the routine S/R
INI PARMS (ini parms.F) . It is copied into model general vertical coordinate variable diffKrT
which is used in routine S/R CALC DIFFUSIVITY (calc diffusivity.F) .

• Line 13,

diffKhS=0.1,

this line sets the horizontal diffusion coefficient for salinity to 0.1 m2s−1. The boundary condition
on this operator is ∂

∂x = ∂
∂y = 0 on all boundaries. The variable diffKsT is read in the routine

S/R INI PARMS (ini parms.F) and used in routine S/R CALC GS (calc gs.F) .

• Line 14,

diffKzS=0.1,

this line sets the vertical diffusion coefficient for temperature to 0.1 m2s−1. The boundary condition
on this operator is ∂

∂z = 0 on all boundaries. The variable diffKzS is read in the routine S/R
INI PARMS (ini parms.F) . It is copied into model general vertical coordinate variable diffKrS
which is used in routine S/R CALC DIFFUSIVITY (calc diffusivity.F) .

• Line 15,

f0=1E-4,

this line sets the Coriolis parameter to 1 × 10−4 s−1. Since β = 0.0 this value is then adopted
throughout the domain.

• Line 16,

beta=0.E-11,

this line sets the the variation of Coriolis parameter with latitude to 0.

• Line 17,

tAlpha=2.E-4,

This line sets the thermal expansion coefficient for the fluid to 2×10−4 o C−1. The variable tAlpha
is read in the routine S/R INI PARMS (ini parms.F) . The routine S/R FIND RHO (find rho.F)
makes use of tAlpha.

• Line 18,

sBeta=0,

This line sets the saline expansion coefficient for the fluid to 0 consistent with salt’s passive role in
this example.

• Line 23-24,

rigidLid=.FALSE.,

implicitFreeSurface=.TRUE.,

Selects the barotropic pressure equation to be the implicit free surface formulation.

• Line 25,

eosType=’LINEAR’,

3.15. SURFACE DRIVEN CONVECTION 187

Selects the linear form of the equation of state.

• Line 26,

nonHydrostatic=.TRUE.,

Selects for non-hydrostatic code.

• Line 27,

readBinaryPrec=64,

Sets format for reading binary input datasets holding model fields to use 64-bit representation for
floating-point numbers.

• Line 31,

cg2dMaxIters=1000,

Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D elliptic equa-
tion.

• Line 32,

cg2dTargetResidual=1.E-9,

Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3D elliptic equa-
tion.

• Line 33,

cg3dMaxIters=40,

This line sets the maximum number of iterations the three-dimensional, conjugate gradient solver
will use to 40, irrespective of the convergence criteria being met. Used in routine S/R
CG3D (cg3d.F) .

• Line 34,

cg3dTargetResidual=1.E-9,

Sets the tolerance which the three-dimensional, conjugate gradient solver will use to test for con-
vergence in equation 2.68 to 1 × 10−9. The solver will iterate until the tolerance falls below this
value or until the maximum number of solver iterations is reached. Used in routine S/R CG3D
(cg3d.F) .

• Line 38,

startTime=0,

Sets the starting time for the model internal time counter. When set to non-zero this option
implicitly requests a checkpoint file be read for initial state. By default the checkpoint file is named
according to the integer number of time steps in the startTime value. The internal time counter
works in seconds.

• Line 39,

nTimeSteps=8640.,

188 CHAPTER 3. GETTING STARTED WITH MITGCM

Sets the number of timesteps at which this simulation will terminate (in this case 8640 timesteps
or 1 day or δt = 10 s). At the end of a simulation a checkpoint file is automatically written so that
a numerical experiment can consist of multiple stages.

• Line 40,

deltaT=10,

Sets the timestep δt to 10 s.

• Line 51,

dXspacing=50.0,

Sets horizontal (x-direction) grid interval to 50 m.

• Line 52,

dYspacing=50.0,

Sets horizontal (y-direction) grid interval to 50 m.

• Line 53,

delZ=20*50.0,

Sets vertical grid spacing to 50 m. Must be consistent with code/SIZE.h. Here, 20 corresponds to
the number of vertical levels.

• Line 57,

surfQfile=’Qsurf.bin’

This line specifies the name of the file from which the surface heat flux is read. This file is a two-
dimensional (x, y) map. It is assumed to contain 64-bit binary numbers giving the value ofQ (W m2)
to be applied in each surface grid cell, ordered with the x coordinate varying fastest. The points are
ordered from low coordinate to high coordinate for both axes. The matlab program input/gendata.m
shows how to generate the surface heat flux file used in the example. The variable Qsurf is read in
the routine S/R INI PARMS (ini parms.F) and applied in S/R EXTERNAL FORCING SURF
(external forcing surf.F) where the flux is converted to a temperature tendency.

1 # Model parameters

2 # Continuous equation parameters

3 &PARM01

4 tRef=20*20.0,

5 sRef=20*35.0,

6 viscAh=0.1,

7 viscAz=0.1,

8 no_slip_sides=.FALSE.,

9 no_slip_bottom=.FALSE.,

10 viscA4=0.E12,

11 diffKhT=0.1,

12 diffKzT=0.1,

13 diffKhS=0.1,

14 diffKzS=0.1,

15 f0=1E-4,

16 beta=0.E-11,

17 tAlpha=2.0E-4,

18 sBeta =0.,

19 gravity=9.81,

3.15. SURFACE DRIVEN CONVECTION 189

Figure 3.15:

20 rhoConst=1000.0,

21 rhoNil=1000.0,

22 heatCapacity_Cp=3900.0,

23 rigidLid=.FALSE.,

24 implicitFreeSurface=.TRUE.,

25 eosType=’LINEAR’,

26 nonHydrostatic=.TRUE.,

27 readBinaryPrec=64,

28 &

29 # Elliptic solver parameters

30 &PARM02

31 cg2dMaxIters=1000,

32 cg2dTargetResidual=1.E-9,

33 cg3dMaxIters=40,

34 cg3dTargetResidual=1.E-9,

35 &

36 # Time stepping parameters

37 &PARM03

38 nIter0=0,

39 nTimeSteps=1440,

40 deltaT=60,

41 abEps=0.1,

42 pChkptFreq=0.0,

43 chkptFreq=0.0,

44 dumpFreq=600,

45 monitorFreq=1.E-5,

46 &

47 # Gridding parameters

48 &PARM04

49 usingCartesianGrid=.TRUE.,

50 usingSphericalPolarGrid=.FALSE.,

51 dXspacing=50.0,

52 dYspacing=50.0,

53 delZ=20*50.0,

54 &

55 # Input datasets

56 &PARM05

57 surfQfile=’Qsurf.bin’,

58 &

3.15.5.5 File input/data.pkg

This file uses standard default values and does not contain customisations for this experiment.

3.15.5.6 File input/eedata

This file uses standard default values and does not contain customisations for this experiment.

3.15.5.7 File input/Qsurf.bin

The file input/Qsurf.bin specifies a two-dimensional (x, y) map of heat flux values where Q = Qo × (0.5+
random number between 0 and 1).

In the example Qo = 800 W m−2 so that values of Q lie in the range 400 to 1200 W m−2 with a
mean of Qo. Although the flux models a loss, because it is directed upwards, according to the model’s
sign convention, Q is positive.

190 CHAPTER 3. GETTING STARTED WITH MITGCM

3.15.6 Running the example

3.15.6.1 Code download

In order to run the examples you must first download the code distribution. Instructions for downloading
the code can be found in 3.2.

3.15.6.2 Experiment Location

This example experiments is located under the release sub-directory

verification/convection/

3.15.6.3 Running the Experiment

To run the experiment

1. Set the current directory to input/

% cd input

2. Verify that current directory is now correct

% pwd

You should see a response on the screen ending in

verification/convection/input

3. Run the genmake script to create the experiment Makefile

% ../../../tools/genmake -mods=../code

4. Create a list of header file dependencies in Makefile

% make depend

5. Build the executable file.

% make

6. Run the mitgcmuv executable

% ./mitgcmuv

3.16. GRAVITY PLUME ON A CONTINENTAL SLOPE 191

Figure 3.16: Temperature after 23 hours of cooling. The cold dense water is mixed with ambient water
as it accelerates down the slope and hence is warmed than the unmixed plume.

3.16 Gravity Plume On a Continental Slope

(in directory: verification/tutorial plume on slope/)

An important test of any ocean model is the ability to represent the flow of dense fluid down a slope.
One example of such a flow is a non-rotating gravity plume on a continental slope, forced by a limited area
of surface cooling above a continental shelf. Because the flow is non-rotating, a two dimensional model
can be used in the across slope direction. The experiment is non-hydrostatic and uses open-boundaries to
radiate transients at the deep water end. (Dense flow down a slope can also be forced by a dense inflow
prescribed on the continental shelf; this configuration is being implemented by the DOME (Dynamics of
Overflow Mixing and Entrainment) collaboration to compare solutions in different models). The files for
this experiment can be found in the verification directory under tutorial plume on slope.

The fluid is initially unstratified. The surface buoyancy loss B0 (dimensions of L2T−3) over a cross-
shelf distance R causes vertical convective mixing and modifies the density of the fluid by an amount

∆ρ =
B0ρ0t

gH
(3.81)

where H is the depth of the shelf, g is the acceleration due to gravity, t is time since onset of cooling and
ρ0 is the reference density. Dense fluid slumps under gravity, with a flow speed close to the gravity wave
speed:

U ∼
√
g′H ∼

√
g∆ρH

ρ0
∼
√
B0t (3.82)

A steady state is rapidly established in which the buoyancy flux out of the cooling region is balanced by
the surface buoyancy loss. Then

U ∼ (B0R)1/3 ; ∆ρ ∼ ρ0

gH
(B0R)2/3 (3.83)

The Froude number of the flow on the shelf is close to unity (but in practice slightly less than unity, giving
subcritical flow). When the flow reaches the slope, it accelerates, so that it may become supercritical
(provided the slope angle α is steep enough). In this case, a hydraulic control is established at the shelf
break. On the slope, where the Froude number is greater than one, and gradient Richardson number
(defined as Ri ∼ g′h∗/U2 where h∗ is the thickness of the interface between dense and ambient fluid) is
reduced below 1/4, Kelvin-Helmholtz instability is possible, and leads to entrainment of ambient fluid

192 CHAPTER 3. GETTING STARTED WITH MITGCM

0 1 2 3 4 5 6
10

15

20

25

30

35

40

X (km)

∆ x
 (m

)

Figure 3.17: Horizontal grid spacing, ∆x, in the across-slope direction for the gravity plume experiment.

into the plume, modifying the density, and hence the acceleration down the slope. Kelvin-Helmholtz
instability is suppressed at low Reynolds and Peclet numbers given by

Re ∼ Uh

ν
∼ (B0R)1/3h

ν
; Pe = RePr (3.84)

where h is the depth of the dense fluid on the slope. Hence this experiment is carried out in the high Re,
Pe regime. A further constraint is that the convective heat flux must be much greater than the diffusive
heat flux (Nusselt number >> 1). Then

Nu =
Uh∗

κ
>> 1 (3.85)

Finally, since we have assumed that the convective mixing on the shelf occurs in a much shorter time
than the horizontal equilibration, this implies H/R << 1.

Hence to summarize the important nondimensional parameters, and the limits we are considering:

H

R
<< 1 ; Re >> 1 ; Pe >> 1 ; Nu >> 1 ; ; Ri < 1/4 (3.86)

In addition we are assuming that the slope is steep enough to provide sufficient acceleration to the gravity
plume, but nonetheless much less that 1 : 1, since many Kelvin-Helmholtz billows appear on the slope,
implying horizontal lengthscale of the slope >> the depth of the dense fluid.

3.16.1 Configuration

The topography, spatial grid, forcing and initial conditions are all specified in binary data files generated
using a Matlab script called gendata.m and detailed in section 3.16.2. Other model parameters are
specified in file data and data.obcs and detailed in section 3.16.4.

3.16.2 Binary input data

The domain is 200 m deep and 6.4 km across. Uniform resolution of 60 × 31/3 m is used in the vertical
and variable resolution of the form shown in Fig. 3.17 with 320 points is usedin the horizontal. The
formula for ∆x is:

∆x(i) = ∆x1 + (∆x2 − ∆x1)(1 + tanh

(
i− is
w

)
)/2

3.16. GRAVITY PLUME ON A CONTINENTAL SLOPE 193

0 1 2 3 4 5 6

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

X (km)

Z (
m)

Figure 3.18: Topography, h(x), used for the gravity plume experiment.

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

X (km)

Q
(W

/m
2)

Figure 3.19: Upward surface heat flux, Q(x), used as forcing in the gravity plume experiment.

194 CHAPTER 3. GETTING STARTED WITH MITGCM

where

Nx = 320

Lx = 6400 (m)

∆x1 =
2

3

Lx

Nx
(m)

∆x2 =
Lx/2

Nx− Lx/(2∆x1)
(m)

is = Lx/(2∆x1)

w = 40

Here, ∆x1 is the resolution on the shelf, ∆x2 is the resolution in deep water and Nx is the number of
points in the horizontal.

The topography, shown in Fig. 3.18, is given by:

H(x) = −Ho + (Ho − hs)(1 + tanh

(
x− xs

Ls

)
)/2

where

Ho = 200 (m)

hs = 40 (m)

xs = 1500 + Lx/2 (m)

Ls =
(Ho − hs)

2s
(m)

s = 0.15

Here, s is the maximum slope, Ho is the maximum depth, hs is the shelf depth, xs is the lateral position
of the shelf-break and Ls is the length-scale of the slope.

The forcing is through heat loss over the shelf, shown in Fig. 3.19 and takes the form of a fixed flux
with profile:

Q(x) = Qo(1 + tanh

(
x− xq

Lq

)
)/2

where

Qo = 200 (W m−2)

xq = 2500 + Lx/2 (m)

Lq = 100 (m)

Here, Qo, is the maximum heat flux, xq is the position of the cut-off and Lq is the width of the cut-off.
The initial tempeture field is unstratified but with random perturbations, to induce convection early

on in the run. The random perturbation are calculated in computational space and because of the
variable resolution introduce some spatial correlations but this does not matter for this experiment. The
perturbations have range 0 − 0.01 ◦K.

3.16.3 Code configuration

The computational domain (number of points) is specified in code/SIZE.h and is configured as a single
tile of dimensions 320 × 1 × 60. There are no experiment specific source files.

Optional code required to for this experiment are the non-hydrostatic algorithm and open-boundaries:

• Non-hydrostatic terms and algorithm are enabled with #define ALLOW NONHYDROSTATIC
in code/CPP OPTIONS.h and activated with nonHydrostatic=.TRUE., in namelist PARM01 of
input/data.

• Open boundaries are enabled by adding line obcs to package configuration file code/packages.conf
and activated via useOBCS=.TRUE, in namelist PACKAGES of input/data.pkg.

3.16. GRAVITY PLUME ON A CONTINENTAL SLOPE 195

g 9.81 m s−2 acceleration due to gravity
ρo 999.8 kg m−3 reference density
α 2 × 10−4 K−1 expansion coefficient
Ah 1 × 10−2 m2s−1 horizontal viscosity
Av 1 × 10−3 m2s−1 vertical viscosity
κh 0 m2s−1 (explicit) horizontal diffusion
κv 0 m2s−1 (explicit) vertical diffusion

∆t 20 s time step
∆z 3.33̇ m vertical grid spacing
∆x 13.3̇ − 39.5 m horizontal grid spacing

Table 3.2: Model parameters used in the gravity plume experiment.

3.16.4 Model parameters

The model parameters (Table 3.2) are specified in input/data and if not assume the default values defined
in model/src/set defaults.F. A linear equation of state is used, eosType=’LINEAR’, but only
temperature is active, sBeta=0.E-4. For the given heat flux, Qo, the buoyancy forcing is Bo = gαQ

ρocp
∼

10−7 m2s−3. Using R = 103 m, the shelf width, then this gives a velocity scale of U ∼ 5×10−2 m s−1 for
the initial front but will accelerate by an order of magnitude over the slope. The temperature anomaly
will be of order ∆θ ∼ 3 × 10−2 K. The viscosity is constant and gives a Reynolds number of 100, using
h = 20 m for the initial front and will be an order magnitude bigger over the slope. There is no explicit
diffusion but a non-linear advection scheme is used for temperature which adds enough diffusion so as to
keep the model stable. The time-step is set to 20 s and gives Courant number order one when the flow
reaches the bottom of the slope.

3.16.5 Build and run the model

Build the model per usual. For example:

% cd verification/plume_on_slope

% mkdir build

% cd build

% ../../../tools/genmake -mods=../code -disable=gmredi,kpp,zonal_filt

,shap_filt

% make depend

% make

When compilation is complete, run the model as usual, for example:

% cd ../

% mkdir run

% cp input/* build/mitgcmuv run/

% cd run

% ./mitgcmuv > output.txt

196 CHAPTER 3. GETTING STARTED WITH MITGCM

−6

−4

−2

0

2

4

6

50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

longitude

lati
tud

e

(a)

Figure 3.20: Modelled annual mean air-sea CO2 flux (mol C m−2 y−1) for pre-industrial steady-state.
Positive indicates flux of CO2 from ocean to the atmosphere (out-gassing), contour interval is 1 mol C
m−2 y−1.

3.17 Biogeochemistry Tutorial

(in directory: verification/tutorial global oce biogeo/)

3.17.1 Overview

This model overlays the dissolved inorganic carbon biogeochemistry model (the “dic” package) over a 2.8o

global physical model. The physical model has 15 levels, and is forced with a climatological annual cycle
of surface wind stresses Trenberth et al. [1989], surface heat and freshwater fluxes Jiang et al. [1999] with
additional relaxation toward climatological sea surface temperature and salinity Levitus and T.P.Boyer
[1994a,b]. It uses the Gent and and McWilliams Gent and McWilliams [1990] eddy parameterization
scheme, has an implicit free-surface, implicit vertical diffusion and uses the convective adjustment scheme.
The files for this experiment can be found in the verification directory under tutorial global oce biogeo.

The biogeochemical model considers the coupled cycles of carbon, oxygen, phosphorus and alkalinity.
A simplified parameterization of biological production is used, limited by the availability of light and
phosphate. A fraction of this productivity enters the dissolved organic pool pool, which has an e-folding
timescale for remineralization of 6 months [following Yamanaka and Tajika, 1997]. The remaining fraction
of this productivity is instantaneously exported as particulate to depth [Yamanaka and Tajika, 1997]
where it is remineralized according to the empirical power law relationship determined by Martin et al
[1987]. The fate of carbon is linked to that of phosphorus by the Redfield ratio. Carbonate chemistry
is explicitly solved Follows et al. [ress] and the air-sea exchange of CO2 is parameterized with a uniform
gas transfer coefficient following Wanninkhof [1992]. Oxygen is also linked to phosphorus by the Redfield
ratio, and oxygen air-sea exchange also follows Wanninkhof [1992]. For more details see Dutkiewicz et al.
[2005].

The example setup described here shows the physical model after 5900 years of spin-up and the
biogeochemistry after 2900 years of spin-up. The biogeochemistry is at a pre-industrial steady-state
(atmospheric ppmv is kept at 278). Five tracers are resolved: dissolved inorganic carbon (DIC), alkalinity
(ALK), phosphate (PO4), dissolved organic phosphorus (DOP) and dissolved oxygen (O2).

3.17. BIOGEOCHEMISTRY TUTORIAL 197

3.17.2 Equations Solved

The physical ocean model velocity and diffusivities are used to redistribute the 5 tracers within the ocean.
Additional redistribution comes from chemical and biological sources and sinks. For any tracer A:

∂A

∂t
= −∇ · (~u∗A) + ∇ · (K∇A) + SA

where ~u∗ is the transformed Eulerian mean circulation (which includes Eulerian and eddy-induced advec-
tion), K is the mixing tensor, and SA are the sources and sinks due to biological and chemical processes.

The sources and sinks are:

SDIC = FCO2 + VCO2 + rC:PSPO4 + JCa (3.87)

SALK = VALK − rN :PSPO4 + 2JCa (3.88)

SPO4 = −fDOPJprod −
∂FP

∂z
+ κremin[DOP] (3.89)

SDOP = fDOPJprod − κremin[DOP] (3.90)

SO2 =

{
−rO:PSPO4 if O2 > O2crit

0 if O2 < O2crit
(3.91)

where:

• FCO2 is the flux of CO2 from the ocean to the atmosphere

• VCO2 is “virtual flux” due to changes in DIC due to the surface freshwater fluxes

• rC:P is Redfield ratio of carbon to phosphorus

• JCa includes carbon removed from surface due to calcium carbonate formation and subsequent
cumulation of the downward flux of CaCO3

• VALK is “virtual flux” due to changes in alkalinity due to the surface freshwater fluxes

• rN :P Redfield ratio is nitrogen to phosphorus

• fDOP is fraction of productivity that remains suspended in the water column as dissolved organic
phosphorus

• Jprod is the net community productivity

• ∂FP

∂z is the accumulation of remineralized phosphorus with depth

• κremin is rate with which DOP remineralizes back to PO4

• FO2 is air-sea flux of oxygen

• rO:P is Redfield ratio of oxygen to phosphorus

• O2crit is a critical level below which oxygen consumption if halted

These terms (for the first four tracers) are described more in Dutkiewicz et al. [2005] and by McKinley
et al. [2004] for the terms relating to oxygen.

3.17.3 Code configuration

The model configuration for this experiment resides in verification/dic example. The modifications to
the code (in verification/dic example/code) are:

• SIZE.h: which dictates the size of the model domain (128x64x15).

• PTRACERS SIZE.h: which dictates how many tracers to assign how many tracers will be used
(5).

198 CHAPTER 3. GETTING STARTED WITH MITGCM

• GCHEM OPTIONS.h: provides some compiler time options for the /pkg/gchem. In particular
this example requires that DIC BIOTIC and GCHEM SEPARATE FORCING be defined.

• GMREDI OPTIONS.h: assigns the Gent-McWilliam eddy parameterization options.

• DIAGNOSTICS SIZE.h: assigns size information for the diagnostics package.

• packages.conf: which dictates which packages will be compiled in this version of the model - among
the many that are used for the physical part of the model, this also includes ptracers, gchem, and
dic which allow the biogeochemical part of this setup to function.

The input fields needed for this run (in verification/dic example/input) are:

• data: specifies the main parameters for the experiment, some parameters that may be useful to
know: nTimeSteps number timesteps model will run, change to 720 to run for a year taveFreq
frequency with which time averages are done, change to 31104000 for annual averages.

• data.diagnostics: species details of diagnostic pkg output

• data.gchem: specifics files and other details needed in the biogeochemistry model run

• data.gmredi: species details for the GM parameterization

• data.mnc: specifies details for types of output, netcdf or binary

• data.pkg: set true or false for various packages to be used

• data.ptracers: details of the tracers to be used, including makes, diffusivity information and (if
needed) initial files. Of particular importance is the PTRACERS numInUse which states how many
tracers are used, and PTRACERS Iter0 which states at which timestep the biogeochemistry model
tracers were initialized.

• depth g77.bin: bathymetry data file

• eedata: This file uses standard default values and does not contain customizations for this exper-
iment.

• fice.bin: ice data file, needed for the biogeochemistry

• lev monthly salt.bin: SSS values which model relaxes toward

• lev monthly temp.bin: SST values which model relaxes toward

• pickup.0004248000.data: variable and tendency values need to restart the physical part of the
model

• pickup cd.0004248000.data: variable and tendency values need to restart the cd pkg

• pickup ptracers.0004248000.data: variable and tendency values need to restart the the biogeo-
chemistry part of the model

• POLY3.COEFFS: coefficient for the non-linear equation of state

• shi empmr year.bin: freshwater forcing data file

• shi qnet.bin: heat flux forcing data file

• sillev1.bin: silica data file, need for the biogeochemistry

• tren speed.bin: wind speed data file, needed for the biogeochemistry

• tren taux.bin: meridional wind stress data file

• tren tauy.bin: zonal wind stress data file

3.17. BIOGEOCHEMISTRY TUTORIAL 199

3.17.4 Running the example

You will first need to download the MITgcm code. Instructions for downloading the code can be found
in section 3.2.

1. go to the build directory in verification/dic example:
cd verification/dic example/build

2. create the Makefile:
../../../tools/genmake2 -mods=code

3. create all the links:
make depend

4. compile (the executable will be called mitgcmuv):
make

5. move the executable to the directory with all the inputs:
mv mitgcmuv ../input/

6. go to the input directory and run the model:
cd ../input
./mitgcmuv

As the model is set up to run in the verification experiment, it only runs for 4 timestep (2 days) and
outputs data at the end of this short run. For a more informative run, you will need to run longer. As
set up, this model starts from a pre-spun up state and initializes physical fields and the biogeochemical
tracers from the pickup files.

Physical data (e.g. S,T, velocities etc) will be output as for any regular ocean run. The biogeochemical
output are:

• tracer snap shots: either netcdf, or older-style binary (depending on how data.mnc is set up). Look
in data.ptracers to see which number matches which type of tracer (e.g. ptracer01 is DIC).

• tracer time averages: either netcdf, or older-style binary (depending on how data.mnc is set up)

• specific DIC diagnostics: these are averaged over taveFreq (set in data) and are specific to the dic
package, and currently are only available in binary format:

– DIC Biotave: 3-D biological community productivity (mol P m−3 s−1)

– DIC Cartave: 3-D tendencies due to calcium carbonate cycle (mol C m−3 s−1)

– DIC fluxCO2ave: 2-D air-sea flux of CO2 (mol C m−2 s−1)

– DIC pCO2tave: 2-D partial pressure of CO2 in surface layer

– DIC pHtave: 2-D pH in surface layer

– DIC SurOtave: 2-D tendency due to air-sea flux of O2 (mol O m−3 s−1)

– DIC Surtave: 2-D surface tendency of DIC due to air-sea flux and virtual flux (mol C m−3

s−1)

200 CHAPTER 3. GETTING STARTED WITH MITGCM

3.18 Global Ocean State Estimation at 4◦ Resolution

(in directory: verification/tutorial global oce optim/)

3.18.1 Overview

This experiment illustrates the optimization capacity of the MITgcm: here, a high level description.
In this tutorial, a very simple case is used to illustrate the optimization capacity of the MITgcm.

Using an ocean configuration with realistic geography and bathymetry on a 4 × 4◦ spherical polar grid,
we estimate a time-independent surface heat flux adjustment Qnetm that attempts to bring the model
climatology into consistency with observations (Levitus dataset, Levitus and T.P.Boyer [1994a]). The
files for this experiment can be found in the verification directory under tutorial global oce optim.

This adjustment Qnetm (a 2D field only function of longitude and latitude) is the control variable
of an optimization problem. It is inferred by an iterative procedure using an ‘adjoint technique’ and a
least-squares method (see, for example, Stammer et al. [002a] and Ferreira et al. [2005]).

The ocean model is run forward in time and the quality of the solution is determined by a cost
function, J1, a measure of the departure of the model climatology from observations:

J1 =
1

N

N∑

i=1

[
T i − T

lev

i

σT
i

]2

(3.92)

where T i and T
lev

i are, respectively, the model and observed potential temperature at each grid point
i. The differences are weighted by an a priori uncertainty σT

i on observations (as provided by Levitus
and T.P.Boyer [1994a]). The error σT

i is only a function of depth and varies from 0.5 at the surface to
0.05 K at the bottom of the ocean, mainly reflecting the decreasing temperature variance with depth (Fig.
3.21a). A value of J1 of order 1 means that the model is, on average, within observational uncertainties.

The cost function also places constraints on the adjustment to insure it is ”reasonable”, i.e. of order
of the uncertainties on the observed surface heat flux:

J2 =
1

N

N∑

i=1

[
Qnetm

σQ
i

]2

(3.93)

where σQ
i are the a priori errors on the observed heat flux as estimated by Stammer et al. (2002) from

30% of local root-mean-square variability of the NCEP forcing field (Fig 3.21b).
The total cost function is defined as J = λ1J1 + λ2J2 where λ1 and λ2 are weights controlling the

relative contribution of the two components. The adjoint model then yields the sensitivities ∂J/∂Qnetm

of J relative to the 2D fields Qnetm. Using a line-searching algorithm (Gilbert and Lemaréchal [1989]),
Qnetm is adjusted then in the sense to reduce J — the procedure is repeated until convergence.

Fig. 3.22 shows the results of such an optimization. The model is started from rest and from January-
mean temperature and salinity initial conditions taken from the Levitus dataset. The experiment is run
a year and the averaged temperature over the whole run (i.e. annual mean) is used in the cost function
(3.92) to evaluate the model1. Only the top 2 levels are used. The first guess Qnetm is chosen to be
zero. The weights λ1 and λ2 are set to 1 and 2, respectively. The total cost function converges after 15
iterations, decreasing from 6.1 to 2.7 (the temperature contribution decreases from 6.1 to 1.8 while the
heat flux one increases from 0 to 0.42). The right panels of Fig. (3.22) illustrate the evolution of the
temperature error at the surface from iteration 0 to iteration 15. Unsurprisingly, the largest errors at
iteration 0 (up to 6◦C, top left panels) are found in the Western boundary currents. After optimization,
the departure of the model temperature from observations is reduced to 1◦C or less almost everywhere
except in the Pacific Equatorial Cold Tongue. Comparison of the initial temperature error (top, right)
and heat flux adjustment (bottom, left) shows that the system basically increased the heat flux out of
the ocean where temperatures were too warm and vice-versa. Obviously, heat flux uncertainties are not
the sole responsible for temperature errors and the heat flux adjustment partly compensates the poor
representation of narrow currents (Western boundary currents, Equatorial currents) at 4× 4◦ resolution.

1Because of the daily automatic testing, the experiment as found in the repository is set-up with a very small number
of time-steps. To reproduce the results shown here, one needs to set nTimeSteps = 360 and lastinterval=31104000 (both
corresponding to a year, see section 3.18.3.2 for further details).

3.18. GLOBAL OCEAN STATE ESTIMATION EXAMPLE 201

0 0.2 0.4
−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0
a)

Temperature
error σT (in K)

b)

Heat flux error σQ

 (in W.m−2)

0 100 200 300
−80

−60

−40

−20

0

20

40

60

80

20 30 40 50 60 70 80 90

Figure 3.21: A priori errors on potential temperature (left, in ◦C) and surface heat flux (right, in W m−2)
used to compute the cost terms J1 and J2, respectively.

This is allowed by the large a priori error on the heat flux (Fig. 3.21). The Pacific Cold Tongue is a counter
example: there, heat fluxes uncertainties are fairly small (about 20 W.m2), and a large temperature errors
remains after optimization.

In the following, section 2 describes in details the implementation of the control variable Qnetm, the
cost function J and the I/O required for the communication between the model and the line-search.
Instructions to compile the MITgcm and its adjoint and the line-search algorithm are given in section 3.
The method used to run the experiment is described in section 4.

3.18.2 Implementation of the control variable and the cost function

One of the goal of this tutorial is to illustrate how to implement a new control variable. Most of this is fairly
generic and is done in the ctrl and cost packages found in the pkg/ directory. The modifications can be
tracked by the CPP option ALLOW HFLUXM CONTROL or the comment cHFLUXM CONTROL. The
more specific modifications required for the experiment are found in verification/tutorial global oce optim/code ad.
Here follows a brief description of the implementation.

3.18.2.1 The control variable

The adjustmentQnetm is activated by setting ALLOW HFLUXM CONTROL to ”define” in ECCO OPTIONS.h.
It is first implemented as a “normal” forcing variable. It is defined in FFIELDS.h, initialized to zero

in ini forcing.F, and then used in external forcing surf.F. Qnetm is made a control variable in the ctrl
package by modifying the following subroutines:

• ctrl init.F where Qnetm is defined as the control variable number 24,

• ctrl pack.F which writes, at the end of each iteration, the sensitivity of the cost function ∂J/∂Qnetm

in to a file to be used by the line-search algorithm,

• ctrl unpack.F which reads, at the start of each iteration, the updated adjustment as provided by
the line-search algorithm,

• ctrl map forcing.F in which the updated adjustment is added to the first guess Qnetm.

Note also some minor changes in ctrl.h, ctrl readparams.F, and ctrl dummy.h (xx hfluxm file, fname hfluxm,
xx hfluxm dummy).

202 CHAPTER 3. GETTING STARTED WITH MITGCM

−60

−40

−20

0

20

40

60

Prescribed surface heat flux Q
net

100 200 300

−60

−40

−20

0

20

40

60

Adjustment to Q
net

 (iteration 15)

−60

−40

−20

0

20

40

60

Temp. error at iteration 0

100 200 300

−60

−40

−20

0

20

40

60

Temp. error at iteration 15

−6 −4 −2 0 2 4 6−200 −100 0 100 200

Figure 3.22: Initial annual mean surface heat flux (top right in W.m−2) and adjustment obtained at
iteration 15 (bottom right). Averaged difference between model and observed potential temperatures
at the surface (in ◦C) before optimization (iteration 0, top right) and after optimization (iteration 15,
bottom right). Contour intervals for heat flux and temperature are 25 W.m−2 and 1◦C, respectively. A
positive flux is out of the ocean.

3.18.2.2 Cost functions

The cost functions are implemented using the cost package.

• The temperature cost function J1 which measures the drift of the mean model temperature from
the Levitus climatology is implemented in cost temp.F. It is activated by ALLOW COST TEMP
in ECCO OPTIONS.h. It requires the mean temperature of the model which is obtained by accu-
mulating the temperature in cost tile.F (called at each time step). The value of the cost function
is stored in objf temp and its weight λ1 in mult temp.

• The heat flux cost function, penalizing the departure of the surface heat flux from observations is im-
plemented in cost hflux.F, and activated by the key ALLOW COST HFLUXM in ECCO OPTIONS.h.
The value of the cost function is stored in objf hfluxm and its weight λ2 in mult hfluxm.

• The subroutine cost final.F calls the cost functions subroutines and make the (weighted) sum of
the various contributions.

• The various weights used in the cost functions are read in cost weights.F. The weight of the cost
functions are read in cost readparams.F from the input file data.cost.

3.18.3 Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial global oce optim/.
The experiment files in code ad/ and input ad/ contain the code customizations and parameter settings.
Most of them are identical to those used in the Global Ocean (experiment tutorial global oce latlon).
Below, we describe some of the customizations required for this experiment.

3.18.3.1 Compilation-time customizations in code ad/

In ECCO CPPOPTIONS.h:

• define ALLOW ECCO OPTIMIZATION

• define ALLOW COST, ALLOW COST TEMP, and ALLOW COST HFLUXM

3.18. GLOBAL OCEAN STATE ESTIMATION EXAMPLE 203

• define ALLOW HFLUXM CONTROL

3.18.3.2 Running-time customizations in input ad/

• data: note the smaller cg2dTargetResidual than in the forward-only experiment,

• data.optim specifies the iteration number,

• data.ctrl is used, in particular, to specify the name of the sensitivity and adjustment files associated
to a control variable,

• data.cost: parameters of the cost functions, in particular lastinterval specifies the length of time-
averaging for the model temperature to be used in the cost function (3.92),

• data.pkg: note that the Gradient Check package is turned on by default (useGrdchk=.TRUE.),

• Err hflux.bin and Err levitus 15layer.bin are the files containing the heat flux and potential tem-
perature uncertainties, respectively.

3.18.4 Compiling

The optimization experiment requires two executables: 1) the MITgcm and its adjoint (mitgcmuv ad)
and 2) the line-search algorithm (optim.x).

3.18.4.1 Compilation of MITgcm and its adjoint: mitcgmuv ad

Before compiling, first note that, in the directory code ad/, two files must be updated:

• code ad diff.list which lists new subroutines to be compiled by the TAF software (cost temp.F and
cost hflux.F here),

• the adjoint hfluxm files which provides a list of the control variables and the name of cost function
to the TAF software.

Then, in the directory build ad/, type:

% ../../../tools/genmake2 -mods=../code_ad -adof=../code_ad/adjoint_hfluxm

% make depend

% make adall

to generate the MITgcm executable mitgcmuv ad.

3.18.4.2 Compilation of the line-search algorithm: optim.x

This is done from the directories lsopt/ and optim/ (under MITgcm/). In lsopt/, unzip the blash1 library
adapted to your platform, and change the Makefile accordingly. Compile with:

% make all

(more details in lsopt doc.txt)
In optim/, the path of the directory where mitgcm ad was compiled must be specified in the Makefile

in the variable INCLUDEDIRS. The file name of the control variable (xx hfluxm file here) must be added
to the name list read by optim num.F. Then use

% make depend

and

% make

to generate the line-search executable optim.x.

204 CHAPTER 3. GETTING STARTED WITH MITGCM

3.18.5 Running the estimation

Copy the mitgcmuv ad executable to input ad/ and optim.x to the subdirectory input ad/OPTIM/. Move
into input ad/. The first iteration is somewhat particular and is best done ”by hand” while the following
iterations can be run automatically (see below). Check that the iteration number is set to 0 in data.optim
and run the MITgcm:

% ./mitgcmuv_ad

The output files adxx hfluxm.0000000000.* and xx hfluxm.0000000000.* contain the sensitivity of the
cost function to Qnetm and the adjustment to Qnetm (zero at the first iteration), respectively. Two other
files called costhflux tut MITgcm.opt0000 and ctrlhflux tut MITgcm.opt0000 are also generated. They
essentially contain the same information as the adxx .hfluxm* and xx hfluxm* files, but in a compressed
format. These two files are the only ones involved in the communication between the adjoint model
mitgcmuv ad and the line-search algorithm optim.x. Only at the first iteration, are they both generated by
mitgcmuv ad. Subsenquently, costhflux tut MITgcm.optn is an output of the adjoint model at iteration n
and an input of the line-search. The latter returns an updated adjustment in ctrlhflux tut MITgcm.optn+
1 to be used as an input of the adjoint model at iteration n+1.

At the first iteration, move costhflux tut MITgcm.opt0000 and ctrlhflux tut MITgcm.opt0000 to OP-
TIM/, move into this directory and link data.optim and data.ctrl locally:

% cd OPTIM/

% ln -s ../data.optim .

% ln -s ../data.ctrl .

The target cost function fmin needs to be specified too: as a rule of thumb, it should be about 0.95-0.90
times the value of the cost function at the first iteration. This value is only used at the first iteration
and does not need to be updated afterward. However, it implicitly specifies the “pace” at which the cost
function is going down (if you are lucky and it does indeed diminish!). More in the ECCO section maybe
?

Once this is done, run the line-search algorithm:

% ./optim.x

which computes the updated adjustment for iteration 1, ctrlhflux tut MITgcm.opt0001.
The following iterations can be executed automatically using the shell script cycsh found in input ad/.

This script will take care of changing the iteration numbers in the data.optim, launch the adjoint model,
clean and store the outputs, move the costhflux* and ctrlhflux* files, and run the line-search algorithm.
Edit cycsh to specify the prefix of the directories used to store the outputs and the maximum number of
iteration.

3.19. SENSITIVITY OF AIR-SEA EXCHANGE TO TRACER INJECTION SITE 205

3.19 Sensitivity of Air-Sea Exchange to Tracer Injection Site

(in directory: verification/tutorial tracer adjsens/)

MITgcm has been adapted to enable AD using TAMC or TAF. The present description, therefore,
is specific to the use of TAMC or TAF as AD tool. The following sections describe the steps which are
necessary to generate a tangent linear or adjoint model of MITgcm. We take as an example the sensitivity
of carbon sequestration in the ocean. The AD-relevant hooks in the code are sketched in 5.2, 5.4.

3.19.1 Overview of the experiment

We describe an adjoint sensitivity analysis of out-gassing from the ocean into the atmosphere of a carbon-
like tracer injected into the ocean interior (see Hill et al. [2002]).

3.19.1.1 Passive tracer equation

For this work MITgcm was augmented with a thermodynamically inactive tracer, C. Tracer residing in
the ocean model surface layer is out-gassed according to a relaxation time scale, µ. Within the ocean
interior, the tracer is passively advected by the ocean model currents. The full equation for the time
evolution

∂C

∂t
= −U · ∇C − µC + Γ(C) + S (3.94)

also includes a source term S. This term represents interior sources of C such as would arise due to
direct injection. The velocity term, U , is the sum of the model Eulerian circulation and an eddy-induced
velocity, the latter parameterized according to Gent/McWilliams (Gent and McWilliams [1990]; Gent
et al. [1995]). The convection function, Γ, mixes C vertically wherever the fluid is locally statically
unstable.

The out-gassing time scale, µ, in eqn. (3.94) is set so that 1/µ ∼ 1 year for the surface ocean and
µ = 0 elsewhere. With this value, eqn. (3.94) is valid as a prognostic equation for small perturbations
in oceanic carbon concentrations. This configuration provides a powerful tool for examining the impact
of large-scale ocean circulation on CO2 out-gassing due to interior injections. As source we choose a
constant in time injection of S = 1 mol/s.

3.19.1.2 Model configuration

The model configuration employed has a constant 4◦×4◦ resolution horizontal grid and realistic geography
and bathymetry. Twenty vertical layers are used with vertical spacing ranging from 50 m near the surface
to 815 m at depth. Driven to steady-state by climatological wind-stress, heat and fresh-water forcing the
model reproduces well known large-scale features of the ocean general circulation.

3.19.1.3 Out-gassing cost function

To quantify and understand out-gassing due to injections of C in eqn. (3.94), we define a cost function
J that measures the total amount of tracer out-gassed at each timestep:

J (t = T) =

∫ t=T

t=0

∫

A

µC dAdt (3.95)

Equation(3.95) integrates the out-gassing term, µC, from (3.94) over the entire ocean surface area, A, and
accumulates it up to time T . Physically, J can be thought of as representing the amount of CO2 that our
model predicts would be out-gassed following an injection at rate S. The sensitivity of J to the spatial
location of S, ∂J

∂S , can be used to identify regions from which circulation would cause CO2 to rapidly out-
gas following injection and regions in which CO2 injections would remain effectively sequestered within
the ocean.

206 CHAPTER 3. GETTING STARTED WITH MITGCM

3.19.2 Code configuration

The model configuration for this experiment resides under the directory verification/carbon/. The code
customization routines are in verification/carbon/code/:

• .genmakerc

• COST CPPOPTIONS.h

• CPP EEOPTIONS.h

• CPP OPTIONS.h

• CTRL OPTIONS.h

• ECCO OPTIONS.h

• SIZE.h

• adcommon.h

• tamc.h

The runtime flag and parameters settings are contained in verification/carbon/input/, together with the
forcing fields and and restart files:

• data

• data.cost

• data.ctrl

• data.gmredi

• data.grdchk

• data.optim

• data.pkg

• eedata

• topog.bin

• windx.bin, windy.bin

• salt.bin, theta.bin

• SSS.bin, SST.bin

• pickup*

Finally, the file to generate the adjoint code resides in adjoint/:

• makefile

Below we describe the customizations of this files which are specific to this experiment.

3.19.2.1 File .genmakerc

This file overwrites default settings of genmake. In the present example it is used to switch on the
following packages which are related to automatic differentiation and are disabled by default:

set ENABLE=(autodiff cost ctrl ecco gmredi grdchk kpp)

Other packages which are not needed are switched off:
set DISABLE=(aim obcs zonal filt shap filt cal exf)

3.19. SENSITIVITY OF AIR-SEA EXCHANGE TO TRACER INJECTION SITE 207

3.19.2.2 File COST CPPOPTIONS.h, CTRL OPTIONS.h

These files used to contain package-specific CPP-options (see Section ref:ask-the-author). For techni-
cal reasons those options have been grouped together in the file ECCO OPTIONS.h. To retain the
modularity, the files have been kept and contain the standard include of the CPP OPTIONS.h file.

3.19.2.3 File CPP EEOPTIONS.h

This file contains ’wrapper’-specific CPP options. It only needs to be changed if the code is to be run in
a parallel environment (see Section ref:ask-the-author).

3.19.2.4 File CPP OPTIONS.h

This file contains model-specific CPP options (see Section ref:ask-the-author). Most options are re-
lated to the forward model setup. They are identical to the global steady circulation setup of verifica-
tion/global ocean.90x40x15/. The three options specific to this experiment are

#define ALLOW PASSIVE TRACER

This flag enables the code to carry through the advection/diffusion of a passive tracer along the model
integration.

#define ALLOW MIT ADJOINT RUN

This flag enables the inclusion of some AD-related fields concerning initialization, link between con-
trol variables and forward model variables, and the call to the top-level forward/adjoint subroutine
adthe main loop instead of the main loop.

#define ALLOW GRADIENT CHECK

This flag enables the gradient check package. After computing the unperturbed cost function and its
gradient, a series of computations are performed for which
• an element of the control vector is perturbed
• the cost function w.r.t. the perturbed element is computed
• the difference between the perturbed and unperturbed cost function is computed to compute the finite
difference gradient
• the finite difference gradient is compared with the adjoint-generated gradient. The gradient check
package is further described in Section ???.

3.19.2.5 File ECCO OPTIONS.h

The CPP options of several AD-related packages are grouped in this file:

• Overall ECCO-related execution modus:
These determine whether a pure forward run, a sensitivity run or an iteration of optimization is
performed. These options are not needed in the present context.

• Adjoint support package: pkg/autodiff/
This package contains hand-written adjoint code such as active file handling, flow directives for files
which must not be differentiated, and TAMC-specific header files.

#define ALLOW AUTODIFF TAMC

defines TAMC-related features in the code.
#define ALLOW TAMC CHECKPOINTING

enables the checkpointing feature of TAMC (see Section ref:ask-the-author). In the present ex-
ample a 3-level checkpointing is implemented. The code contains the relevant store directives,
common block and tape initializations, storing key computation, and loop index handling. The
checkpointing length at each level is defined in file tamc.h, cf. below. The out and intermedi-
ate loop directivs are contained in the files checkpoint lev3 directives.h, checkpoint lev2 directives.h
(package pkg/autodiff).

#define ALLOW AUTODIFF MONITOOR

enables the monitoring of intermediate adjoint variables (see Section ref:ask-the-author).
#define ALLOW DIVIDED ADJOINT

enables adjoint dump and restart (see Section ref:ask-the-author).

208 CHAPTER 3. GETTING STARTED WITH MITGCM

• Cost function package: pkg/cost/
This package contains all relevant routines for initializing, accumulating and finalizing the cost
function (see Section ref:ask-the-author).

#define ALLOW COST

enables all general aspects of the cost function handling, in particular the hooks in the forward code
for initializing, accumulating and finalizing the cost function.

#define ALLOW COST TRACER

includes the call to the cost function for this particular experiment, eqn. (3.95).

• Control variable package: pkg/ctrl/
This package contains all relevant routines for the handling of the control vector. Each control
variable can be enabled/disabled with its own flag:

#define ALLOW THETA0 CONTROL initial temperature
#define ALLOW SALT0 CONTROL initial salinity
#define ALLOW TR0 CONTROL initial passive tracer concentration
#define ALLOW TAUU0 CONTROL zonal wind stress
#define ALLOW TAUV0 CONTROL meridional wind stress
#define ALLOW SFLUX0 CONTROL freshwater flux
#define ALLOW HFLUX0 CONTROL heat flux
#define ALLOW DIFFKR CONTROL diapycnal diffusivity
#undef ALLOW KAPPAGM CONTROL isopycnal diffusivity

3.19.2.6 File SIZE.h

The file contains the grid point dimensions of the forward model. It is identical to the verification/exp2/:
sNx = 90

sNy = 40

Nr = 20

It corresponds to a single-tile/single-processor setup: nSx = nSy = 1, nPx = nPy = 1, with standard
overlap dimensioning OLx = OLy = 3.

3.19.2.7 File adcommon.h

This file contains common blocks of some adjoint variables that are generated by TAMC. The common
blocks are used by the adjoint support routine addummy in stepping which needs to access those variables:

common /addynvars r/ is related to DYNVARS.h
common /addynvars cd/ is related to DYNVARS.h
common /addynvars diffkr/ is related to DYNVARS.h
common /addynvars kapgm/ is related to DYNVARS.h
common /adtr1 r/ is related to TR1.h
common /adffields/ is related to FFIELDS.h

Note that if the structure of the common block changes in the above header files of the forward
code, the structure of the adjoint common blocks will change accordingly. Thus, it has to be made sure
that the structure of the adjoint common block in the hand-written file adcommon.h complies with the
automatically generated adjoint common blocks in adjoint model.F. The header file is enabled via the
CPP-option ALLOW AUTODIFF MONITOR.

3.19.2.8 File tamc.h

This routine contains the dimensions for TAMC checkpointing and some indices relevant for storing ky
computations.

• #ifdef ALLOW TAMC CHECKPOINTING

3-level checkpointing is enabled, i.e. the timestepping is divided into three different levels (see
Section ref:ask-the-author). The model state of the outermost (nchklev 3) and the intermediate
(nchklev 2) timestepping loop are stored to file (handled in the main loop). The innermost loop
(nchklev 1) avoids I/O by storing all required variables to common blocks. This storing may also
be necessary if no checkpointing is chosen (nonlinear functions, if-statements, iterative loops, ...).

3.19. SENSITIVITY OF AIR-SEA EXCHANGE TO TRACER INJECTION SITE 209

In the present example the dimensions are chosen as follows:
nchklev 1 = 36

nchklev 2 = 30

nchklev 3 = 60

To guarantee that the checkpointing intervals span the entire integration period the following rela-
tion must be satisfied:

nchklev 1*nchklev 2*nchklev 3 ≥ nTimeSteps

where nTimeSteps is either specified in data or computed via
nTimeSteps = (endTime-startTime)/deltaTClock .

• #undef ALLOW TAMC CHECKPOINTING

No checkpointing is enabled. In this case the relevant counter is nchklev 0. Similar to above, the
following relation has to be satisfied

nchklev 0 ≥ nTimeSteps.

The following parameters may be worth describing:
isbyte

maxpass

3.19.2.9 File makefile

This file contains all relevant parameter flags and lists to run TAMC or TAF. It is assumed that TAMC is
available to you, either locally, being installed on your network, or remotely through the ’TAMC Utility’.
TAMC is called with the command tamc followed by a number of options. They are described in detail
in the TAMC manual Giering [1999]. Here we briefly discuss the main flags used in the makefile. The
standard output for TAF is written to file taf.log.

tamc -input <variable names> -output <variable name> -i4 -r4 ...

-toplevel <S/R name> -reverse <file names>

taf -input <variable names> -output <variable name> -i4 -r4 ...

-toplevel <S/R name> -reverse <file names>

-flow taf flow.log -nonew arg

• -toplevel <S/R name>

Name of the toplevel routine, with respect to which the control flow analysis is performed.

• -input <variable names>

List of independent variables u with respect to which the dependent variable J is differentiated.

• -output <variable name>

Dependent variable J which is to be differentiated.

• -reverse <file names>

Adjoint code is generated to compute the sensitivity of an independent variable w.r.t. many depen-
dent variables. In the discussion of Section ??? the generated adjoint top-level routine computes
the product of the transposed Jacobian matrix MT times the gradient vector ∇vJ .
<file names> refers to the list of files .f which are to be analyzed by TAMC. This list is gen-
erally smaller than the full list of code to be compiled. The files not contained are either above
the top-level routine (some initializations), or are deliberately hidden from TAMC, either because
hand-written adjoint routines exist, or the routines must not (or don’t have to) be differentiated.
For each routine which is part of the flow tree of the top-level routine, but deliberately hidden
from TAMC (or for each package which contains such routines), a corresponding file .flow exists
containing flow directives for TAMC.

• -i4 -r4

210 CHAPTER 3. GETTING STARTED WITH MITGCM

• -flow taf flow.log

Will cause TAF to produce a flow listing file named taf flow.log in which the set of active and
passive variables are identified for each subroutine.

• -nonew arg

The default in the order of the parameter list of adjoint routines has changed. Before TAF 1.3 the
default was compatible with the TAMC-generated list. As of TAF 1.3 the order of adjoint routine
parameter lists is no longer copatible with TAMC. To restore compatibility when using TAF 1.3
and higher, this argument is needed. It is currently crucial to use since all hand-written adjoint
routines refer to the TAMC default.

3.19.2.10 The input parameter files

File data

File data.cost

File data.ctrl

File data.gmredi

File data.grdchk

File data.optim

File data.pkg

File eedata

File topog.bin
Contains two-dimendional bathymetry information

File windx.bin, windy.bin, salt.bin, theta.bin, SSS.bin, SST.bin
These contain the initial values (salinity, temperature, salt.bin, theta.bin), surface boundary values (sur-
face wind stresses, (windx.bin, windy.bin), and surface restoring fields (SSS.bin, SST.bin).

File pickup*
Contains model state after model spinup.

3.19.3 Compiling the model and its adjoint

The built process of the adjoint model is slightly more complex than that of compiling the forward code.
The main reason is that the adjoint code generation requires a specific list of routines that are to be
differentiated (as opposed to the automatic generation of a list of files to be compiled by genmake). This
list excludes routines that don’t have to be or must not be differentiated. For some of the latter routines
flow directives may be necessary, a list of which has to be given as well. For this reason, a separate
makefile is currently maintained in the directory adjoint/. This makefile is responsible for the adjoint
code generation.

In the following we describe the build process step by step, assuming you are in the directory bin/.
A summary of steps to follow is given at the end.

3.19. SENSITIVITY OF AIR-SEA EXCHANGE TO TRACER INJECTION SITE 211

Adjoint code generation and compilation – step by step

1. ln -s ../verification/???/code/.genmakerc .

ln -s ../verification/???/code/*.[Fh] .

Link your customized genmake options, header files, and modified code to the compile directory.

2. ../tools/genmake -makefile

Generate your Makefile (cf. Section ???).

3. make depend

Dependency analysis for the CPP pre-compiler (cf. Section ???).

4. cd ../adjoint

make adtaf or make adtamc

Depending on whether you have TAF or TAMC at your disposal, you’ll choose adtaf or adtamc as
your make target for the makefile in the directory adjoint/. Several things happen at this stage.

(a) make adrestore, make ftlrestore

The initial template files adjoint model.F and tangentlinear model.F in pkg/autodiff which are
part of the compiling list created by genmake are restored.

(b) make depend, make small f

The bin/ directory is brought up to date, i.e. for recent changes in header or source code
.[Fh], corresponding .f routines are generated or re-generated. Note that here, only CPP
precompiling is performed; no object code .o is generated as yet. Precompiling is necessary
for TAMC to see the full code.

(c) make allcode

All Fortran routines *.f in bin/ are concatenated into a single file called tamc code.f.

(d) make admodeltaf/admodeltamc

Adjoint code is generated by TAMC or TAF. The adjoint code is written to the file tamc code ad.f.
It contains all adjoint routines of the forward routines concatenated in tamc code.f. For a
given forward routines subroutine routinename the adjoint routine is named adsubroutine

routinename by default (that default can be changed via the flag -admark <markname>).
Furthermore, it may contain modified code which incorporates the translation of adjoint store
directives into specific Fortran code. For a given forward routines subroutine routinename

the modified routine is named mdsubroutine routinename. TAMC or TAF info is written to
file tamc code.prot or taf.log, respectively.

(e) make adchange

The multi-threading capability of MITgcm requires a slight change in the parameter list of
some routines that are related to to active file handling. This post-processing invokes the sed
script adjoint ecco sed.com to insert the threading counter myThId into the parameter list
of those subroutines. The resulting code is written to file tamc code sed ad.f and appended to
the file adjoint model.F. This concludes the adjoint code generation.

5. cd ../bin

make

The file adjoint model.F now contains the full adjoint code. All routines are now compiled.

N.B.: The targets make adtaf/adtamc now comprise a series of targets that in previous versions had
to be invoked separarely. This was probably preferable at a more experimental stage, but has now been
dropped in favour of a more straightforward build process.

Adjoint code generation and compilation – summary

212 CHAPTER 3. GETTING STARTED WITH MITGCM

cd bin

ln -s ../verification/my experiment/code/.genmakerc .

ln -s ../verification/my experiment/code/*.[Fh] .

../tools/genmake -makefile

make depend

cd ../adjoint

make adtaf <OR: make adtamc>

contains the targets:

adrestore small f allcode admodeltaf/admodeltamc adchange

cd ../bin

make

3.20. OFFLINE EXAMPLE 213

3.20 Offline Experiments

(in directory: verification/tutorial offline/)

This document describes a simple experiment using the offline form of the MITgcm.

3.20.1 Overview

This experiment demonstrates use of the offline form of the MITgcm to study advection of a passive
tracer. Time-averaged flow-fields and mixing coefficients, deriving from a prior online run, are re-used
leaving only the tracer equation to be integrated.

Figure — missing figure — shows a movie of tracer being advected using the offline package of the
MITgcm. In the top panel the frames of the movie show the monthly surface evolution of an initially
local source of passive tracer. In the lower panel, the frames of the movie show the changing monthly
surface evolution where the initial tracer field had a global distribution.

3.20.2 Time-stepping of tracers

see section 2.15 through 2.18 for details of available tracer time-stepping schemes and their characteristics.

3.20.3 Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial offline. The
experiment files

• input/data

• input/data.off

• input/data.pkg

• input/data.ptracers

• input/eedata

• input/packages.conf

• code/PTRACERS SIZE.h

• code/SIZE.h.

contain the code customisations and parameter settings required to run the example. In addition the
following binary data files are required:

• input/depth g77.bin

• input/tracer1 .bin

• input/tracer2 .bin

• input/input off/uVeltave.0000000001-12.data

• input/input off/vVeltave.0000000001-12.data

• input/input off/wVeltave.0000000001-12.data

• input/input off/Convtave.0000000001-12.data

214 CHAPTER 3. GETTING STARTED WITH MITGCM

3.20.3.1 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment.

• Line 18, 19

nIter0 = 0,

nTimeSteps = 720,

nIter0 and nTimesteps control the start time and the length of the run (in timesteps). If nIter0 is non-
zero the model will require appropriate pickup files to be present in the run directory. Where nIter0 is
zero, as here, the model makes a fresh start. In this case the model has been prescribed to run for 720
timesteps or 1 year.

• Line 20

deltaTtracer= 43200.0,

deltaTtracer is the tracer timestep in seconds, in this case, 12 hours (43200s = 12 hours). Note that
deltatTracer must be specified in input/data as well as specifying deltaToffline in input/data.off.

• Line 21

deltaTClock= 43200.0,

When using the MITgcm in offline mode deltaTClock (an internal model counter) should be made equal
to the value assigned to deltatTtracer.

• Line 27

periodicExternalForcing=.TRUE.,

periodicExternalForcing is a flag telling the model whether to cyclically re-use forcing data where there
is external forcing (see ‘A More Complcated Example’, below). Where there is no external forcing, as
here, but where there is to be cyclic re-use of the offline flow and mixing fields, periodicExternalForcing
must be assigned the value .TRUE.

• Line 28

externForcingPeriod=2592000.,

externForcingPeriod specifies the period of the external forcing data in seconds. In the absence of external
forcing, as in this example, it must be made equal to the value of externForcingPeriod in input/data.off,
in this case, monthly (2592000s = 1 month).

• Line 29

externForcingCycle=31104000.,

externForcingCycle specifies the duration of the external forcing data cycle in seconds. In the absence
of external forcing, as in this example, it must be made equal to the value of externForcingCycle in
input/data.off, in this case, the cycle is one year(31104000s = 1 year).

• Line 35

usingSphericalPolarGrid=.TRUE.,

This line requests that the simulation be performed in a spherical polar coordinate system. It affects the
interpretation of grid input parameters and causes the grid generation routines to initialize an internal
grid based on spherical polar geometry.

3.20. OFFLINE EXAMPLE 215

• Line 36

delR= 50., 70., 100., 140., 190.,

240., 290., 340., 390., 440.,

490., 540., 590., 640., 690.,

This line sets the vertical grid spacing between each z-coordinate line in the discrete grid. Here the total
model depth is 5200 m.

• Line 39

ygOrigin=-90.,

This line sets the southern boundary of the modeled domain to −90◦ latitude N (90◦ S). This value
affects both the generation of the locally orthogonal grid that the model uses internally and affects the
initialization of the coriolis force. Note - it is not required to set a longitude boundary, since the absolute
longitude does not alter the kernel equation discretisation.

• Line 40

dxSpacing=2.8125,

This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to 2.8125◦

in longitude.

• Line 41

dySpacing=2.8125,

This line sets the vertical grid spacing between each x-coordinate line in the discrete grid to 2.8125◦ in
latitude.

• Line 46

bathyFile=’depth_g77.bin’,

This line specifies the name of the file, in this case depth g77.bin, from which the domain bathymetry
is read. This file contains a two-dimensional (x, y) map of (assumed 64-bit) binary numbers giving the
depth of the model at each grid cell, ordered with the x coordinate varying fastest. The points are ordered
from low coordinate to high coordinate for both axes. The units and orientation of the depths in this file
are the same as used in the MITgcm code. In this experiment, a depth of 0m indicates land.

1 # ====================

2 # | Model parameters |

3 # ====================

4 #

5 # Continuous equation parameters

6 &PARM01

7 &

8 #

9 # Elliptic solver parameters

10 &PARM02

11 cg2dMaxIters=1000,

12 cg2dTargetResidual=1.E-13,

13 &

14 #

15

16 # Time stepping parameters

216 CHAPTER 3. GETTING STARTED WITH MITGCM

17 &PARM03

18 nIter0 = 0,

19 nTimeSteps = 720,

20 deltaTtracer= 43200.0,

21 deltaTClock = 43200.0,

22 pChkptFreq=31104000.,

23 chkptFreq= 31104000.,

24 dumpFreq= 2592000.,

25 taveFreq= 311040000.,

26 monitorFreq= 1.,

27 periodicExternalForcing=.TRUE.,

28 externForcingPeriod=2592000.,

29 externForcingCycle=31104000.,

30 &

31 #

32 # Gridding parameters

33 &PARM04

34 usingCartesianGrid=.FALSE.,

35 usingSphericalPolarGrid=.TRUE.,

36 delR= 50., 70., 100., 140., 190.,

37 240., 290., 340., 390., 440.,

38 490., 540., 590., 640., 690.,

39 ygOrigin=-90.,

40 dxSpacing=2.8125,

41 dySpacing=2.8125,

42 &

43 #

44 # Input datasets

45 &PARM05

46 bathyFile= ’depth_g77.bin’,

47 &

3.20.3.2 File input/data.off

input/data.off provides the MITgcm offline package with package specific parameters. input/data.off
specifies the location (relative to the run directory) and prefix of files describing the flow field (UvelFile,
VvelFile, WvelFile) and the corresponding convective mixing coefficients (ConvFile) which together pre-
scribe the three dimensional, time varying dynamic system within which the offline model will advect the
tracer.

• Lines 2 to 5

UvelFile= ’../input/input_off/uVeltave’,

VvelFile= ’../input/input_off/vVeltave’,

WvelFile= ’../input/input_off/wVeltave’,

ConvFile= ’../input/input_off/Convtave’,

In the example the offline data is located in the sub-directory input/input off. In this directory are fields
describing the velocity and convective mixing histories of a prior forward integration of the MITgcm
required for the offline package and identified in input/data off. Based on the values of deltatToffline,
offlineForcingPeriod and offlineForcingCycle specified in input/data.off, since offlineForcingCycle cor-
responds to 12 forcing periods offlineForcingPeriod and since offlineIter0 is zero, there needs to be 12
uVeltave, 12 vVeltave, 12 wVeltave and 12 Convtave files each having a 10 digit sequence identifier
between 0000000001 to 0000000012, that is, a total of 48 files.

• Line 9

offlineIter0=0,

3.20. OFFLINE EXAMPLE 217

offlineIter0, here specified to be 0 timesteps, corresponds to the timestep at which the tracer model is
initialised. Note that offlineIter0 and nIter0 (set in input/data) need not be the same.

• Line 10

deltaToffline=43200.,

deltatToffline sets the timestep associated with the offline model data in seconds, here 12 hours (43200s
= 12 hours).

• Line 11

offlineForcingPeriod=43200.,

offlineForcingPeriod sets the forcing period associated with the offline model data in seconds.

• Line 12

offlineForcingCycle=518400.,

offlineForcingCycle sets the forcing cycle length associated with the offline model data in seconds. In
this example the offline forcing cycle is 6 days, or 12 offline forcing periods. Together deltatToffline,
offlineForcingPeriod and offlineForcingCycle determine the value of the 10 digit sequencing tag the model
expects files in input/input off to have.

1 &OFFLINE_PARM01

2 UvelFile= ’input_off/uVeltave’,

3 VvelFile= ’input_off/vVeltave’,

4 WvelFile= ’input_off/wVeltave’,

5 ConvFile= ’input_off/Convtave’,

6 &end

7 &OFFLINE_PARM02

8 offlineIter0=0,

9 deltaToffline=43200.,

10 offlineForcingPeriod=43200.,

11 offlineForcingCycle=518400.,

12 &end

3.20.3.3 File input/data.pkg

File input/data.pkg, reproduced completely below, specifies which MITgcm packages (/MITgcm/pkg)
are to be used.

• Line 3

usePTRACERS=.TRUE.,

usePTRACERS is a flag invoking the ptracers package which is responsible for the advection of the tracer
within the model.

1 # Packages

2 &PACKAGES

3 usePTRACERS=.TRUE.,

4 &

218 CHAPTER 3. GETTING STARTED WITH MITGCM

3.20.3.4 File input/data.ptracers

File input/data.ptracers, reproduced completely below, provides the MITgcm ptracers package with pack-
age specific parameters, prescribing the nature of the the tracer/tracers as well as the variables associated
with their advection.

• Line 2

PTRACERS_numInUse=2,

PTRACERS numInUse tells the model how many separate tracers are to be advected, in this case 2. Note:
The value of PTRACERS numInUse must agree with the value specified in code/PTRACERS SIZE.h -
see code/PTRACERS SIZE.h below.

• Line 3

PTRACERS_Iter0= 0,

PTRACERS Iter0 specifies the iteration at which the tracer is to be introduced. In this case the tracer
is initialised at the start of the simulation. i.e. PTRACERS Iter0 = PTRACERS nIter0.

• Lines 5 and 10

PTRACERS_advScheme(1)=77,

PTRACERS advScheme(n) identifies which advection scheme will be used for tracer n, where n is the
number of the tracer up to PTRACERS numInUse. See section 2.18, ’Comparison of advection schemes’,
to identify the numerical codes used to specify different advection schemes (e.g. centered 2nd order, 3rd
order upwind) as well as details of each.

• Lines 6 and 11

PTRACERS_diffKh(1)=1.E3,

PTRACERS diffKh(n) is the horizontal diffusion coefficient for tracer n, where n is the number of the
tracer up to PTRACERS numInUse.

• Lines 7 and 12

PTRACERS_diffKr(1)=5.E-5,

PTRACERS diffKr(n) is the vertical diffusion coefficient for tracer n, where n is the number of the tracer
up to PTRACERS numInUse.

• Lines 8 and 13

PTRACERS_initialFile(1)=’tracer1.bin’,

PTRACERS initialFile(n) identifies the initial tracer field to be associated with tracer n, where n is
the number of the tracer up to PTRACERS numInUse. In this example file input/tracer1.bin contains
localised tracer, input/tracer2.bin contains an arbitrary global distribution. Included Matlab script in-
put/makeinitialtracer.m provides a template for generating or manipulating initial tracer fields.

1 &PTRACERS_PARM01

2 PTRACERS_numInUse=2,

3 PTRACERS_Iter0= 0,

4 # tracer 1

5 PTRACERS_advScheme(1)=77,

6 PTRACERS_diffKh(1)=1.E3,

3.20. OFFLINE EXAMPLE 219

7 PTRACERS_diffKr(1)=5.E-5,

8 PTRACERS_initialFile(1)=’tracer1.bin’,

9 # tracer 2

10 PTRACERS_advScheme(2)=77,

11 PTRACERS_diffKh(2)=1.E3,

12 PTRACERS_diffKr(2)=5.E-5,

13 PTRACERS_initialFile(2)=’tracer2.bin’,

14 &

Note input/data.ptracers requires a set of entries for each tracer.

3.20.3.5 File input/eedata

This file uses standard default values and does not contain customisations for this experiment.
The following code changes are required to run this exaperiment.

3.20.3.6 File code/packages.conf

This file is used to invoke the model components required for a particuylar implementation of the MITgcm.
In this case the code/packages.conf contains the component names:

ptracers

generic_advdiff

mdsio

mom_fluxform

mom_vecinv

timeave

rw

monitor

offline

3.20.3.7 File code/PTRACERS SIZE.h

• Line

PARAMETER(PTRACERS_num = 2)

This line sets the parameters PTRACERS num (the number of tracers to be integrated) to 2 (in agreement
with input/data.ptracers).

3.20.3.8 File code/SIZE.h

Two lines are customized in this file for the current experiment

• Line 39,

sNx=128,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

• Line 40,

sNy=64,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

• Line 49,

Nr=15,

this line sets the vertical domain extent in grid points.

220 CHAPTER 3. GETTING STARTED WITH MITGCM

3.20.4 Running The Example

3.20.4.1 Code Download

In order to run the examples you must first download the code distribution. Instructions for downloading
the code can be found in section 3.2.

3.20.4.2 Experiment Location

This example experiment is located under the release sub-directory

verification/offline/

3.20.4.3 Running the Experiment

To run the experiment

1. Set the current directory to input/

% cd input

2. Verify that current directory is now correct

% pwd

You should see a response on the screen ending in verification/offline/input

3. Copy the contents of input/ including subdirectory input/input off/ to a new directory called run/

4. Listing directory run/ you should see:

data data.pkg depth_g77.bin input_off tracer2.bin

data.off data.ptracers eedata tracer1.bin

5. Set the current directory to run/

6. Run the genmake script to create the experiment Makefile

% ../../../tools/genmake2 -mods=../code

7. Create a list of header file dependencies in Makefile

% make depend

8. Build the executable file.

% make

9. Run the mitgcmuv executable

% ./mitgcmuv

Besides the input files and the files the model generates describing the grid (prefixed Depth, DXC,
DXG, hFacC, hFacS and hFacW, you should now have 26 single precision binary files PTRACER01.0000000000-
0000000720.001.001.data and PTRACER02.0000000000-0000000720.001.001.data and their 26 correspond-
ing meta files as well as a single pickup file, pickup ptracers.0000000720.001.001.data and its correspond-
ing meta file pickup ptracers.0000000720.001.001.meta. To run on simply change nIter0 in file run/data
to 720...

3.20. OFFLINE EXAMPLE 221

3.20.5 A more complicated example

(in directory: verification/tutorial cfc offline/)

The last example demonstrated simple advection of a passive tracer using the offline form of the MITgcm.
Now we present a more complicated example in which the model is used to explore contamination of the
global ocean through surface exposure to CFC’s during the last century. In invoking packages gchem,
gmredi and cfc it provides a starting point and template for more complicated offline modeling, involving
as it does surface forcing through wind and ice fields, more sophisticated mixing and a time-varying
forcing funtion.

The model configuration for this experiment resides under the directory verification/cfc offline. The
experiment files

• input/data

• input/data.gchem

• input/data.gmredi

• input/data.off

• input/data.pkg

• input/data.ptracers

• input/eedata

• code/GCHEM OPTIONS.h

• code/GMREDI OPTIONS.h

• input/packages.conf

• code/PTRACERS SIZE.h

• code/SIZE.h.

contain all the code customisations and parameter settings required.
The full list of other files required becomes:

cfc1112.atm data.ptracers

data depth_g77.bin pickup.0004269600.data

data.gchem eedata

data.gmredi ice.bin pickup_ptracers.0004269600.data

data.off data.pkg tren_speed.bin

and

input_off/:

Convtave.0004248060.data GM_Kwz-T.0004248060.data uVeltave.0004248060.data

Convtave.0004248060.meta GM_Kwz-T.0004248060.meta uVeltave.0004248060.meta

Convtave.0004248720.data GM_Kwz-T.0004248720.data uVeltave.0004248720.data

Convtave.0004248720.meta GM_Kwz-T.0004248720.meta uVeltave.0004248720.meta

GM_Kwx-T.0004248060.data Stave.0004248060.data vVeltave.0004248060.data

GM_Kwx-T.0004248060.meta Stave.0004248060.meta vVeltave.0004248060.meta

GM_Kwx-T.0004248720.data Stave.0004248720.data vVeltave.0004248720.data

GM_Kwx-T.0004248720.meta Stave.0004248720.meta vVeltave.0004248720.meta

GM_Kwy-T.0004248060.data Ttave.0004248060.data wVeltave.0004248060.data

GM_Kwy-T.0004248060.meta Ttave.0004248060.meta wVeltave.0004248060.meta

GM_Kwy-T.0004248720.data Ttave.0004248720.data wVeltave.0004248720.data

GM_Kwy-T.0004248720.meta Ttave.0004248720.meta wVeltave.0004248720.meta

222 CHAPTER 3. GETTING STARTED WITH MITGCM

3.20.5.1 File input/data

A single line must be added (under PARM01, between lines 6 and 7) in file input/data from the previous
example

&PARM01

implicitDiffusion=.TRUE.,

&

When package GMREDI is used, the flag implicitDiffusion must be assigned the value .TRUE. For
information about MITgcm package GMREDI see...

In this example the starting timestep nIter0 is set to 4269600 requiring model access to pickup files
with the timetag 0004269600. The model will run for 4 timesteps (nTimeSteps = 4). In this case the
frequencies with which permanent and rolling checkpoints (pChkptFreq and chkptFreq) have been set
is sufficiently long to ensure that only one from the last timestep will be written. This is also true of
the values that have been assigned to the frequency with which dumps are written (dumpFreq) and time
averaging (taveFreq) is performed however since the model always dumps the state of the model when it
stops without error a dump will be written with timetag 0004269604 upon completion.

3.20.5.2 File input/data.off

File input/data.off, reproduced in full below, specifies the prefixes and locations of additional input files
required to run the offline model. Note that input/input off contains only as many offline files as are
required to successfully run for 4 timesteps. Where the GMREDI scheme was used in the forward run, as
here, package GMREDI must again be invoked when running offline. In this example tracer is specified
as having beeen introduced with a non-zero starttime, at timestep 4248000.

1 &OFFLINE_PARM01

2 UvelFile= ’../input/input_off/uVeltave’,

3 VvelFile= ’../input/input_off/vVeltave’,

4 WvelFile= ’../input/input_off/wVeltave’,

5 GMwxFile= ’../input/input_off/GM_Kwx-T’,

6 GMwyFile= ’../input/input_off/GM_Kwy-T’,

7 GMwzFile= ’../input/input_off/GM_Kwz-T’,

8 ConvFile= ’../input/input_off/Convtave’,

9 &end

10 &OFFLINE_PARM02

11 offlineIter0=4248000,

12 deltaToffline=43200.,

13 offlineForcingPeriod=2592000.,

14 offlineForcingCycle=31104000.,

15 &end

3.20.5.3 File input/data.pkg

File input/data.pkg, reproduced completely below, specifies which MITgcm packages (/MITgcm/pkg)
are to be used. It now invokes additional packages pkg/gmredi and pkg/gchem.

1 # Packages

2 &PACKAGES

3 useGMRedi=.TRUE.,

4 usePTRACERS=.TRUE.,

5 useGCHEM=.TRUE.,

6 &

3.20. OFFLINE EXAMPLE 223

3.20.5.4 File input/data.ptracers

File input/data.ptracers, reproduced completely below, specifies parameters associated with the CFC11
and CFC12 tracer fields advected in this example.

• Line 3

PTRACERS_Iter0= 4248000,

In this example the tracers were introduced at iteration 4248000.

• Lines 7 and 14

PTRACERS_diffKh(n)=0.E3,

Since package GMREDI is being used, regular horizontal diffusion is set to zero.

• Lines 9,10 and 16,17

PTRACERS_useGMRedi(n)=.TRUE. ,

PTRACERS_useKPP(n)=.FALSE. ,

Setting flag PTRACERS useGMRedi(n) to .TRUE. identifies that package GMREDI is to be used. Set-
ting flag PTRACERS useKPP(n) to .FALSE. explicitly turns off KPP mixing.

• Lines 11 and 18

PTRACERS_initialFile(n)=’ ’,

Since this is a ‘pickup’ run the initial tracer files PTRACERS initialFile(1) and PTRACERS initialFile(2)
aree not needed. The model will obtain the tracer state from pickup ptracers.0004269600.data

1 &PTRACERS_PARM01

2 PTRACERS_numInUse=2,

3 PTRACERS_Iter0= 4248000,

4 #

5 # tracer 1 - CFC11

6 PTRACERS_advScheme(1)=77,

7 PTRACERS_diffKh(1)=0.E3,

8 PTRACERS_diffKr(1)=5.E-5,

9 PTRACERS_useGMRedi(1)=.TRUE. ,

10 PTRACERS_useKPP(1)=.FALSE. ,

11 PTRACERS_initialFile(1)=’ ’,

12 # tracer 2 - CFC12

13 PTRACERS_advScheme(2)=77,

14 PTRACERS_diffKh(2)=0.E3,

15 PTRACERS_diffKr(2)=5.E-5,

16 PTRACERS_useGMRedi(2)=.TRUE. ,

17 PTRACERS_useKPP(2)=.FALSE. ,

18 PTRACERS_initialFile(2)=’ ’,

19 &

224 CHAPTER 3. GETTING STARTED WITH MITGCM

3.20.5.5 File input/data.gchem

File input/data.gchem, reproduced completely below, names the forcing files needed in package GCHEM.

• Line 3

iceFile=’ice.bin’,

File input/ice.bin contains 12, monthly surface ice fields.

• Line 3

iceFile=’tren_speed.bin’,

File input/tren speed.bin contains 12, monthly surface wind fields.

1 &GCHEM_PARM01

2 iceFile=’fice.bin’,

3 windFile=’tren_speed.bin’,

4 &

Package GCHEM is described in detail in section ??

3.20.5.6 File input/data.gmredi

File input/data.gmredi, reproduced completely below, provides the parameters required for package GM-
REDI.

1 &GM_PARM01

2 GM_background_K = 1.e+3,

3 GM_taper_scheme = ’gkw91’,

4 GM_maxSlope = 1.e-2,

5 GM_Kmin_horiz = 100.,

6 GM_Scrit = 4.e-3,

7 GM_Sd = 1.e-3,

8 &

Package GMREDI is described in detail in section ??

3.20.5.7 File input/cfc1112.atm

File input/cfc1112.atm is a text file containing the CFC source functions over the northern and southern
hemispheres annually from 1931 through 1998.

3.20.5.8 File code/packages.conf

In this example code/packages.conf additionally invokes components gchem, cfc and rmredi:

ptracers

generic_advdiff

mdsio

mom_fluxform

mom_vecinv

timeave

rw

monitor

offline

gchem

cfc

gmredi

3.20. OFFLINE EXAMPLE 225

3.20.5.9 File code/GCHEM OPTIONS.h

File code/GCHEM OPTIONS.h, specifies options for package GCHEM. In this case defining the flag
ALLOW CFC to activate the cfc code.

3.20.5.10 File code/GMREDI OPTIONS.h

File code/GCHEM OPTIONS.h, specifies options for package GMREDI.

3.20.5.11 File code/PTRACERS SIZE.h

File code/PTRACERS SIZE.h is unchanged from the simpler example.

3.20.5.12 File code/SIZE.h

File code/SIZE.h is unchanged from the simpler example.

3.20.5.13 Running the Experiment

The model is run as before and produces the files the model generates describing the grid (prefixed Depth,
DXC, DXG, hFacC, hFacS and hFacW) as well as 2, single precision, binary files PTRACER01.0004269600-
0004269604.001.001.data and PTRACER02.0004269600-0004269604.001.001.data and their 2 correspond-
ing meta files as well as a single pickup file, pickup ptracers.ckptA.001.001.data and its corresponding
meta file pickup ptracers.ckptA.001.001.meta from which you could run the model on.

226 CHAPTER 3. GETTING STARTED WITH MITGCM

3.21 A Rotating Tank in Cylindrical Coordinates

(in directory: verification/rotating tank/)

3.21.1 Overview

This example configuration demonstrates using the MITgcm to simulate a laboratory demonstration us-
ing a differentially heated rotating annulus of water. The simulation is configured for a laboratory scale
on a 3◦×1cm cyclindrical grid with twenty-nine vertical levels of 0.5cm each. This is a typical laboratory
setup for illustration principles of GFD, as well as for a laboratory data assimilation project. The files
for this experiment can be found in the verification directory under rotating tank.

example illustration from GFD lab here

3.21.2 Equations Solved

3.21.3 Discrete Numerical Configuration

The domain is discretised with a uniform cylindrical grid spacing in the horizontal set to ∆a = 1 cm and
∆φ = 3◦, so that there are 120 grid cells in the azimuthal direction and thirty-one grid cells in the radial,
representing a tank 62cm in diameter. The bathymetry file sets the depth=0 in the nine lowest radial
rows to represent the central of the annulus. Vertically the model is configured with twenty-nine layers
of uniform 0.5cm thickness.
something about heat flux

3.21.4 Code Configuration

The model configuration for this experiment resides under the directory verification/rotatingi tank/. The
experiment files

• input/data

• input/data.pkg

• input/eedata,

• input/bathyPol.bin,

• input/thetaPol.bin,

• code/CPP EEOPTIONS.h

• code/CPP OPTIONS.h,

• code/SIZE.h.

contain the code customizations and parameter settings for this experiments. Below we describe the
customizations to these files associated with this experiment.

3.21.4.1 File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters
that are significant for this configuration are

• Lines 9-10,

viscAh=5.0E-6,

viscAz=5.0E-6,

3.21. A ROTATING TANK IN CYLINDRICAL COORDINATES 227

These lines set the Laplacian friction coefficient in the horizontal and vertical, respectively. Note
that they are several orders of magnitude smaller than the other examples due to the small scale
of this example.

• Lines 13-16,

diffKhT=2.5E-6,

diffKzT=2.5E-6,

diffKhS=1.0E-6,

diffKzS=1.0E-6,

These lines set horizontal and vertical diffusion coefficients for temperature and salinity. Similarly to
the friction coefficients, the values are a couple of orders of magnitude less than most configurations.

• Line 17,

f0=0.5 ,

this line sets the coriolis term, and represents a tank spinning at about 2.4 rpm.

• Lines 23 and 24

rigidLid=.TRUE.,

implicitFreeSurface=.FALSE.,

These lines activate the rigid lid formulation of the surface pressure inverter and suppress the
implicit free surface form of the pressure inverter.

• Line 40,

nIter=0,

This line indicates that the experiment should start from t = 0 and implicitly suppresses searching
for checkpoint files associated with restarting an numerical integration from a previously saved
state. Instead, the file thetaPol.bin will be loaded to initialized the temperature fields as indicated
below, and other variables will be initialized to their defaults.

• Line 43,

deltaT=0.1,

This line sets the integration timestep to 0.1s. This is an unsually small value among the examples
due to the small physical scale of the experiment. Using the ensemble Kalman filter to produce
input fields can necessitate even shorter timesteps.

• Line 56,

usingCylindricalGrid=.TRUE.,

This line requests that the simulation be performed in a cylindrical coordinate system.

• Line 57,

dXspacing=3,

This line sets the azimuthal grid spacing between each x-coordinate line in the discrete grid. The
syntax indicates that the discrete grid should be comprised of 120 grid lines each separated by 3◦.

• Line 58,

228 CHAPTER 3. GETTING STARTED WITH MITGCM

dYspacing=0.01,

This line sets the radial cylindrical grid spacing between each a-coordinate line in the discrete grid
to 1cm.

• Line 59,

delZ=29*0.005,

This line sets the vertical grid spacing between each of 29 z-coordinate lines in the discrete grid to
0.005m (5 mm).

• Line 64,

bathyFile=’bathyPol.bin’,

This line specifies the name of the file from which the domain “bathymetry” (tank depth) is read.
This file is a two-dimensional (a, φ) map of depths. This file is assumed to contain 64-bit binary
numbers giving the depth of the model at each grid cell, ordered with the φ coordinate varying
fastest. The points are ordered from low coordinate to high coordinate for both axes. The units and
orientation of the depths in this file are the same as used in the MITgcm code. In this experiment,
a depth of 0m indicates an area outside of the tank and a depth f −0.145m indicates the tank itself.

• Line 65,

hydrogThetaFile=’thetaPol.bin’,

This line specifies the name of the file from which the initial values of temperature are read. This
file is a three-dimensional (x, y, z) map and is enumerated and formatted in the same manner as
the bathymetry file.

• Lines 66 and 67

tCylIn = 0

tCylOut = 20

These line specify the temperatures in degrees Celsius of the interior and exterior walls of the tank
– typically taken to be icewater on the inside and room temperature on the outside.

Other lines in the file input/data are standard values that are described in the MITgcm Getting Started
and MITgcm Parameters notes.

====================

| Model parameters |

====================

#

Continuous equation parameters

&PARM01

tRef=29*20.0,

sRef=29*35.0,

viscAh=5.0E-6,

viscAz=5.0E-6,

no_slip_sides=.FALSE.,

no_slip_bottom=.FALSE.,

diffKhT=2.5E-6,

diffKzT=2.5E-6,

diffKhS=1.0E-6,

diffKzS=1.0E-6,

f0=0.5,

sBeta =0.,

3.21. A ROTATING TANK IN CYLINDRICAL COORDINATES 229

gravity=9.81,

rhoConst=1000.0,

rhoNil=1000.0,

heatCapacity_Cp=3900.0,

rigidLid=.TRUE.,

implicitFreeSurface=.FALSE.,

eosType=’LINEAR’,

nonHydrostatic=.TRUE.,

readBinaryPrec=32,

&

Elliptic solver parameters

&PARM02

cg2dMaxIters=1000,

cg2dTargetResidual=1.E-7,

cg3dMaxIters=10,

cg3dTargetResidual=1.E-9,

&

Time stepping parameters

&PARM03

nIter0=0,

nTimeSteps=20,

nTimeSteps=36000000,

deltaT=0.1,

abEps=0.1,

pChkptFreq=1.0,

chkptFreq=1.0,

dumpFreq=1.0,

monitorFreq=0.1,

outputTypesInclusive=.TRUE.,

&

Gridding parameters

&PARM04

usingCartesianGrid=.FALSE.,

usingCylindricalGrid=.TRUE.,

usingCurvilinearGrid=.FALSE.,

dXspacing=3,

dYspacing=0.01,

delZ=29*0.005,

&

Input datasets

&PARM05

hydrogThetaFile=’thetaPol.bin’,

bathyFile=’bathyPol.bin’,

tCylIn = 0

tCylOut = 20

&

3.21.4.2 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

3.21.4.3 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

230 CHAPTER 3. GETTING STARTED WITH MITGCM

3.21.4.4 File input/thetaPol.bin

The input/thetaPol.bin file specifies a three-dimensional (x, y, z) map of initial values of θ in degrees
Celsius. This particular experiment is set to random values x around 20C to provide initial perturbations.

3.21.4.5 File input/bathyPol.bin

The input/bathyPol.bin file specifies a two-dimensional (x, y) map of depth values. For this experiment
values are either 0m or -delZm, corresponding respectively to outside or inside of the tank. The file
contains a raw binary stream of data that is enumerated in the same way as standard MITgcm two-
dimensional, horizontal arrays.

3.21.4.6 File code/SIZE.h

Two lines are customized in this file for the current experiment

• Line 39,

sNx=120,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

• Line 40,

sNy=31,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

C $Header: /u/gcmpack/manual/s_examples/rotating_tank/code/SIZE.h,v 1.1 2004/07/26 21:09:47 afe Exp $

C $Name: $

C

C /==\

C | SIZE.h Declare size of underlying computational grid. |

C |==|

C | The design here support a three-dimensional model grid |

C | with indices I,J and K. The three-dimensional domain |

C | is comprised of nPx*nSx blocks of size sNx along one axis|

C | nPy*nSy blocks of size sNy along another axis and one |

C | block of size Nz along the final axis. |

C | Blocks have overlap regions of size OLx and OLy along the|

C | dimensions that are subdivided. |

C \==/

C Voodoo numbers controlling data layout.

C sNx - No. X points in sub-grid.

C sNy - No. Y points in sub-grid.

C OLx - Overlap extent in X.

C OLy - Overlat extent in Y.

C nSx - No. sub-grids in X.

C nSy - No. sub-grids in Y.

C nPx - No. of processes to use in X.

C nPy - No. of processes to use in Y.

C Nx - No. points in X for the total domain.

C Ny - No. points in Y for the total domain.

C Nr - No. points in Z for full process domain.

INTEGER sNx

INTEGER sNy

INTEGER OLx

INTEGER OLy

INTEGER nSx

INTEGER nSy

INTEGER nPx

3.21. A ROTATING TANK IN CYLINDRICAL COORDINATES 231

INTEGER nPy

INTEGER Nx

INTEGER Ny

INTEGER Nr

PARAMETER (

& sNx = 120,

& sNy = 31,

& OLx = 3,

& OLy = 3,

& nSx = 1,

& nSy = 1,

& nPx = 1,

& nPy = 1,

& Nx = sNx*nSx*nPx,

& Ny = sNy*nSy*nPy,

& Nr = 29)

C MAX_OLX - Set to the maximum overlap region size of any array

C MAX_OLY that will be exchanged. Controls the sizing of exch

C routine buufers.

INTEGER MAX_OLX

INTEGER MAX_OLY

PARAMETER (MAX_OLX = OLx,

& MAX_OLY = OLy)

3.21.4.7 File code/CPP OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

3.21.4.8 File code/CPP EEOPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

232 CHAPTER 3. GETTING STARTED WITH MITGCM

Chapter 4

Software Architecture

This chapter focuses on describing the WRAPPER environment within which both the core numerics
and the pluggable packages operate. The description presented here is intended to be a detailed exposition
and contains significant background material, as well as advanced details on working with the WRAPPER.
The tutorial sections of this manual (see sections 3.8 and 3.19) contain more succinct, step-by-step
instructions on running basic numerical experiments, of varous types, both sequentially and in parallel.
For many projects simply starting from an example code and adapting it to suit a particular situation will
be all that is required. The first part of this chapter discusses the MITgcm architecture at an abstract
level. In the second part of the chapter we described practical details of the MITgcm implementation
and of current tools and operating system features that are employed.

4.1 Overall architectural goals

Broadly, the goals of the software architecture employed in MITgcm are three-fold

• We wish to be able to study a very broad range of interesting and challenging rotating fluids
problems.

• We wish the model code to be readily targeted to a wide range of platforms

• On any given platform we would like to be able to achieve performance comparable to an imple-
mentation developed and specialized specifically for that platform.

These points are summarized in figure 4.1 which conveys the goals of the MITgcm design. The goals
lead to a software architecture which at the high-level can be viewed as consisting of

1. A core set of numerical and support code. This is discussed in detail in section 2.

2. A scheme for supporting optional “pluggable” packages (containing for example mixed-layer schemes,
biogeochemical schemes, atmospheric physics). These packages are used both to overlay alternate
dynamics and to introduce specialized physical content onto the core numerical code. An overview
of the package scheme is given at the start of part 6.

3. A support framework called WRAPPER (Wrappable Application Parallel Programming Environ-
ment Resource), within which the core numerics and pluggable packages operate.

This chapter focuses on describing the WRAPPER environment under which both the core numer-
ics and the pluggable packages function. The description presented here is intended to be a detailed
exposition and contains significant background material, as well as advanced details on working with the
WRAPPER. The examples section of this manual (part 3) contains more succinct, step-by-step instruc-
tions on running basic numerical experiments both sequentially and in parallel. For many projects simply
starting from an example code and adapting it to suit a particular situation will be all that is required.

233

234 CHAPTER 4. SOFTWARE ARCHITECTURE

Figure 4.1: The MITgcm architecture is designed to allow simulation of a wide range of physical
problems on a wide range of hardware. The computational resource requirements of the applications
targeted range from around 107 bytes (≈ 10 megabytes) of memory to 1011 bytes (≈ 100 gigabytes).
Arithmetic operation counts for the applications of interest range from 109 floating point operations to
more than 1017 floating point operations.

4.2 WRAPPER

A significant element of the software architecture utilized in MITgcm is a software superstructure and
substructure collectively called the WRAPPER (Wrappable Application Parallel Programming Environ-
ment Resource). All numerical and support code in MITgcm is written to “fit” within the WRAPPER
infrastructure. Writing code to “fit” within the WRAPPER means that coding has to follow certain,
relatively straightforward, rules and conventions (these are discussed further in section 4.3.1).

The approach taken by the WRAPPER is illustrated in figure 4.2 which shows how the WRAPPER
serves to insulate code that fits within it from architectural differences between hardware platforms and
operating systems. This allows numerical code to be easily retargetted.

4.2.1 Target hardware

The WRAPPER is designed to target as broad as possible a range of computer systems. The original
development of the WRAPPER took place on a multi-processor, CRAY Y-MP system. On that system,
numerical code performance and scaling under the WRAPPER was in excess of that of an implementation
that was tightly bound to the CRAY systems proprietary multi-tasking and micro-tasking approach.
Later developments have been carried out on uniprocessor and multi-processor Sun systems with both
uniform memory access (UMA) and non-uniform memory access (NUMA) designs. Significant work has
also been undertaken on x86 cluster systems, Alpha processor based clustered SMP systems, and on
cache-coherent NUMA (CC-NUMA) systems such as Silicon Graphics Altix systems. The MITgcm code,
operating within the WRAPPER, is also routinely used on large scale MPP systems (for example, Cray
T3E and IBM SP systems). In all cases numerical code, operating within the WRAPPER, performs
and scales very competitively with equivalent numerical code that has been modified to contain native
optimizations for a particular system Hoe et al. [1999].

4.2.2 Supporting hardware neutrality

The different systems listed in section 4.2.1 can be categorized in many different ways. For example,
one common distinction is between shared-memory parallel systems (SMP and PVP) and distributed
memory parallel systems (for example x86 clusters and large MPP systems). This is one example of a
difference between compute platforms that can impact an application. Another common distinction is
between vector processing systems with highly specialized CPUs and memory subsystems and commodity

4.2. WRAPPER 235

Figure 4.2: Numerical code is written to fit within a software support infrastructure called WRAPPER.
The WRAPPER is portable and can be specialized for a wide range of specific target hardware and
programming environments, without impacting numerical code that fits within the WRAPPER. Codes
that fit within the WRAPPER can generally be made to run as fast on a particular platform as codes
specially optimized for that platform.

236 CHAPTER 4. SOFTWARE ARCHITECTURE

microprocessor based systems. There are numerous other differences, especially in relation to how parallel
execution is supported. To capture the essential differences between different platforms the WRAPPER
uses a machine model.

4.2.3 WRAPPER machine model

Applications using the WRAPPER are not written to target just one particular machine (for example
an IBM SP2) or just one particular family or class of machines (for example Parallel Vector Processor
Systems). Instead the WRAPPER provides applications with an abstract machine model. The machine
model is very general, however, it can easily be specialized to fit, in a computationally efficient manner,
any computer architecture currently available to the scientific computing community.

4.2.4 Machine model parallelism

Codes operating under the WRAPPER target an abstract machine that is assumed to consist of one or
more logical processors that can compute concurrently. Computational work is divided among the logical
processors by allocating “ownership” to each processor of a certain set (or sets) of calculations. Each set of
calculations owned by a particular processor is associated with a specific region of the physical space that
is being simulated, only one processor will be associated with each such region (domain decomposition).

In a strict sense the logical processors over which work is divided do not need to correspond to physical
processors. It is perfectly possible to execute a configuration decomposed for multiple logical processors
on a single physical processor. This helps ensure that numerical code that is written to fit within the
WRAPPER will parallelize with no additional effort. It is also useful for debugging purposes. Generally,
however, the computational domain will be subdivided over multiple logical processors in order to then
bind those logical processors to physical processor resources that can compute in parallel.

4.2.4.1 Tiles

Computationally, the data structures (eg. arrays, scalar variables, etc.) that hold the simulated state
are associated with each region of physical space and are allocated to a particular logical processor.
We refer to these data structures as being owned by the processor to which their associated region of
physical space has been allocated. Individual regions that are allocated to processors are called tiles.
A processor can own more than one tile. Figure 4.3 shows a physical domain being mapped to a set of
logical processors, with each processors owning a single region of the domain (a single tile). Except for
periods of communication and coordination, each processor computes autonomously, working only with
data from the tile (or tiles) that the processor owns. When multiple tiles are alloted to a single processor,
each tile is computed on independently of the other tiles, in a sequential fashion.

4.2.4.2 Tile layout

Tiles consist of an interior region and an overlap region. The overlap region of a tile corresponds to the
interior region of an adjacent tile. In figure 4.4 each tile would own the region within the black square and
hold duplicate information for overlap regions extending into the tiles to the north, south, east and west.
During computational phases a processor will reference data in an overlap region whenever it requires
values that lie outside the domain it owns. Periodically processors will make calls to WRAPPER functions
to communicate data between tiles, in order to keep the overlap regions up to date (see section 4.2.8).
The WRAPPER functions can use a variety of different mechanisms to communicate data between tiles.

4.2.5 Communication mechanisms

Logical processors are assumed to be able to exchange information between tiles and between each other
using at least one of two possible mechanisms.

• Shared memory communication. Under this mode of communication data transfers are assumed
to be possible using direct addressing of regions of memory. In this case a CPU is able to read (and
write) directly to regions of memory “owned” by another CPU using simple programming language
level assignment operations of the the sort shown in figure 4.5. In this way one CPU (CPU1 in the

4.2. WRAPPER 237

Figure 4.3: The WRAPPER provides support for one and two dimensional decompositions of grid-point
domains. The figure shows a hypothetical domain of total size NxNyNz. This hypothetical domain
is decomposed in two-dimensions along the Nx and Ny directions. The resulting tiles are owned by
different processors. The owning processors perform the arithmetic operations associated with a tile.
Although not illustrated here, a single processor can own several tiles. Whenever a processor wishes to
transfer data between tiles or communicate with other processors it calls a WRAPPER supplied function.

Figure 4.4: A global grid subdivided into tiles. Tiles contain a interior region and an overlap region.
Overlap regions are periodically updated from neighboring tiles.

238 CHAPTER 4. SOFTWARE ARCHITECTURE

CPU1 | CPU2

==== | ====

|

a(3) = 8 | WHILE (a(3) .NE. 8)

| WAIT

| END WHILE

|

Figure 4.5: In the WRAPPER shared memory communication model, simple writes to an array can be
made to be visible to other CPUs at the application code level. So that for example, if one CPU (CPU1
in the figure above) writes the value 8 to element 3 of array a, then other CPUs (for example CPU2 in
the figure above) will be able to see the value 8 when they read from a(3). This provides a very low
latency and high bandwidth communication mechanism.

CPU1 | CPU2

==== | ====

|

a(3) = 8 | WHILE (a(3) .NE. 8)

CALL SEND(CPU2,a(3)) | CALL RECV(CPU1, a(3))

| END WHILE

|

Figure 4.6: In the WRAPPER distributed memory communication model data can not be made directly
visible to other CPUs. If one CPU writes the value 8 to element 3 of array a, then at least one of CPU1
and/or CPU2 in the figure above will need to call a bespoke communication library in order for the
updated value to be communicated between CPUs.

figure) can communicate information to another CPU (CPU2 in the figure) by assigning a particular
value to a particular memory location.

• Distributed memory communication. Under this mode of communication there is no mech-
anism, at the application code level, for directly addressing regions of memory owned and visible
to another CPU. Instead a communication library must be used as illustrated in figure 4.6. In this
case CPUs must call a function in the API of the communication library to communicate data from
a tile that it owns to a tile that another CPU owns. By default the WRAPPER binds to the MPI
communication library Message Passing Interface Forum [1998] for this style of communication.

The WRAPPER assumes that communication will use one of these two styles of communication. The
underlying hardware and operating system support for the style used is not specified and can vary from
system to system.

4.2.6 Shared memory communication

Under shared communication independent CPUs are operating on the exact same global address space
at the application level. This means that CPU 1 can directly write into global data structures that
CPU 2 “owns” using a simple assignment at the application level. This is the model of memory access
is supported at the basic system design level in “shared-memory” systems such as PVP systems, SMP
systems, and on distributed shared memory systems (eg. SGI Origin, SGI Altix, and some AMD Opteron
systems). On such systems the WRAPPER will generally use simple read and write statements to access
directly application data structures when communicating between CPUs.

In a system where assignments statements, like the one in figure 4.5 map directly to hardware in-
structions that transport data between CPU and memory banks, this can be a very efficient mechanism
for communication. In this case two CPUs, CPU1 and CPU2, can communicate simply be reading and
writing to an agreed location and following a few basic rules. The latency of this sort of communication
is generally not that much higher than the hardware latency of other memory accesses on the system.

4.2. WRAPPER 239

The bandwidth available between CPUs communicating in this way can be close to the bandwidth of the
systems main-memory interconnect. This can make this method of communication very efficient provided
it is used appropriately.

4.2.6.1 Memory consistency

When using shared memory communication between multiple processors the WRAPPER level shields
user applications from certain counter-intuitive system behaviors. In particular, one issue the WRAPPER
layer must deal with is a systems memory model. In general the order of reads and writes expressed by
the textual order of an application code may not be the ordering of instructions executed by the processor
performing the application. The processor performing the application instructions will always operate so
that, for the application instructions the processor is executing, any reordering is not apparent. However,
in general machines are often designed so that reordering of instructions is not hidden from other second
processors. This means that, in general, even on a shared memory system two processors can observe
inconsistent memory values.

The issue of memory consistency between multiple processors is discussed at length in many computer
science papers. From a practical point of view, in order to deal with this issue, shared memory machines
all provide some mechanism to enforce memory consistency when it is needed. The exact mechanism
employed will vary between systems. For communication using shared memory, the WRAPPER provides
a place to invoke the appropriate mechanism to ensure memory consistency for a particular platform.

4.2.6.2 Cache effects and false sharing

Shared-memory machines often have local to processor memory caches which contain mirrored copies of
main memory. Automatic cache-coherence protocols are used to maintain consistency between caches
on different processors. These cache-coherence protocols typically enforce consistency between regions of
memory with large granularity (typically 128 or 256 byte chunks). The coherency protocols employed
can be expensive relative to other memory accesses and so care is taken in the WRAPPER (by padding
synchronization structures appropriately) to avoid unnecessary coherence traffic.

4.2.6.3 Operating system support for shared memory.

Applications running under multiple threads within a single process can use shared memory communi-
cation. In this case all the memory locations in an application are potentially visible to all the compute
threads. Multiple threads operating within a single process is the standard mechanism for supporting
shared memory that the WRAPPER utilizes. Configuring and launching code to run in multi-threaded
mode on specific platforms is discussed in section 4.3.2.1. However, on many systems, potentially very
efficient mechanisms for using shared memory communication between multiple processes (in contrast
to multiple threads within a single process) also exist. In most cases this works by making a limited
region of memory shared between processes. The MMAP and IPC facilities in UNIX systems provide
this capability as do vendor specific tools like LAPI and IMC. Extensions exist for the WRAPPER that
allow these mechanisms to be used for shared memory communication. However, these mechanisms are
not distributed with the default WRAPPER sources, because of their proprietary nature.

4.2.7 Distributed memory communication

Many parallel systems are not constructed in a way where it is possible or practical for an application
to use shared memory for communication. For example cluster systems consist of individual computers
connected by a fast network. On such systems there is no notion of shared memory at the system
level. For this sort of system the WRAPPER provides support for communication based on a bespoke
communication library (see figure 4.6). The default communication library used is MPI Message Passing
Interface Forum [1998]. However, it is relatively straightforward to implement bindings to optimized
platform specific communication libraries. For example the work described in Hoe et al. [1999] substituted
standard MPI communication for a highly optimized library.

240 CHAPTER 4. SOFTWARE ARCHITECTURE

Figure 4.7: Three performance critical parallel primitives are provided by the WRAPPER. These primi-
tives are always used to communicate data between tiles. The figure shows four tiles. The curved arrows
indicate exchange primitives which transfer data between the overlap regions at tile edges and interior
regions for nearest-neighbor tiles. The straight arrows symbolize global sum operations which connect
all tiles. The global sum operation provides both a key arithmetic primitive and can serve as a syn-
chronization primitive. A third barrier primitive is also provided, it behaves much like the global sum
primitive.

4.2.8 Communication primitives

Optimized communication support is assumed to be potentially available for a small number of commu-
nication operations. It is also assumed that communication performance optimizations can be achieved
by optimizing a small number of communication primitives. Three optimizable primitives are provided
by the WRAPPER

• EXCHANGE This operation is used to transfer data between interior and overlap regions of
neighboring tiles. A number of different forms of this operation are supported. These different
forms handle

– Data type differences. Sixty-four bit and thirty-two bit fields may be handled separately.

– Bindings to different communication methods. Exchange primitives select between using
shared memory or distributed memory communication.

– Transformation operations required when transporting data between different grid regions.
Transferring data between faces of a cube-sphere grid, for example, involves a rotation of
vector components.

– Forward and reverse mode computations. Derivative calculations require tangent linear and
adjoint forms of the exchange primitives.

• GLOBAL SUM The global sum operation is a central arithmetic operation for the pressure
inversion phase of the MITgcm algorithm. For certain configurations scaling can be highly sensitive
to the performance of the global sum primitive. This operation is a collective operation involving
all tiles of the simulated domain. Different forms of the global sum primitive exist for handling

– Data type differences. Sixty-four bit and thirty-two bit fields may be handled separately.

– Bindings to different communication methods. Exchange primitives select between using
shared memory or distributed memory communication.

4.2. WRAPPER 241

Figure 4.8: The tiling strategy that the WRAPPER supports allows tiles to be shaped to suit the
underlying system memory architecture. Compact tiles that lead to greater memory reuse can be used
on cache based systems (upper half of figure) with deep memory hierarchies, long tiles with large inner
loops can be used to exploit vector systems having highly pipelined memory systems.

– Forward and reverse mode computations. Derivative calculations require tangent linear and
adjoint forms of the exchange primitives.

• BARRIER The WRAPPER provides a global synchronization function called barrier. This is
used to synchronize computations over all tiles. The BARRIER and GLOBAL SUM primitives
have much in common and in some cases use the same underlying code.

4.2.9 Memory architecture

The WRAPPER machine model is aimed to target efficiently systems with highly pipelined memory
architectures and systems with deep memory hierarchies that favor memory reuse. This is achieved by
supporting a flexible tiling strategy as shown in figure 4.8. Within a CPU computations are carried out
sequentially on each tile in turn. By reshaping tiles according to the target platform it is possible to
automatically tune code to improve memory performance. On a vector machine a given domain might
be sub-divided into a few long, thin regions. On a commodity microprocessor based system, however, the
same region could be simulated use many more smaller sub-domains.

242 CHAPTER 4. SOFTWARE ARCHITECTURE

4.2.10 Summary

Following the discussion above, the machine model that the WRAPPER presents to an application has
the following characteristics

• The machine consists of one or more logical processors.

• Each processor operates on tiles that it owns.

• A processor may own more than one tile.

• Processors may compute concurrently.

• Exchange of information between tiles is handled by the machine (WRAPPER) not by the appli-
cation.

Behind the scenes this allows the WRAPPER to adapt the machine model functions to exploit hardware
on which

• Processors may be able to communicate very efficiently with each other using shared memory.

• An alternative communication mechanism based on a relatively simple inter-process communication
API may be required.

• Shared memory may not necessarily obey sequential consistency, however some mechanism will
exist for enforcing memory consistency.

• Memory consistency that is enforced at the hardware level may be expensive. Unnecessary triggering
of consistency protocols should be avoided.

• Memory access patterns may need to either repetitive or highly pipelined for optimum hardware
performance.

This generic model captures the essential hardware ingredients of almost all successful scientific com-
puter systems designed in the last 50 years.

4.3 Using the WRAPPER

In order to support maximum portability the WRAPPER is implemented primarily in sequential Fortran
77. At a practical level the key steps provided by the WRAPPER are

1. specifying how a domain will be decomposed

2. starting a code in either sequential or parallel modes of operations

3. controlling communication between tiles and between concurrently computing CPUs.

This section describes the details of each of these operations. Section 4.3.1 explains how the way in which
a domain is decomposed (or composed) is expressed. Section 4.3.2 describes practical details of running
codes in various different parallel modes on contemporary computer systems. Section 4.3.3 explains the
internal information that the WRAPPER uses to control how information is communicated between tiles.

4.3.1 Specifying a domain decomposition

At its heart much of the WRAPPER works only in terms of a collection of tiles which are interconnected
to each other. This is also true of application code operating within the WRAPPER. Application code
is written as a series of compute operations, each of which operates on a single tile. If application code
needs to perform operations involving data associated with another tile, it uses a WRAPPER function to
obtain that data. The specification of how a global domain is constructed from tiles or alternatively how a
global domain is decomposed into tiles is made in the file SIZE.h. This file defines the following parameters

4.3. USING THE WRAPPER 243

Parameters: sNx, sNy, OLx, OLy, nSx, nSy, nPx, nPy
File: model/inc/SIZE.h

Together these parameters define a tiling decomposition of the style shown in figure 4.9. The parame-
ters sNx and sNy define the size of an individual tile. The parameters OLx and OLy define the maximum
size of the overlap extent. This must be set to the maximum width of the computation stencil that
the numerical code finite-difference operations require between overlap region updates. The maximum
overlap required by any of the operations in the MITgcm code distributed with this release is three grid
points. This is set by the requirements of the ∇4 dissipation and diffusion operator. Code modifica-
tions and enhancements that involve adding wide finite-difference stencils may require increasing OLx
and OLy. Setting OLx and OLy to a too large value will decrease code performance (because redundant
computations will be performed), however it will not cause any other problems.

The parameters nSx and nSy specify the number of tiles that will be created within a single process.
Each of these tiles will have internal dimensions of sNx and sNy. If, when the code is executed, these tiles
are allocated to different threads of a process that are then bound to different physical processors (see the
multi-threaded execution discussion in section 4.3.2) then computation will be performed concurrently
on each tile. However, it is also possible to run the same decomposition within a process running a single
thread on a single processor. In this case the tiles will be computed over sequentially. If the decomposition
is run in a single process running multiple threads but attached to a single physical processor, then, in
general, the computation for different tiles will be interleaved by system level software. This too is a
valid mode of operation.

The parameters sNx, sNy, OLx, OLy, nSx andnSy are used extensively by numerical code. The
settings of sNx, sNy, OLx and OLy are used to form the loop ranges for many numerical calculations and
to provide dimensions for arrays holding numerical state. The nSx andnSy are used in conjunction with
the thread number parameter myThid. Much of the numerical code operating within the WRAPPER
takes the form

DO bj=myByLo(myThid),myByHi(myThid)

DO bi=myBxLo(myThid),myBxHi(myThid)

:

a block of computations ranging

over 1,sNx +/- OLx and 1,sNy +/- OLy grid points

:

ENDDO

ENDDO

communication code to sum a number or maybe update

tile overlap regions

DO bj=myByLo(myThid),myByHi(myThid)

DO bi=myBxLo(myThid),myBxHi(myThid)

:

another block of computations ranging

over 1,sNx +/- OLx and 1,sNy +/- OLy grid points

:

ENDDO

ENDDO

The variables myBxLo(myThid), myBxHi(myThid), myByLo(myThid) and myByHi(myThid) set the
bounds of the loops in bi and bj in this schematic. These variables specify the subset of the tiles in
the range 1,nSx and 1,nSy that the logical processor bound to thread number myThid owns. The thread
number variable myThid ranges from 1 to the total number of threads requested at execution time. For
each value of myThid the loop scheme above will step sequentially through the tiles owned by that thread.
However, different threads will have different ranges of tiles assigned to them, so that separate threads
can compute iterations of the bi, bj loop concurrently. Within a bi, bj loop computation is performed
concurrently over as many processes and threads as there are physical processors available to compute.

An exception to the the use of bi and bj in loops arises in the exchange routines used when the exch2
package is used with the cubed sphere. In this case bj is generally set to 1 and the loop runs from

244 CHAPTER 4. SOFTWARE ARCHITECTURE

One tile

nSx × nSy
tiles per process

nPx × nPy
processes

nPy=2

nPx=2

nSy=1

nSx=3

sNx

sNy

OLx
OLy

SIZE.h

Figure 4.9: The three level domain decomposition hierarchy employed by the WRAPPER. A domain is
composed of tiles. Multiple tiles can be allocated to a single process. Multiple processes can exist, each
with multiple tiles. Tiles within a process can be spread over multiple compute threads.

4.3. USING THE WRAPPER 245

REAL*8 cg2d_r(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)

REAL*8 err

:

:

other computations

:

:

err = 0.

DO bj=myByLo(myThid),myByHi(myThid)

DO bi=myBxLo(myThid),myBxHi(myThid)

DO J=1,sNy

DO I=1,sNx

err = err +

& cg2d_r(I,J,bi,bj)*cg2d_r(I,J,bi,bj)

ENDDO

ENDDO

ENDDO

ENDDO

CALL GLOBAL_SUM_R8(err , myThid)

err = SQRT(err)

Figure 4.10: Example of numerical code for calculating the l2-norm of a vector within the WRAPPER.
Notice that under the WRAPPER arrays such as cg2d r have two extra trailing dimensions. These right
most indices are tile indexes. Different threads with a single process operate on different ranges of tile
index, as controlled by the settings of myByLo, myByHi, myBxLo and myBxHi.

1,bi. Within the loop bi is used to retrieve the tile number, which is then used to reference exchange
parameters.

The amount of computation that can be embedded a single loop over bi and bj varies for different
parts of the MITgcm algorithm. Figure 4.10 shows a code extract from the two-dimensional implicit
elliptic solver. This portion of the code computes the l2Norm of a vector whose elements are held in the
array cg2d r writing the final result to scalar variable err. In this case, because the l2norm requires a
global reduction, the bi,bj loop only contains one statement. This computation phase is then followed by
a communication phase in which all threads and processes must participate. However, in other areas of
the MITgcm code entries subsections of code are within a single bi,bj loop. For example the evaluation
of all the momentum equation prognostic terms (see S/R DYNAMICS()) is within a single bi,bj loop.

The final decomposition parameters are nPx and nPy. These parameters are used to indicate to the
WRAPPER level how many processes (each with nSx×nSy tiles) will be used for this simulation. This
information is needed during initialization and during I/O phases. However, unlike the variables sNx,
sNy, OLx, OLy, nSx and nSy the values of nPx and nPy are absent from the core numerical and support
code.

4.3.1.1 Examples of SIZE.h specifications

The following different SIZE.h parameter setting illustrate how to interpret the values of sNx, sNy, OLx,
OLy, nSx, nSy, nPx and nPy.

1. PARAMETER (

& sNx = 90,

& sNy = 40,

& OLx = 3,

& OLy = 3,

& nSx = 1,

& nSy = 1,

246 CHAPTER 4. SOFTWARE ARCHITECTURE

& nPx = 1,

& nPy = 1)

This sets up a single tile with x-dimension of ninety grid points, y-dimension of forty grid points,
and x and y overlaps of three grid points each.

2. PARAMETER (

& sNx = 45,

& sNy = 20,

& OLx = 3,

& OLy = 3,

& nSx = 1,

& nSy = 1,

& nPx = 2,

& nPy = 2)

This sets up tiles with x-dimension of forty-five grid points, y-dimension of twenty grid points, and
x and y overlaps of three grid points each. There are four tiles allocated to four separate processes
(nPx=2,nPy=2) and arranged so that the global domain size is again ninety grid points in x and
forty grid points in y. In general the formula for global grid size (held in model variables Nx and
Ny) is

Nx = sNx*nSx*nPx

Ny = sNy*nSy*nPy

3. PARAMETER (

& sNx = 90,

& sNy = 10,

& OLx = 3,

& OLy = 3,

& nSx = 1,

& nSy = 2,

& nPx = 1,

& nPy = 2)

This sets up tiles with x-dimension of ninety grid points, y-dimension of ten grid points, and x
and y overlaps of three grid points each. There are four tiles allocated to two separate processes
(nPy=2) each of which has two separate sub-domains nSy=2, The global domain size is again ninety
grid points in x and forty grid points in y. The two sub-domains in each process will be computed
sequentially if they are given to a single thread within a single process. Alternatively if the code is
invoked with multiple threads per process the two domains in y may be computed concurrently.

4. PARAMETER (

& sNx = 32,

& sNy = 32,

& OLx = 3,

& OLy = 3,

& nSx = 6,

& nSy = 1,

& nPx = 1,

& nPy = 1)

This sets up tiles with x-dimension of thirty-two grid points, y-dimension of thirty-two grid points,
and x and y overlaps of three grid points each. There are six tiles allocated to six separate logical
processors (nSx=6). This set of values can be used for a cube sphere calculation. Each tile of size
32×32 represents a face of the cube. Initializing the tile connectivity correctly (see section 4.3.3.3.
allows the rotations associated with moving between the six cube faces to be embedded within the
tile-tile communication code.

4.3. USING THE WRAPPER 247

MAIN

|

|--EEBOOT :: WRAPPER initialization

| |

| |-- EEBOOT_MINMAL :: Minimal startup. Just enough to

| | allow basic I/O.

| |-- EEINTRO_MSG :: Write startup greeting.

| |

| |-- EESET_PARMS :: Set WRAPPER parameters

| |

| |-- EEWRITE_EEENV :: Print WRAPPER parameter settings

| |

| |-- INI_PROCS :: Associate processes with grid regions.

| |

| |-- INI_THREADING_ENVIRONMENT :: Associate threads with grid regions.

| |

| |--INI_COMMUNICATION_PATTERNS :: Initialize between tile

| :: communication data structures

|

|

|--CHECK_THREADS :: Validate multiple thread start up.

|

|--THE_MODEL_MAIN :: Numerical code top-level driver routine

Figure 4.11: Main stages of the WRAPPER startup procedure. This process proceeds transfer of control
to application code, which occurs through the procedure THE MODEL MAIN().

4.3.2 Starting the code

When code is started under the WRAPPER, execution begins in a main routine eesupp/src/main.F
that is owned by the WRAPPER. Control is transferred to the application through a routine called
THE MODEL MAIN() once the WRAPPER has initialized correctly and has created the necessary
variables to support subsequent calls to communication routines by the application code. The startup
calling sequence followed by the WRAPPER is shown in figure 4.11.

4.3.2.1 Multi-threaded execution

Prior to transferring control to the procedure THE MODEL MAIN() the WRAPPER may cause several
coarse grain threads to be initialized. The routine THE MODEL MAIN() is called once for each thread
and is passed a single stack argument which is the thread number, stored in the variable myThid. In
addition to specifying a decomposition with multiple tiles per process (see section 4.3.1) configuring and
starting a code to run using multiple threads requires the following steps.

Compilation First the code must be compiled with appropriate multi-threading directives active in
the file main.F and with appropriate compiler flags to request multi-threading support. The header files
MAIN PDIRECTIVES1.h and MAIN PDIRECTIVES2.h contain directives compatible with compilers
for Sun, Compaq, SGI, Hewlett-Packard SMP systems and CRAY PVP systems. These directives can
be activated by using compile time directives -DTARGET SUN, -DTARGET DEC, -DTARGET SGI,
-DTARGET HP or -DTARGET CRAY VECTOR respectively. Compiler options for invoking multi-
threaded compilation vary from system to system and from compiler to compiler. The options will be
described in the individual compiler documentation. For the Fortran compiler from Sun the following
options are needed to correctly compile multi-threaded code

-stackvar -explicitpar -vpara -noautopar

These options are specific to the Sun compiler. Other compilers will use different syntax that will be
described in their documentation. The effect of these options is as follows

248 CHAPTER 4. SOFTWARE ARCHITECTURE

1. -stackvar Causes all local variables to be allocated in stack storage. This is necessary for local
variables to ensure that they are private to their thread. Note, when using this option it may be
necessary to override the default limit on stack-size that the operating system assigns to a process.
This can normally be done by changing the settings of the command shells stack-size limit variable.
However, on some systems changing this limit will require privileged administrator access to modify
system parameters.

2. -explicitpar Requests that multiple threads be spawned in response to explicit directives in the
application code. These directives are inserted with syntax appropriate to the particular target
platform when, for example, the -DTARGET SUN flag is selected.

3. -vpara This causes the compiler to describe the multi-threaded configuration it is creating. This
is not required but it can be useful when trouble shooting.

4. -noautopar This inhibits any automatic multi-threaded parallelization the compiler may otherwise
generate.

An example of valid settings for the eedata file for a domain with two subdomains in y and running
with two threads is shown below

nTx=1,nTy=2

This set of values will cause computations to stay within a single thread when moving across the nSx
sub-domains. In the y-direction, however, sub-domains will be split equally between two threads.

Multi-threading files and parameters The following files and variables are used in setting up multi-
threaded execution.

File: eesupp/inc/MAIN PDIRECTIVES1.h
File: eesupp/inc/MAIN PDIRECTIVES2.h
File: model/src/THE MODEL MAIN.F
File: eesupp/src/MAIN.F
File: tools/genmake2
File: eedata
CPP: TARGET SUN
CPP: TARGET DEC
CPP: TARGET HP
CPP: TARGET SGI
CPP: TARGET CRAY VECTOR
Parameter: nTx
Parameter: nTy

4.3.2.2 Multi-process execution

Despite its appealing programming model, multi-threaded execution remains less common than multi-
process execution. One major reason for this is that many system libraries are still not “thread-safe”.
This means that, for example, on some systems it is not safe to call system routines to perform I/O when
running in multi-threaded mode (except, perhaps, in a limited set of circumstances). Another reason is
that support for multi-threaded programming models varies between systems.

Multi-process execution is more ubiquitous. In order to run code in a multi-process configuration a
decomposition specification (see section 4.3.1) is given (in which the at least one of the parameters nPx
or nPy will be greater than one) and then, as for multi-threaded operation, appropriate compile time and
run time steps must be taken.

Compilation Multi-process execution under the WRAPPER assumes that the portable, MPI libraries
are available for controlling the start-up of multiple processes. The MPI libraries are not required, al-
though they are usually used, for performance critical communication. However, in order to simplify
the task of controlling and coordinating the start up of a large number (hundreds and possibly even

4.3. USING THE WRAPPER 249

thousands) of copies of the same program, MPI is used. The calls to the MPI multi-process startup
routines must be activated at compile time. Currently MPI libraries are invoked by specifying the ap-
propriate options file with the -of flag when running the genmake2 script, which generates the Makefile
for compiling and linking MITgcm. (Previously this was done by setting the ALLOW USE MPI and
ALWAYS USE MPI flags in the CPP EEOPTIONS.h file.) More detailed information about the use of
genmake2 for specifying local compiler flags is located in section 3.4.2.

Directory: tools/build options
File: tools/genmake2

Execution The mechanics of starting a program in multi-process mode under MPI is not standardized.
Documentation associated with the distribution of MPI installed on a system will describe how to start
a program using that distribution. For the open-source MPICH system, the MITgcm program can be
started using a command such as

mpirun -np 64 -machinefile mf ./mitgcmuv

In this example the text -np 64 specifies the number of processes that will be created. The numeric value
64 must be equal to the product of the processor grid settings of nPx and nPy in the file SIZE.h. The
parameter mf specifies that a text file called “mf” will be read to get a list of processor names on which
the sixty-four processes will execute. The syntax of this file is specified by the MPI distribution.

File: SIZE.h
Parameter: nPx
Parameter: nPy

Environment variables On most systems multi-threaded execution also requires the setting of a
special environment variable. On many machines this variable is called PARALLEL and its values should
be set to the number of parallel threads required. Generally the help or manual pages associated with
the multi-threaded compiler on a machine will explain how to set the required environment variables.

Runtime input parameters Finally the file eedata needs to be configured to indicate the number of
threads to be used in the x and y directions. The variables nTx and nTy in this file are used to specify
the information required. The product of nTx and nTy must be equal to the number of threads spawned
i.e. the setting of the environment variable PARALLEL. The value of nTx must subdivide the number
of sub-domains in x (nSx) exactly. The value of nTy must subdivide the number of sub-domains in y
(nSy) exactly. The multiprocess startup of the MITgcm executable mitgcmuv is controlled by the routines
EEBOOT MINIMAL() and INI PROCS(). The first routine performs basic steps required to make sure
each process is started and has a textual output stream associated with it. By default two output files
are opened for each process with names STDOUT.NNNN and STDERR.NNNN. The NNNNN
part of the name is filled in with the process number so that process number 0 will create output files
STDOUT.0000 and STDERR.0000, process number 1 will create output files STDOUT.0001 and
STDERR.0001, etc. These files are used for reporting status and configuration information and for
reporting error conditions on a process by process basis. The EEBOOT MINIMAL() procedure also sets
the variables myProcId and MPI COMM MODEL. These variables are related to processor identification
are are used later in the routine INI PROCS() to allocate tiles to processes.

Allocation of processes to tiles is controlled by the routine INI PROCS(). For each process this routine
sets the variables myXGlobalLo and myYGlobalLo. These variables specify, in index space, the coordinates
of the southernmost and westernmost corner of the southernmost and westernmost tile owned by this
process. The variables pidW, pidE, pidS and pidN are also set in this routine. These are used to identify
processes holding tiles to the west, east, south and north of a given process. These values are stored in
global storage in the header file EESUPPORT.h for use by communication routines. The above does not
hold when the exch2 package is used. The exch2 sets its own parameters to specify the global indices of
tiles and their relationships to each other. See the documentation on the exch2 package (6.2.4) for details.

250 CHAPTER 4. SOFTWARE ARCHITECTURE

File: eesupp/src/eeboot minimal.F
File: eesupp/src/ini procs.F
File: eesupp/inc/EESUPPORT.h
Parameter: myProcId
Parameter: MPI COMM MODEL
Parameter: myXGlobalLo
Parameter: myYGlobalLo
Parameter: pidW
Parameter: pidE
Parameter: pidS
Parameter: pidN

4.3.3 Controlling communication

The WRAPPER maintains internal information that is used for communication operations and that can
be customized for different platforms. This section describes the information that is held and used.

1. Tile-tile connectivity information For each tile the WRAPPER sets a flag that sets the tile
number to the north, south, east and west of that tile. This number is unique over all tiles
in a configuration. Except when using the cubed sphere and the exch2 package, the number is
held in the variables tileNo (this holds the tiles own number), tileNoN, tileNoS, tileNoE and
tileNoW. A parameter is also stored with each tile that specifies the type of communication that
is used between tiles. This information is held in the variables tileCommModeN, tileCommModeS,
tileCommModeE and tileCommModeW. This latter set of variables can take one of the following
values COMM NONE, COMM MSG, COMM PUT and COMM GET. A value of COMM NONE
is used to indicate that a tile has no neighbor to communicate with on a particular face. A
value of COMM MSG is used to indicate that some form of distributed memory communication is
required to communicate between these tile faces (see section 4.2.7). A value of COMM PUT or
COMM GET is used to indicate forms of shared memory communication (see section 4.2.6). The
COMM PUT value indicates that a CPU should communicate by writing to data structures owned
by another CPU. A COMM GET value indicates that a CPU should communicate by reading from
data structures owned by another CPU. These flags affect the behavior of the WRAPPER exchange
primitive (see figure 4.7). The routine ini communication patterns() is responsible for setting the
communication mode values for each tile.

When using the cubed sphere configuration with the exch2 package, the relationships between tiles
and their communication methods are set by the exch2 package and stored in different variables.
See the exch2 package documentation (6.2.4 for details.

File: eesupp/src/ini communication patterns.F
File: eesupp/inc/EESUPPORT.h
Parameter: tileNo
Parameter: tileNoE
Parameter: tileNoW
Parameter: tileNoN
Parameter: tileNoS
Parameter: tileCommModeE
Parameter: tileCommModeW
Parameter: tileCommModeN
Parameter: tileCommModeS

2. MP directives The WRAPPER transfers control to numerical application code through the rou-
tine THE MODEL MAIN. This routine is called in a way that allows for it to be invoked by several
threads. Support for this is based on either multi-processing (MP) compiler directives or spe-
cific calls to multi-threading libraries (eg. POSIX threads). Most commercially available Fortran

4.3. USING THE WRAPPER 251

compilers support the generation of code to spawn multiple threads through some form of com-
piler directives. Compiler directives are generally more convenient than writing code to explicitly
spawning threads. And, on some systems, compiler directives may be the only method available.
The WRAPPER is distributed with template MP directives for a number of systems.

These directives are inserted into the code just before and after the transfer of control to numerical
algorithm code through the routine THE MODEL MAIN. Figure 4.12 shows an example of the
code that performs this process for a Silicon Graphics system. This code is extracted from the
files main.F and MAIN PDIRECTIVES1.h. The variable nThreads specifies how many instances
of the routine THE MODEL MAIN will be created. The value of nThreads is set in the routine
INI THREADING ENVIRONMENT. The value is set equal to the the product of the parameters
nTx and nTy that are read from the file eedata. If the value of nThreads is inconsistent with the
number of threads requested from the operating system (for example by using an environment
variable as described in section 4.3.2.1) then usually an error will be reported by the routine
CHECK THREADS.

File: eesupp/src/ini threading environment.F
File: eesupp/src/check threads.F
File: eesupp/src/main.F
File: eesupp/inc/MAIN PDIRECTIVES1.h
File: eedata
Parameter: nThreads
Parameter: nTx
Parameter: nTy

3. memsync flags As discussed in section 4.2.6.1, a low-level system function may be need to force
memory consistency on some shared memory systems. The routine MEMSYNC() is used for this
purpose. This routine should not need modifying and the information below is only provided for
completeness. A logical parameter exchNeedsMemSync set in the routine INI COMMUNICATION PATTERNS()
controls whether the MEMSYNC() primitive is called. In general this routine is only used for multi-
threaded execution. The code that goes into the MEMSYNC() routine is specific to the compiler
and processor used. In some cases, it must be written using a short code snippet of assembly
language. For an Ultra Sparc system the following code snippet is used

asm("membar #LoadStore|#StoreStore");

for an Alpha based system the equivalent code reads

asm("mb");

while on an x86 system the following code is required

asm("lock; addl $0,0(%%esp)": : :"memory")

4. Cache line size As discussed in section 4.2.6.2, milti-threaded codes explicitly avoid penalties
associated with excessive coherence traffic on an SMP system. To do this the shared memory data
structures used by the GLOBAL SUM, GLOBAL MAX and BARRIER routines are padded. The
variables that control the padding are set in the header file EEPARAMS.h. These variables are
called cacheLineSize, lShare1, lShare4 and lShare8. The default values should not normally need
changing.

5. BARRIER This is a CPP macro that is expanded to a call to a routine which synchronizes all
the logical processors running under the WRAPPER. Using a macro here preserves flexibility to
insert a specialized call in-line into application code. By default this resolves to calling the procedure
BARRIER(). The default setting for the BARRIER macro is given in the file CPP EEMACROS.h.

6. GSUM This is a CPP macro that is expanded to a call to a routine which sums up a float-
ing point number over all the logical processors running under the WRAPPER. Using a macro

252 CHAPTER 4. SOFTWARE ARCHITECTURE

here provides extra flexibility to insert a specialized call in-line into application code. By default
this resolves to calling the procedure GLOBAL SUM R8() (for 64-bit floating point operands)
or GLOBAL SUM R4() (for 32-bit floating point operands). The default setting for the GSUM
macro is given in the file CPP EEMACROS.h. The GSUM macro is a performance critical opera-
tion, especially for large processor count, small tile size configurations. The custom communication
example discussed in section 4.3.3.2 shows how the macro is used to invoke a custom global sum
routine for a specific set of hardware.

7. EXCH The EXCH CPP macro is used to update tile overlap regions. It is qualified by a suf-
fix indicating whether overlap updates are for two-dimensional (EXCH XY) or three dimen-
sional (EXCH XYZ) physical fields and whether fields are 32-bit floating point (EXCH XY R4,
EXCH XYZ R4) or 64-bit floating point (EXCH XY R8, EXCH XYZ R8). The macro map-
pings are defined in the header file CPP EEMACROS.h. As with GSUM, the EXCH operation
plays a crucial role in scaling to small tile, large logical and physical processor count configurations.
The example in section 4.3.3.2 discusses defining an optimized and specialized form on the EXCH
operation.

The EXCH operation is also central to supporting grids such as the cube-sphere grid. In this class
of grid a rotation may be required between tiles. Aligning the coordinate requiring rotation with
the tile decomposition, allows the coordinate transformation to be embedded within a custom form
of the EXCH primitive. In these cases EXCH is mapped to exch2 routines, as detailed in the
exch2 package documentation 6.2.4.

8. Reverse Mode The communication primitives EXCH and GSUM both employ hand-written
adjoint forms (or reverse mode) forms. These reverse mode forms can be found in the source
code directory pkg/autodiff. For the global sum primitive the reverse mode form calls are to
GLOBAL ADSUM R4 and GLOBAL ADSUM R8. The reverse mode form of the exchange prim-
itives are found in routines prefixed ADEXCH. The exchange routines make calls to the same
low-level communication primitives as the forward mode operations. However, the routine argu-
ment simulationMode is set to the value REVERSE SIMULATION. This signifies to the low-level
routines that the adjoint forms of the appropriate communication operation should be performed.

9. MAX NO THREADS The variable MAX NO THREADS is used to indicate the maximum
number of OS threads that a code will use. This value defaults to thirty-two and is set in the
file EEPARAMS.h. For single threaded execution it can be reduced to one if required. The value
is largely private to the WRAPPER and application code will not normally reference the value,
except in the following scenario.

For certain physical parametrization schemes it is necessary to have a substantial number of work
arrays. Where these arrays are allocated in heap storage (for example COMMON blocks) multi-
threaded execution will require multiple instances of the COMMON block data. This can be
achieved using a Fortran 90 module construct. However, if this mechanism is unavailable then the
work arrays can be extended with dimensions using the tile dimensioning scheme of nSx and nSy (as
described in section 4.3.1). However, if the configuration being specified involves many more tiles
than OS threads then it can save memory resources to reduce the variable MAX NO THREADS
to be equal to the actual number of threads that will be used and to declare the physical parame-
terization work arrays with a single MAX NO THREADS extra dimension. An example of this is
given in the verification experiment aim.5l cs. Here the default setting of MAX NO THREADS is
altered to

INTEGER MAX_NO_THREADS

PARAMETER (MAX_NO_THREADS = 6)

and several work arrays for storing intermediate calculations are created with declarations of the
form.

common /FORCIN/ sst1(ngp,MAX_NO_THREADS)

4.3. USING THE WRAPPER 253

C--

C-- Parallel directives for MIPS Pro Fortran compiler

C--

C Parallel compiler directives for SGI with IRIX

C$PAR PARALLEL DO

C$PAR& CHUNK=1,MP_SCHEDTYPE=INTERLEAVE,

C$PAR& SHARE(nThreads),LOCAL(myThid,I)

C

DO I=1,nThreads

myThid = I

C-- Invoke nThreads instances of the numerical model

CALL THE_MODEL_MAIN(myThid)

ENDDO

Figure 4.12: Prior to transferring control to the procedure THE MODEL MAIN() the WRAPPER may
use MP directives to spawn multiple threads.

This declaration scheme is not used widely, because most global data is used for permanent not
temporary storage of state information. In the case of permanent state information this approach
cannot be used because there has to be enough storage allocated for all tiles. However, the tech-
nique can sometimes be a useful scheme for reducing memory requirements in complex physical
parameterizations.

4.3.3.1 Specializing the Communication Code

The isolation of performance critical communication primitives and the sub-division of the simulation
domain into tiles is a powerful tool. Here we show how it can be used to improve application performance
and how it can be used to adapt to new griding approaches.

4.3.3.2 JAM example

On some platforms a big performance boost can be obtained by binding the communication routines
EXCH and GSUM to specialized native libraries (for example, the shmem library on CRAY T3E
systems). The LETS MAKE JAM CPP flag is used as an illustration of a specialized communication
configuration that substitutes for standard, portable forms of EXCH and GSUM. It affects three source
files eeboot.F, CPP EEMACROS.h and cg2d.F. When the flag is defined is has the following effects.

• An extra phase is included at boot time to initialize the custom communications library (see
ini jam.F).

• The GSUM and EXCH macro definitions are replaced with calls to custom routines (see gsum jam.F
and exch jam.F)

• a highly specialized form of the exchange operator (optimized for overlap regions of width one) is
substituted into the elliptic solver routine cg2d.F.

Developing specialized code for other libraries follows a similar pattern.

4.3.3.3 Cube sphere communication

Actual EXCH routine code is generated automatically from a series of template files, for example
exch rx.template. This is done to allow a large number of variations on the exchange process to be
maintained. One set of variations supports the cube sphere grid. Support for a cube sphere grid in MIT-
gcm is based on having each face of the cube as a separate tile or tiles. The exchange routines are then
able to absorb much of the detailed rotation and reorientation required when moving around the cube

254 CHAPTER 4. SOFTWARE ARCHITECTURE

grid. The set of EXCH routines that contain the word cube in their name perform these transformations.
They are invoked when the run-time logical parameter useCubedSphereExchange is set true. To facilitate
the transformations on a staggered C-grid, exchange operations are defined separately for both vector and
scalar quantities and for grid-centered and for grid-face and grid-corner quantities. Three sets of exchange
routines are defined. Routines with names of the form exch rx are used to exchange cell centered scalar
quantities. Routines with names of the form exch uv rx are used to exchange vector quantities located
at the C-grid velocity points. The vector quantities exchanged by the exch uv rx routines can either be
signed (for example velocity components) or un-signed (for example grid-cell separations). Routines with
names of the form exch z rx are used to exchange quantities at the C-grid vorticity point locations.

4.4 MITgcm execution under WRAPPER

Fitting together the WRAPPER elements, package elements and MITgcm core equation elements of the
source code produces calling sequence shown in section 4.4.1

4.4.1 Annotated call tree for MITgcm and WRAPPER

WRAPPER layer.

MAIN

|

|--EEBOOT :: WRAPPER initialization

| |

| |-- EEBOOT_MINMAL :: Minimal startup. Just enough to

| | allow basic I/O.

| |-- EEINTRO_MSG :: Write startup greeting.

| |

| |-- EESET_PARMS :: Set WRAPPER parameters

| |

| |-- EEWRITE_EEENV :: Print WRAPPER parameter settings

| |

| |-- INI_PROCS :: Associate processes with grid regions.

| |

| |-- INI_THREADING_ENVIRONMENT :: Associate threads with grid regions.

| |

| |--INI_COMMUNICATION_PATTERNS :: Initialize between tile

| :: communication data structures

|

|

|--CHECK_THREADS :: Validate multiple thread start up.

|

|--THE_MODEL_MAIN :: Numerical code top-level driver routine

Core equations plus packages.

C

C Invocation from WRAPPER level...

C :

C :

C |

C |-THE_MODEL_MAIN :: Primary driver for the MITgcm algorithm

C | :: Called from WRAPPER level numerical

C | :: code invocation routine. On entry

C | :: to THE_MODEL_MAIN separate thread and

C | :: separate processes will have been established.

C | :: Each thread and process will have a unique ID

C | :: but as yet it will not be associated with a

C | :: specific region in decomposed discrete space.

C |

C |-INITIALISE_FIXED :: Set fixed model arrays such as topography,

C | | :: grid, solver matrices etc..

C | |

C | |-INI_PARMS :: Routine to set kernel model parameters.

C | | :: By default kernel parameters are read from file

4.4. MITGCM EXECUTION UNDER WRAPPER 255

C | | :: "data" in directory in which code executes.

C | |

C | |-MON_INIT :: Initializes monitor package (see pkg/monitor)

C | |

C | |-INI_GRID :: Control grid array (vert. and hori.) initialization.

C | | | :: Grid arrays are held and described in GRID.h.

C | | |

C | | |-INI_VERTICAL_GRID :: Initialize vertical grid arrays.

C | | |

C | | |-INI_CARTESIAN_GRID :: Cartesian horiz. grid initialization

C | | | :: (calculate grid from kernel parameters).

C | | |

C | | |-INI_SPHERICAL_POLAR_GRID :: Spherical polar horiz. grid

C | | | :: initialization (calculate grid from

C | | | :: kernel parameters).

C | | |

C | | |-INI_CURVILINEAR_GRID :: General orthogonal, structured horiz.

C | | :: grid initializations. (input from raw

C | | :: grid files, LONC.bin, DXF.bin etc...)

C | |

C | |-INI_DEPTHS :: Read (from "bathyFile") or set bathymetry/orgography.

C | |

C | |-INI_MASKS_ETC :: Derive horizontal and vertical cell fractions and

C | | :: land masking for solid-fluid boundaries.

C | |

C | |-INI_LINEAR_PHSURF :: Set ref. surface Bo_surf

C | |

C | |-INI_CORI :: Set coriolis term. zero, f-plane, beta-plane,

C | | :: sphere options are coded.

C | |

C | |-PACAKGES_BOOT :: Start up the optional package environment.

C | | :: Runtime selection of active packages.

C | |

C | |-PACKAGES_READPARMS :: Call active package internal parameter load.

C | | |

C | | |-GMREDI_READPARMS :: GM Package. see pkg/gmredi

C | | |-KPP_READPARMS :: KPP Package. see pkg/kpp

C | | |-SHAP_FILT_READPARMS :: Shapiro filter package. see pkg/shap_filt

C | | |-OBCS_READPARMS :: Open bndy package. see pkg/obcs

C | | |-AIM_READPARMS :: Intermediate Atmos. pacakage. see pkg/aim

C | | |-COST_READPARMS :: Cost function package. see pkg/cost

C | | |-CTRL_INIT :: Control vector support package. see pkg/ctrl

C | | |-OPTIM_READPARMS :: Optimisation support package. see pkg/ctrl

C | | |-GRDCHK_READPARMS :: Gradient check package. see pkg/grdchk

C | | |-ECCO_READPARMS :: ECCO Support Package. see pkg/ecco

C | | |-PTRACERS_READPARMS :: multiple tracer package, see pkg/ptracers

C | | |-GCHEM_READPARMS :: tracer interface package, see pkg/gchem

C | |

C | |-PACKAGES_CHECK

C | | |

C | | |-KPP_CHECK :: KPP Package. pkg/kpp

C | | |-OBCS_CHECK :: Open bndy Pacakge. pkg/obcs

C | | |-GMREDI_CHECK :: GM Package. pkg/gmredi

C | |

C | |-PACKAGES_INIT_FIXED

C | | |-OBCS_INIT_FIXED :: Open bndy Package. see pkg/obcs

C | | |-FLT_INIT :: Floats Package. see pkg/flt

C | | |-GCHEM_INIT_FIXED :: tracer interface pachage, see pkg/gchem

C | |

C | |-ZONAL_FILT_INIT :: FFT filter Package. see pkg/zonal_filt

C | |

C | |-INI_CG2D :: 2d con. grad solver initialization.

C | |

C | |-INI_CG3D :: 3d con. grad solver initialization.

C | |

C | |-CONFIG_SUMMARY :: Provide synopsis of kernel setup.

C | :: Includes annotated table of kernel

C | :: parameter settings.

C |

C |-CTRL_UNPACK :: Control vector support package. see pkg/ctrl

C |

256 CHAPTER 4. SOFTWARE ARCHITECTURE

C |-ADTHE_MAIN_LOOP :: Derivative evaluating form of main time stepping loop

C ! :: Auotmatically generated by TAMC/TAF.

C |

C |-CTRL_PACK :: Control vector support package. see pkg/ctrl

C |

C |-GRDCHK_MAIN :: Gradient check package. see pkg/grdchk

C |

C |-THE_MAIN_LOOP :: Main timestepping loop routine.

C | |

C | |-INITIALISE_VARIA :: Set the initial conditions for time evolving

C | | | :: variables

C | | |

C | | |-INI_LINEAR_PHISURF :: Set ref. surface Bo_surf

C | | |

C | | |-INI_CORI :: Set coriolis term. zero, f-plane, beta-plane,

C | | | :: sphere options are coded.

C | | |

C | | |-INI_CG2D :: 2d con. grad solver initialization.

C | | |-INI_CG3D :: 3d con. grad solver initialization.

C | | |-INI_MIXING :: Initialize diapycnal diffusivity.

C | | |-INI_DYNVARS :: Initialize to zero all DYNVARS.h arrays (dynamical

C | | | :: fields).

C | | |

C | | |-INI_FIELDS :: Control initializing model fields to non-zero

C | | | |-INI_VEL :: Initialize 3D flow field.

C | | | |-INI_THETA :: Set model initial temperature field.

C | | | |-INI_SALT :: Set model initial salinity field.

C | | | |-INI_PSURF :: Set model initial free-surface height/pressure.

C | | | |-INI_PRESSURE :: Compute model initial hydrostatic pressure

C | | | |-READ_CHECKPOINT :: Read the checkpoint

C | | |

C | | |-THE_CORRECTION_STEP :: Step forward to next time step.

C | | | | :: Here applied to move restart conditions

C | | | | :: (saved in mid timestep) to correct level in

C | | | | :: time (only used for pre-c35).

C | | | |

C | | | |-CALC_GRAD_PHI_SURF :: Return DDx and DDy of surface pressure

C | | | |-CORRECTION_STEP :: Pressure correction to momentum

C | | | |-CYCLE_TRACER :: Move tracers forward in time.

C | | | |-OBCS_APPLY :: Open bndy package. see pkg/obcs

C | | | |-SHAP_FILT_APPLY :: Shapiro filter package. see pkg/shap_filt

C | | | |-ZONAL_FILT_APPLY :: FFT filter package. see pkg/zonal_filt

C | | | |-CONVECTIVE_ADJUSTMENT :: Control static instability mixing.

C | | | | |-FIND_RHO :: Find adjacent densities.

C | | | | |-CONVECT :: Mix static instability.

C | | | | |-TIMEAVE_CUMULATE :: Update convection statistics.

C | | | |

C | | | |-CALC_EXACT_ETA :: Change SSH to flow divergence.

C | | |

C | | |-CONVECTIVE_ADJUSTMENT_INI :: Control static instability mixing

C | | | | :: Extra time history interactions.

C | | | |

C | | | |-FIND_RHO :: Find adjacent densities.

C | | | |-CONVECT :: Mix static instability.

C | | | |-TIMEAVE_CUMULATE :: Update convection statistics.

C | | |

C | | |-PACKAGES_INIT_VARIABLES :: Does initialization of time evolving

C | | | | :: package data.

C | | | |

C | | | |-GMREDI_INIT :: GM package. (see pkg/gmredi)

C | | | |-KPP_INIT :: KPP package. (see pkg/kpp)

C | | | |-KPP_OPEN_DIAGS

C | | | |-OBCS_INIT_VARIABLES :: Open bndy. package. (see pkg/obcs)

C | | | |-PTRACERS_INIT :: multi. tracer package,(see pkg/ptracers)

C | | | |-GCHEM_INIT :: tracer interface pkg (see pkh/gchem)

C | | | |-AIM_INIT :: Interm. atmos package. (see pkg/aim)

C | | | |-CTRL_MAP_INI :: Control vector package.(see pkg/ctrl)

C | | | |-COST_INIT :: Cost function package. (see pkg/cost)

C | | | |-ECCO_INIT :: ECCO support package. (see pkg/ecco)

C | | | |-INI_FORCING :: Set model initial forcing fields.

C | | | | :: Either set in-line or from file as shown.

4.4. MITGCM EXECUTION UNDER WRAPPER 257

C | | | |-READ_FLD_XY_RS(zonalWindFile)

C | | | |-READ_FLD_XY_RS(meridWindFile)

C | | | |-READ_FLD_XY_RS(surfQFile)

C | | | |-READ_FLD_XY_RS(EmPmRfile)

C | | | |-READ_FLD_XY_RS(thetaClimFile)

C | | | |-READ_FLD_XY_RS(saltClimFile)

C | | | |-READ_FLD_XY_RS(surfQswFile)

C | | |

C | | |-CALC_SURF_DR :: Calculate the new surface level thickness.

C | | |-UPDATE_SURF_DR :: Update the surface-level thickness fraction.

C | | |-UPDATE_CG2D :: Update 2d conjugate grad. for Free-Surf.

C | | |-STATE_SUMMARY :: Summarize model prognostic variables.

C | | |-TIMEAVE_STATVARS :: Time averaging package (see pkg/timeave).

C | |

C | |-WRITE_STATE :: Controlling routine for IO to dump model state.

C | | |-WRITE_REC_XYZ_RL :: Single file I/O

C | | |-WRITE_FLD_XYZ_RL :: Multi-file I/O

C | |

C | |-MONITOR :: Monitor state (see pkg/monitor)

C | |-CTRL_MAP_FORCING :: Control vector support package. (see pkg/ctrl)

C====|>|

C====|>| ****************************

C====|>| BEGIN MAIN TIMESTEPPING LOOP

C====|>| ****************************

C====|>|

C/\ | |-FORWARD_STEP :: Step forward a time-step (AT LAST !!!)

C/\ | | |

C/\ | | |-DUMMY_IN_STEPPING :: autodiff package (pkg/autoduff).

C/\ | | |-CALC_EXACT_ETA :: Change SSH to flow divergence.

C/\ | | |-CALC_SURF_DR :: Calculate the new surface level thickness.

C/\ | | |-EXF_GETFORCING :: External forcing package. (pkg/exf)

C/\ | | |-EXTERNAL_FIELDS_LOAD :: Control loading time dep. external data.

C/\ | | | | :: Simple interpolation between end-points

C/\ | | | | :: for forcing datasets.

C/\ | | | |

C/\ | | | |-EXCH :: Sync forcing. in overlap regions.

C/\ | | |-SEAICE_MODEL :: Compute sea-ice terms. (pkg/seaice)

C/\ | | |-FREEZE :: Limit surface temperature.

C/\ | | |-GCHEM_FIELD_LOAD :: load tracer forcing fields (pkg/gchem)

C/\ | | |

C/\ | | |-THERMODYNAMICS :: theta, salt + tracer equations driver.

C/\ | | | |

C/\ | | | |-INTEGRATE_FOR_W :: Integrate for vertical velocity.

C/\ | | | |-OBCS_APPLY_W :: Open bndy. package (see pkg/obcs).

C/\ | | | |-FIND_RHO :: Calculates [rho(S,T,z)-RhoConst] of a slice

C/\ | | | |-GRAD_SIGMA :: Calculate isoneutral gradients

C/\ | | | |-CALC_IVDC :: Set Implicit Vertical Diffusivity for Convection

C/\ | | | |

C/\ | | | |-OBCS_CALC :: Open bndy. package (see pkg/obcs).

C/\ | | | |-EXTERNAL_FORCING_SURF:: Accumulates appropriately dimensioned

C/\ | | | | | :: forcing terms.

C/\ | | | | |-PTRACERS_FORCING_SURF :: Tracer package (see pkg/ptracers).

C/\ | | | |

C/\ | | | |-GMREDI_CALC_TENSOR :: GM package (see pkg/gmredi).

C/\ | | | |-GMREDI_CALC_TENSOR_DUMMY :: GM package (see pkg/gmredi).

C/\ | | | |-KPP_CALC :: KPP package (see pkg/kpp).

C/\ | | | |-KPP_CALC_DUMMY :: KPP package (see pkg/kpp).

C/\ | | | |-AIM_DO_ATMOS_PHYSICS :: Intermed. atmos package (see pkg/aim).

C/\ | | | |-GAD_ADVECTION :: Generalised advection driver (multi-dim

C/\ | | | | advection case) (see pkg/gad).

C/\ | | | |-CALC_COMMON_FACTORS :: Calculate common data (such as volume flux)

C/\ | | | |-CALC_DIFFUSIVITY :: Calculate net vertical diffusivity

C/\ | | | | |

C/\ | | | | |-GMREDI_CALC_DIFF :: GM package (see pkg/gmredi).

C/\ | | | | |-KPP_CALC_DIFF :: KPP package (see pkg/kpp).

C/\ | | | |

C/\ | | | |-CALC_GT :: Calculate the temperature tendency terms

C/\ | | | | |

C/\ | | | | |-GAD_CALC_RHS :: Generalised advection package

C/\ | | | | | | :: (see pkg/gad)

C/\ | | | | | |-KPP_TRANSPORT_T :: KPP non-local transport (see pkg/kpp).

258 CHAPTER 4. SOFTWARE ARCHITECTURE

C/\ | | | | |

C/\ | | | | |-EXTERNAL_FORCING_T :: Problem specific forcing for temperature.

C/\ | | | | |-ADAMS_BASHFORTH2 :: Extrapolate tendencies forward in time.

C/\ | | | | |-FREESURF_RESCALE_G :: Re-scale Gt for free-surface height.

C/\ | | | |

C/\ | | | |-TIMESTEP_TRACER :: Step tracer field forward in time

C/\ | | | |

C/\ | | | |-CALC_GS :: Calculate the salinity tendency terms

C/\ | | | | |

C/\ | | | | |-GAD_CALC_RHS :: Generalised advection package

C/\ | | | | | | :: (see pkg/gad)

C/\ | | | | | |-KPP_TRANSPORT_S :: KPP non-local transport (see pkg/kpp).

C/\ | | | | |

C/\ | | | | |-EXTERNAL_FORCING_S :: Problem specific forcing for salt.

C/\ | | | | |-ADAMS_BASHFORTH2 :: Extrapolate tendencies forward in time.

C/\ | | | | |-FREESURF_RESCALE_G :: Re-scale Gs for free-surface height.

C/\ | | | |

C/\ | | | |-TIMESTEP_TRACER :: Step tracer field forward in time

C/\ | | | |

C/\ | | | |-TIMESTEP_TRACER :: Step tracer field forward in time

C/\ | | | |

C/\ | | | |-PTRACERS_INTEGRATE :: Integrate other tracer(s) (see pkg/ptracers).

C/\ | | | | |

C/\ | | | | |-GAD_CALC_RHS :: Generalised advection package

C/\ | | | | | | :: (see pkg/gad)

C/\ | | | | | |-KPP_TRANSPORT_PTR:: KPP non-local transport (see pkg/kpp).

C/\ | | | | |

C/\ | | | | |-PTRACERS_FORCING :: Problem specific forcing for tracer.

C/\ | | | | |-GCHEM_FORCING_INT :: tracer forcing for gchem pkg (if all

C/\ | | | | | tendancy terms calcualted together)

C/\ | | | | |-ADAMS_BASHFORTH2 :: Extrapolate tendencies forward in time.

C/\ | | | | |-FREESURF_RESCALE_G :: Re-scale Gs for free-surface height.

C/\ | | | | |-TIMESTEP_TRACER :: Step tracer field forward in time

C/\ | | | |

C/\ | | | |-OBCS_APPLY_TS :: Open bndy. package (see pkg/obcs).

C/\ | | | |

C/\ | | | |-IMPLDIFF :: Solve vertical implicit diffusion equation.

C/\ | | | |-OBCS_APPLY_TS :: Open bndy. package (see pkg/obcs).

C/\ | | | |

C/\ | | | |-AIM_AIM2DYN_EXCHANGES :: Inetermed. atmos (see pkg/aim).

C/\ | | | |-EXCH :: Update overlaps

C/\ | | |

C/\ | | |-DYNAMICS :: Momentum equations driver.

C/\ | | | |

C/\ | | | |-CALC_GRAD_PHI_SURF :: Calculate the gradient of the surface

C/\ | | | | Potential anomaly.

C/\ | | | |-CALC_VISCOSITY :: Calculate net vertical viscosity

C/\ | | | | |-KPP_CALC_VISC :: KPP package (see pkg/kpp).

C/\ | | | |

C/\ | | | |-CALC_PHI_HYD :: Integrate the hydrostatic relation.

C/\ | | | |-MOM_FLUXFORM :: Flux form mom eqn. package (see

C/\ | | | | pkg/mom_fluxform).

C/\ | | | |-MOM_VECINV :: Vector invariant form mom eqn. package (see

C/\ | | | | pkg/mom_vecinv).

C/\ | | | |-TIMESTEP :: Step momentum fields forward in time

C/\ | | | |-OBCS_APPLY_UV :: Open bndy. package (see pkg/obcs).

C/\ | | | |

C/\ | | | |-IMPLDIFF :: Solve vertical implicit diffusion equation.

C/\ | | | |-OBCS_APPLY_UV :: Open bndy. package (see pkg/obcs).

C/\ | | | |

C/\ | | | |-TIMEAVE_CUMUL_1T :: Time averaging package (see pkg/timeave).

C/\ | | | |-TIMEAVE_CUMUATE :: Time averaging package (see pkg/timeave).

C/\ | | | |-DEBUG_STATS_RL :: Quick debug package (see pkg/debug).

C/\ | | |

C/\ | | |-CALC_GW :: vert. momentum tendency terms (NH, QH only).

C/\ | | |

C/\ | | |-UPDATE_SURF_DR :: Update the surface-level thickness fraction.

C/\ | | |

C/\ | | |-UPDATE_CG2D :: Update 2d conjugate grad. for Free-Surf.

C/\ | | |

C/\ | | |-SOLVE_FOR_PRESSURE :: Find surface pressure.

4.4. MITGCM EXECUTION UNDER WRAPPER 259

C/\ | | | |-CALC_DIV_GHAT :: Form the RHS of the surface pressure eqn.

C/\ | | | |-CG2D :: Two-dim pre-con. conjugate-gradient.

C/\ | | | |-CG3D :: Three-dim pre-con. conjugate-gradient solver.

C/\ | | |

C/\ | | |-THE_CORRECTION_STEP :: Step forward to next time step.

C/\ | | | |

C/\ | | | |-CALC_GRAD_PHI_SURF :: Return DDx and DDy of surface pressure

C/\ | | | |-CORRECTION_STEP :: Pressure correction to momentum

C/\ | | | |-CYCLE_TRACER :: Move tracers forward in time.

C/\ | | | |-OBCS_APPLY :: Open bndy package. see pkg/obcs

C/\ | | | |-SHAP_FILT_APPLY :: Shapiro filter package. see pkg/shap_filt

C/\ | | | |-ZONAL_FILT_APPLY :: FFT filter package. see pkg/zonal_filt

C/\ | | | |-CONVECTIVE_ADJUSTMENT :: Control static instability mixing.

C/\ | | | | |-FIND_RHO :: Find adjacent densities.

C/\ | | | | |-CONVECT :: Mix static instability.

C/\ | | | | |-TIMEAVE_CUMULATE :: Update convection statistics.

C/\ | | | |

C/\ | | | |-CALC_EXACT_ETA :: Change SSH to flow divergence.

C/\ | | |

C/\ | | |-DO_FIELDS_BLOCKING_EXCHANGES :: Sync up overlap regions.

C/\ | | | |-EXCH

C/\ | | |

C/\ | | |-GCHEM_FORCING_SEP :: tracer forcing for gchem pkg (if

C/\ | | | tracer dependent tendencies calculated

C/\ | | | separatly)

C/\ | | |

C/\ | | |-FLT_MAIN :: Float package (pkg/flt).

C/\ | | |

C/\ | | |-MONITOR :: Monitor package (pkg/monitor).

C/\ | | |

C/\ | | |-DO_THE_MODEL_IO :: Standard diagnostic I/O.

C/\ | | | |-WRITE_STATE :: Core state I/O

C/\ | | | |-TIMEAVE_STATV_WRITE :: Time averages. see pkg/timeave

C/\ | | | |-AIM_WRITE_DIAGS :: Intermed. atmos diags. see pkg/aim

C/\ | | | |-GMREDI_DIAGS :: GM diags. see pkg/gmredi

C/\ | | | |-KPP_DO_DIAGS :: KPP diags. see pkg/kpp

C/\ | | | |-SBO_CALC :: SBO diags. see pkg/sbo

C/\ | | | |-SBO_DIAGS :: SBO diags. see pkg/sbo

C/\ | | | |-SEAICE_DO_DIAGS :: SEAICE diags. see pkg/seaice

C/\ | | | |-GCHEM_DIAGS :: gchem diags. see pkg/gchem

C/\ | | |

C/\ | | |-WRITE_CHECKPOINT :: Do I/O for restart files.

C/\ | |

C/\ | |-COST_TILE :: Cost function package. (see pkg/cost)

C<===|=|

C<===|=| **************************

C<===|=| END MAIN TIMESTEPPING LOOP

C<===|=| **************************

C<===|=|

C | |-COST_FINAL :: Cost function package. (see pkg/cost)

C |

C |-WRITE_CHECKPOINT :: Final state storage, for restart.

C |

C |-TIMER_PRINTALL :: Computational timing summary

C |

C |-COMM_STATS :: Summarise inter-proc and inter-thread communication

C :: events.

C

4.4.2 Measuring and Characterizing Performance

TO BE DONE (CNH)

4.4.3 Estimating Resource Requirements

TO BE DONE (CNH)

260 CHAPTER 4. SOFTWARE ARCHITECTURE

4.4.3.1 Atlantic 1/6 degree example

4.4.3.2 Dry Run testing

4.4.3.3 Adjoint Resource Requirements

4.4.3.4 State Estimation Environment Resources

Chapter 5

Automatic Differentiation

Author: Patrick Heimbach
Automatic differentiation (AD), also referred to as algorithmic (or, more loosely, computational) dif-

ferentiation, involves automatically deriving code to calculate partial derivatives from an existing fully
non-linear prognostic code. (see Griewank [2000]). A software tool is used that parses and transforms
source files according to a set of linguistic and mathematical rules. AD tools are like source-to-source
translators in that they parse a program code as input and produce a new program code as output (we
restrict our discussion to source-to-source tools, ignoring operator-overloading tools). However, unlike a
pure source-to-source translation, the output program represents a new algorithm, such as the evaluation
of the Jacobian, the Hessian, or higher derivative operators. In principle, a variety of derived algorithms
can be generated automatically in this way.

MITgcm has been adapted for use with the Tangent linear and Adjoint Model Compiler (TAMC) and
its successor TAF (Transformation of Algorithms in Fortran), developed by Ralf Giering (Giering and
Kaminski [1998], Giering [1999, 2000]). The first application of the adjoint of MITgcm for sensitivity
studies has been published by Marotzke et al. [1999]. Stammer et al. [1997, 002a] use MITgcm and its ad-
joint for ocean state estimation studies. In the following we shall refer to TAMC and TAF synonymously,
except were explicitly stated otherwise.

As of mid-2007 we are also able to generate fairly efficient adjoint code of the MITgcm using a new,
open-source AD tool, called OpenAD (see Naumann et al. [2006]; Utke et al. [2008]. This enables us for the
first time to compare adjoint models generated from different AD tools, providing an additional accuracy
check, complementary to finite-difference gradient checks. OpenAD and its application to MITgcm is
described in detail in section 5.5.

The AD tool exploits the chain rule for computing the first derivative of a function with respect
to a set of input variables. Treating a given forward code as a composition of operations – each line
representing a compositional element, the chain rule is rigorously applied to the code, line by line. The
resulting tangent linear or adjoint code, then, may be thought of as the composition in forward or reverse
order, respectively, of the Jacobian matrices of the forward code’s compositional elements.

5.1 Some basic algebra

Let M be a general nonlinear, model, i.e. a mapping from the m-dimensional space U ⊂ IRm of input
variables ~u = (u1, . . . , um) (model parameters, initial conditions, boundary conditions such as forcing
functions) to the n-dimensional space V ⊂ IRn of model output variable ~v = (v1, . . . , vn) (model state,
model diagnostics, objective function, ...) under consideration,

M :U −→ V

~u 7−→ ~v = M(~u)
(5.1)

The vectors ~u ∈ U and v ∈ V may be represented w.r.t. some given basis vectors span(U) = {~ei}i=1,...,m

and span(V) = {~fj}j=1,...,n as

~u =

m∑

i=1

ui ~ei, ~v =

n∑

j=1

vj
~fj

261

262 CHAPTER 5. AUTOMATIC DIFFERENTIATION

Two routes may be followed to determine the sensitivity of the output variable ~v to its input ~u.

5.1.1 Forward or direct sensitivity

Consider a perturbation to the input variables δ~u (typically a single component δ~u = δui ~ei). Their effect
on the output may be obtained via the linear approximation of the model M in terms of its Jacobian
matrix M , evaluated in the point u(0) according to

δ~v = M |~u(0) δ~u (5.2)

with resulting output perturbation δ~v. In components Mji = ∂Mj/∂ui, it reads

δvj =
∑

i

∂Mj

∂ui

∣∣∣∣
u(0)

δui (5.3)

Eq. (5.2) is the tangent linear model (TLM). In contrast to the full nonlinear model M, the operator M
is just a matrix which can readily be used to find the forward sensitivity of ~v to perturbations in u, but
if there are very many input variables (≫ O(106) for large-scale oceanographic application), it quickly
becomes prohibitive to proceed directly as in (5.2), if the impact of each component ei is to be assessed.

5.1.2 Reverse or adjoint sensitivity

Let us consider the special case of a scalar objective function J (~v) of the model output (e.g. the total
meridional heat transport, the total uptake of CO2 in the Southern Ocean over a time interval, or a
measure of some model-to-data misfit)

J : U −→ V −→ IR
~u 7−→ ~v = M(~u) 7−→ J (~u) = J (M(~u))

(5.4)

The perturbation of J around a fixed point J0,

J = J0 + δJ

can be expressed in both bases of ~u and ~v w.r.t. their corresponding inner product 〈 , 〉

J = J |~u(0) +
〈
∇uJ T |~u(0) , δ~u

〉
+ O(δ~u2)

= J |~v(0) +
〈
∇vJ T |~v(0) , δ~v

〉
+ O(δ~v2)

(5.5)

(note, that the gradient ∇f is a co-vector, therefore its transpose is required in the above inner product).
Then, using the representation of δJ =

〈
∇vJ T , δ~v

〉
, the definition of an adjoint operator A∗ of a given

operator A,
〈A∗~x , ~y 〉 = 〈 ~x , A~y 〉

which for finite-dimensional vector spaces is just the transpose of A,

A∗ = AT

and from eq. (5.2), (5.5), we note that (omitting |’s):

δJ =
〈
∇vJ T , δ~v

〉
=
〈
∇vJ T , M δ~u

〉
=
〈
MT ∇vJ T , δ~u

〉
(5.6)

With the identity (5.5), we then find that the gradient ∇uJ can be readily inferred by invoking the
adjoint M∗ of the tangent linear model M

∇uJ T |~u = MT |~u · ∇vJ T |~v
= MT |~u · δ~v∗

= δ~u∗
(5.7)

Eq. (5.7) is the adjoint model (ADM), in which MT is the adjoint (here, the transpose) of the tangent
linear operator M , δ~v∗ the adjoint variable of the model state ~v, and δ~u∗ the adjoint variable of the
control variable ~u.

5.1. SOME BASIC ALGEBRA 263

The reverse nature of the adjoint calculation can be readily seen as follows. Consider a model inte-
gration which consists of Λ consecutive operations MΛ(MΛ−1(......(Mλ(......(M1(M0(~u))))), where the
M’s could be the elementary steps, i.e. single lines in the code of the model, or successive time steps of
the model integration, starting at step 0 and moving up to step Λ, with intermediate Mλ(~u) = ~v(λ+1)

and final MΛ(~u) = ~v(Λ+1) = ~v. Let J be a cost function which explicitly depends on the final state ~v
only (this restriction is for clarity reasons only). J (u) may be decomposed according to:

J (M(~u)) = J (MΛ(MΛ−1(......(Mλ(......(M1(M0(~u)))))) (5.8)

Then, according to the chain rule, the forward calculation reads, in terms of the Jacobi matrices (we’ve
omitted the |’s which, nevertheless are important to the aspect of tangent linearity; note also that by
definition 〈∇vJ T , δ~v 〉 = ∇vJ · δ~v)

∇vJ (M(δ~u)) = ∇vJ ·MΛ · ·Mλ · ·M1 ·M0 · δ~u
= ∇vJ · δ~v (5.9)

whereas in reverse mode we have

MT (∇vJ T) = MT
0 ·MT

1 · ·MT
λ · ·MT

Λ · ∇vJ T

= MT
0 ·MT

1 · · ∇v(λ)J T

= ∇uJ T

(5.10)

clearly expressing the reverse nature of the calculation. Eq. (5.10) is at the heart of automatic adjoint
compilers. If the intermediate steps λ in eqn. (5.8) – (5.10) represent the model state (forward or
adjoint) at each intermediate time step as noted above, then correspondingly, MT (δ~v(λ) ∗) = δ~v(λ−1) ∗ for
the adjoint variables. It thus becomes evident that the adjoint calculation also yields the adjoint of each
model state component ~v(λ) at each intermediate step λ, namely

∇v(λ)J T |~v(λ) = MT
λ |~v(λ) · ·MT

Λ |~v(λ) · δ~v∗

= δ~v(λ) ∗
(5.11)

in close analogy to eq. (5.7) We note in passing that that the δ~v(λ) ∗ are the Lagrange multipliers of the
model equations which determine ~v(λ).

In components, eq. (5.7) reads as follows. Let

δ~u = (δu1, . . . , δum)
T
, δ~u∗ = ∇uJ T =

(
∂J
∂u1

, . . . , ∂J
∂um

)T

δ~v = (δv1, . . . , δun)
T
, δ~v∗ = ∇vJ T =

(
∂J
∂v1

, . . . , ∂J
∂vn

)T

denote the perturbations in ~u and ~v, respectively, and their adjoint variables; further

M =

∂M1

∂u1
. . . ∂M1

∂um

...
...

∂Mn

∂u1
. . . ∂Mn

∂um

is the Jacobi matrix of M (an n×m matrix) such that δ~v = M · δ~u, or

δvj =
m∑

i=1

Mji δui =
m∑

i=1

∂Mj

∂ui
δui

Then eq. (5.7) takes the form

δu∗i =

n∑

j=1

Mji δv
∗
j =

n∑

j=1

∂Mj

∂ui
δv∗j

264 CHAPTER 5. AUTOMATIC DIFFERENTIATION

or

∂
∂u1

J
∣∣∣
~u(0)

...
∂

∂um
J
∣∣∣
~u(0)

 =

∂M1

∂u1

∣∣∣
~u(0)

. . . ∂Mn

∂u1

∣∣∣
~u(0)

...
...

∂M1

∂um

∣∣∣
~u(0)

. . . ∂Mn

∂um

∣∣∣
~u(0)

 ·

∂
∂v1

J
∣∣∣
~v

...
∂

∂vn
J
∣∣∣
~v

Furthermore, the adjoint δv(λ) ∗ of any intermediate state v(λ) may be obtained, using the intermediate
Jacobian (an nλ+1 × nλ matrix)

Mλ =

∂(Mλ)1

∂v
(λ)
1

. . . ∂(Mλ)1

∂v
(λ)
nλ

...
...

∂(Mλ)nλ+1

∂v
(λ)
1

. . .
∂(Mλ)nλ+1

∂v
(λ)
nλ

and the shorthand notation for the adjoint variables δv
(λ) ∗
j = ∂

∂v
(λ)
j

J T , j = 1, . . . , nλ, for intermediate

components, yielding

0

B

B

@

δv
(λ) ∗
1

...

δv
(λ) ∗
nλ

1

C

C

A

=

0

B

B

B

B

@

∂(Mλ)1

∂v
(λ)
1

.
∂(Mλ)nλ+1

∂v
(λ)
1

...
...

∂(Mλ)1

∂v
(λ)
nλ

.
∂(Mλ)nλ+1

∂v
(λ)
nλ

1

C

C

C

C

A

·

0

B

B

B

B

B

B

B

B

@

∂(Mλ+1)1

∂v
(λ+1)
1

. . .
∂(Mλ+1)nλ+2

∂v
(λ+1)
1

...
...

...
...

∂(Mλ+1)1

∂v
(λ+1)
nλ+1

. . .
∂(Mλ+1)nλ+2

∂v
(λ+1)
nλ+1

1

C

C

C

C

C

C

C

C

A

· . . . ·

0

B

@

δv
∗
1

...
δv

∗
n

1

C

A

(5.12)

Eq. (5.9) and (5.10) are perhaps clearest in showing the advantage of the reverse over the forward
mode if the gradient ∇uJ , i.e. the sensitivity of the cost function J with respect to all input variables u
(or the sensitivity of the cost function with respect to all intermediate states ~v(λ)) are sought. In order
to be able to solve for each component of the gradient ∂J /∂ui in (5.9) a forward calculation has to be
performed for each component separately, i.e. δ~u = δui~ei for the i-th forward calculation. Then, (5.9)
represents the projection of ∇uJ onto the i-th component. The full gradient is retrieved from the m
forward calculations. In contrast, eq. (5.10) yields the full gradient ∇uJ (and all intermediate gradients
∇v(λ)J) within a single reverse calculation.

Note, that if J is a vector-valued function of dimension l > 1, eq. (5.10) has to be modified according
to

MT
(
∇vJ T

(
δ ~J
))

= ∇uJ T · δ ~J

where now δ ~J ∈ IRl is a vector of dimension l. In this case l reverse simulations have to be performed for
each δJk, k = 1, . . . , l. Then, the reverse mode is more efficient as long as l < n, otherwise the forward
mode is preferable. Strictly, the reverse mode is called adjoint mode only for l = 1.

A detailed analysis of the underlying numerical operations shows that the computation of ∇uJ in this
way requires about 2 to 5 times the computation of the cost function. Alternatively, the gradient vector
could be approximated by finite differences, requiring m computations of the perturbed cost function.

To conclude we give two examples of commonly used types of cost functions:

Example 1: J = vj(T)

The cost function consists of the j-th component of the model state ~v at time T . Then ∇vJ T = ~fj is
just the j-th unit vector. The ∇uJ T is the projection of the adjoint operator onto the j-th component
fj,

∇uJ T = MT · ∇vJ T =
∑

i

MT
ji ~ei

5.1. SOME BASIC ALGEBRA 265

Example 2: J = 〈H(~v) − ~d , H(~v) − ~d 〉
The cost function represents the quadratic model vs. data misfit. Here, ~d is the data vector and H
represents the operator which maps the model state space onto the data space. Then, ∇vJ takes the
form

∇vJ T = 2 H ·
(
H(~v) − ~d

)

= 2
∑

j

{∑

k

∂Hk

∂vj
(Hk(~v) − dk)

}
~fj

where Hkj = ∂Hk/∂vj is the Jacobi matrix of the data projection operator. Thus, the gradient ∇uJ is
given by the adjoint operator, driven by the model vs. data misfit:

∇uJ T = 2MT ·H ·
(
H(~v) − ~d

)

5.1.3 Storing vs. recomputation in reverse mode

We note an important aspect of the forward vs. reverse mode calculation. Because of the local character
of the derivative (a derivative is defined w.r.t. a point along the trajectory), the intermediate results of the
model trajectory ~v(λ+1) = Mλ(v(λ)) may be required to evaluate the intermediate JacobianMλ|~v(λ) δ~v(λ).
This is the case e.g. for nonlinear expressions (momentum advection, nonlinear equation of state), state-
dependent conditional statements (parameterization schemes). In the forward mode, the intermediate
results are required in the same order as computed by the full forward model M, but in the reverse mode
they are required in the reverse order. Thus, in the reverse mode the trajectory of the forward model
integration M has to be stored to be available in the reverse calculation. Alternatively, the complete
model state up to the point of evaluation has to be recomputed whenever its value is required.

A method to balance the amount of recomputations vs. storage requirements is called checkpointing
(e.g. Griewank [1992], Restrepo et al. [1998]). It is depicted in 5.1 for a 3-level checkpointing [as an
example, we give explicit numbers for a 3-day integration with a 1-hourly timestep in square brackets].

lev3 In a first step, the model trajectory is subdivided into nlev3 subsections [nlev3=3 1-day intervals],
with the label lev3 for this outermost loop. The model is then integrated along the full trajectory,
and the model state stored to disk only at every klev3

i -th timestep [i.e. 3 times, at i = 0, 1, 2
corresponding to klev3

i = 0, 24, 48]. In addition, the cost function is computed, if needed.

lev2 In a second step each subsection itself is divided into nlev2 subsections [nlev2=4 6-hour intervals
per subsection]. The model picks up at the last outermost dumped state vklev3

n
and is integrated

forward in time along the last subsection, with the label lev2 for this intermediate loop. The model
state is now stored to disk at every klev2

i -th timestep [i.e. 4 times, at i = 0, 1, 2, 3 corresponding to
klev2

i = 48, 54, 60, 66].

lev1 Finally, the model picks up at the last intermediate dump state vklev2
n

and is integrated forward
in time along the last subsection, with the label lev1 for this intermediate loop. Within this sub-
subsection only, parts of the model state is stored to memory at every timestep [i.e. every hour
i = 0, ..., 5 corresponding to klev1

i = 66, 67, . . . , 71]. The final state vn = vklev1
n

is reached and the
model state of all preceding timesteps along the last innermost subsection are available, enabling
integration backwards in time along the last subsection. The adjoint can thus be computed along
this last subsection klev2

n .

This procedure is repeated consecutively for each previous subsection klev2
n−1, . . . , k

lev2
1 carrying the adjoint

computation to the initial time of the subsection klev3
n . Then, the procedure is repeated for the previous

subsection klev3
n−1 carrying the adjoint computation to the initial time klev3

1 .
For the full model trajectory of nlev3 ·nlev2 ·nlev1 timesteps the required storing of the model state was

significantly reduced to nlev2 + nlev3 to disk and roughly nlev1 to memory [i.e. for the 3-day integration
with a total oof 72 timesteps the model state was stored 7 times to disk and roughly 6 times to memory].
This saving in memory comes at a cost of a required 3 full forward integrations of the model (one
for each checkpointing level). The optimal balance of storage vs. recomputation certainly depends
on the computing resources available and may be adjusted by adjusting the partitioning among the
nlev3, nlev2, nlev1.

266 CHAPTER 5. AUTOMATIC DIFFERENTIATION

v_kn−1^lev2v_k1^lev2

v_kn^lev3v_kn−1^lev3v_k1^lev3

v_k1^lev1 v_kn^lev1

v_kn^lev2

Figure 5.1: Schematic view of intermediate dump and restart for 3-level checkpointing.

5.2 TLM and ADM generation in general

In this section we describe in a general fashion the parts of the code that are relevant for automatic
differentiation using the software tool TAF. Modifications to use OpenAD are described in 5.5.

The basic flow is depicted in 5.2. If CPP option ALLOW AUTODIFF TAMC is defined, the driver routine
the model main, instead of calling the main loop, invokes the adjoint of this routine, adthe main loop
(case #define ALLOW ADJOINT RUN), or the tangent linear of this routine g the main loop (case #define

ALLOW TANGENTLINEAR RUN), which are the toplevel routines in terms of automatic differentiation. The
routines adthe main loop or g the main loop are generated by TAF. It contains both the forward integra-
tion of the full model, the cost function calculation, any additional storing that is required for efficient
checkpointing, and the reverse integration of the adjoint model.

[DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]

In Fig. 5.2 the structure of adthe main loop has been strongly simplified to focus on the essentials; in
particular, no checkpointing procedures are shown here. Prior to the call of adthe main loop, the routine
ctrl unpack is invoked to unpack the control vector or initialise the control variables. Following the call of
adthe main loop, the routine ctrl pack is invoked to pack the control vector (cf. Section 5.2.5). If gradient
checks are to be performed, the option ALLOW GRADIENT CHECK is defined. In this case the driver routine
grdchk main is called after the gradient has been computed via the adjoint (cf. Section 5.3).

5.2.1 General setup

In order to configure AD-related setups the following packages need to be enabled: The packages are
enabled by adding them to your experiment-specific configuration file packages.conf (see Section ???).

The following AD-specific CPP option files need to be customized:

5.2. TLM AND ADM GENERATION IN GENERAL 267

autodiff
ctrl
cost
grdchk

• ECCO CPPOPTIONS.h
This header file collects CPP options for the packages autodiff, cost, ctrl as well as AD-unrelated
options for the external forcing package exf. 1

• tamc.h
This header configures the splitting of the time stepping loop w.r.t. the 3-level checkpointing (see
section ???).

5.2.2 Building the AD code using TAF

The build process of an AD code is very similar to building the forward model. However, depending on
which AD code one wishes to generate, and on which AD tool is available (TAF or TAMC), the following
make targets are available:

Here, the following placeholders are used

• <TOOL>

1NOTE: These options are not set in their package-specific headers such as COST CPPOPTIONS.h, but are instead
collected in the single header file ECCO CPPOPTIONS.h. The package-specific header files serve as simple placeholders
at this point.

the_model_main
|

|--- initialise_fixed
|
|--- #ifdef ALLOW_ADJOINT_RUN

| |
| |--- ctrl_unpack

| |
| |--- adthe_main_loop

| | |
| | |--- initialise_varia
| | |--- ctrl_map_forcing

| | |--- do iloop = 1, nTimeSteps
| | | |--- forward_step

| | | |--- cost_tile
| | | end do
| | |--- cost_final

| | |
| | |--- adcost_final

| | |--- do iloop = nTimeSteps, 1, -1
| | | |--- adcost_tile

| | | |--- adforward_step
| | | end do
| | |--- adctrl_map_forcing

| | |--- adinitialise_varia
| | o

| |
| |--- ctrl_pack
| |

|--- #else
| |

| |--- the_main_loop
| |

| #endif
|
|--- #ifdef ALLOW_GRADIENT_CHECK

| |
| |--- grdchk_main

| o
| #endif
o

Figure 5.2:

268 CHAPTER 5. AUTOMATIC DIFFERENTIATION

AD-target output description

(1) <MODE><TOOL>only <MODE> <TOOL> output.f generates code for <MODE> using <TOOL>
no make dependencies on .F .h

useful for compiling on remote platforms
(2) <MODE><TOOL> <MODE> <TOOL> output.f generates code for <MODE> using <TOOL>

includes make dependencies on .F .h

i.e. input for <TOOL> may be re-generated
(3) <MODE>all mitgcmuv <MODE> generates code for <MODE> using <TOOL>

and compiles all code
(use of TAF is set as default)

– TAF

– TAMC

• <MODE>

– ad generates the adjoint model (ADM)

– ftl generates the tangent linear model (TLM)

– svd generates both ADM and TLM for
singular value decomposition (SVD) type calculations

For example, to generate the adjoint model using TAF after routines (.F) or headers (.h) have been
modified, but without compilation, type make adtaf; or, to generate the tangent linear model using
TAMC without re-generating the input code, type make ftltamconly.

A typical full build process to generate the ADM via TAF would look like follows:

% mkdir build

% cd build

% ../../../tools/genmake2 -mods=../code_ad

% make depend

% make adall

5.2.3 The AD build process in detail

The make <MODE>all target consists of the following procedures:

1. A header file AD CONFIG.h is generated which contains a CPP option on which code ought to be
generated. Depending on the make target, the contents is one of the following:

• #define ALLOW ADJOINT RUN

• #define ALLOW TANGENTLINEAR RUN

• #define ALLOW ECCO OPTIMIZATION

2. A single file <MODE> input code.f is concatenated consisting of all .f files that are part of the list
AD FILES and all .flow files that are part of the list AD FLOW FILES.

3. The AD tool is invoked with the <MODE> <TOOL> FLAGS. The default AD tool flags in genmake2 can
be overrwritten by an adjoint options file (similar to the platform-specific build options, see
Section ???. The AD tool writes the resulting AD code into the file <MODE> input code ad.f

4. A short sed script adjoint sed is applied to <MODE> input code ad.f to reinstate myThid into
the CALL argument list of active file I/O. The result is written to file <MODE> <TOOL> output.f.

5. All routines are compiled and an executable is generated (see Table ???).

5.2. TLM AND ADM GENERATION IN GENERAL 269

5.2.3.1 The list AD FILES and .list files

Not all routines are presented to the AD tool. Routines typically hidden are diagnostics routines which do
not influence the cost function, but may create artificial flow dependencies such as I/O of active variables.

genmake2 generates a list (or variable) AD FILES which contains all routines that are shown to
the AD tool. This list is put together from all files with suffix .list that genmake2 finds in its search
directories. The list file for the core MITgcm routines is in model/src/ is called model ad diff.list.
Note that no wrapper routine is shown to TAF. These are either not visible at all to the AD code, or
hand-written AD code is available (see next section).

Each package directory contains its package-specific list file <PKG> ad diff.list. For example,
pkg/ptracers/ contains the file ptracers ad diff.list. Thus, enabling a package will automatically
extend the AD FILES list of genmake2 to incorporate the package-specific routines. Note that you will
need to regenerate the Makefile if you enable a package (e.g. by adding it to packages.conf) and a
Makefile already exists.

5.2.3.2 The list AD FLOW FILES and .flow files

TAMC and TAF can evaluate user-specified directives that start with a specific syntax (CADJ, C$TAF,
!$TAF). The main categories of directives are STORE directives and FLOW directives. Here, we are
concerned with flow directives, store directives are treated elsewhere.

Flow directives enable the AD tool to evaluate how it should treat routines that are ’hidden’ by the
user, i.e. routines which are not contained in the AD FILES list (see previous section), but which are
called in part of the code that the AD tool does see. The flow directive tell the AD tool

• which subroutine arguments are input/output

• which subroutine arguments are active

• which subroutine arguments are required to compute the cost

• which subroutine arguments are dependent

The syntax for the flow directives can be found in the AD tool manuals.
genmake2 generates a list (or variable) AD FLOW FILES which contains all files with suffix.flow

that it finds in its search directories. The flow directives for the core MITgcm routines of eesupp/src/
and model/src/ reside in pkg/autodiff/. This directory also contains hand-written adjoint code for the
MITgcm WRAPPER (section 4).

Flow directives for package-specific routines are contained in the corresponding package directories in
the file <PKG> ad.flow, e.g. ptracers-specific directives are in ptracers ad.flow.

5.2.3.3 Store directives for 3-level checkpointing

The storing that is required at each period of the 3-level checkpointing is controled by three top-level
headers.

do ilev_3 = 1, nchklev_3

include ‘‘checkpoint_lev3.h’’

do ilev_2 = 1, nchklev_2

include ‘‘checkpoint_lev2.h’’

do ilev_1 = 1, nchklev_1

include ‘‘checkpoint_lev1.h’’

...

end do

end do

end do

All files checkpoint lev?.h are contained in directory pkg/autodiff/.

270 CHAPTER 5. AUTOMATIC DIFFERENTIATION

5.2.3.4 Changing the default AD tool flags: ad options files

5.2.3.5 Hand-written adjoint code

5.2.4 The cost function (dependent variable)

The cost function J is referred to as the dependent variable. It is a function of the input variables ~u
via the composition J (~u) = J (M(~u)). The input are referred to as the independent variables or control
variables. All aspects relevant to the treatment of the cost function J (parameter setting, initialization,
accumulation, final evaluation), are controlled by the package pkg/cost. The aspects relevant to the
treatment of the independent variables are controlled by the package pkg/ctrl and will be treated in the
next section.

the_model_main
|

|-- initialise_fixed
| |
| |-- packages_readparms

| |
| |-- cost_readparms

| o
|
|-- the_main_loop

... |
|-- initialise_varia

| |
| |-- packages_init_variables

| |
| |-- cost_init
| o

|
|-- do iloop = 1,nTimeSteps

| |-- forward_step
| |-- cost_tile
| | |

| | |-- cost_tracer
| end do

|
|-- cost_final

o

Figure 5.3:

5.2.4.1 Enabling the package

packages.conf, ECCO CPPOPTIONS.h

• The package is enabled by adding cost to your file packages.conf (see Section ???)

•

N.B.: In general the following packages ought to be enabled simultaneously: autodiff, cost, ctrl. The
basic CPP option to enable the cost function is ALLOW COST. Each specific cost function contribution
has its own option. For the present example the option is ALLOW COST TRACER. All cost-specific
options are set in ECCO CPPOPTIONS.h Since the cost function is usually used in conjunction with
automatic differentiation, the CPP option ALLOW ADJOINT RUN (file CPP OPTIONS.h) and
ALLOW AUTODIFF TAMC (file ECCO CPPOPTIONS.h) should be defined.

5.2.4.2 Initialization

The initialization of the cost package is readily enabled as soon as the CPP option ALLOW COST is
defined.

• Parameters: cost readparms

This S/R reads runtime flags and parameters from file data.cost. For the present example the only
relevant parameter read is mult tracer. This multiplier enables different cost function contribu-
tions to be switched on (= 1.) or off (= 0.) at runtime. For more complex cost functions which

5.2. TLM AND ADM GENERATION IN GENERAL 271

involve model vs. data misfits, the corresponding data filenames and data specifications (start date
and time, period, ...) are read in this S/R.

• Variables: cost init
This S/R initializes the different cost function contributions. The contribution for the present
example is objf tracer which is defined on each tile (bi,bj).

5.2.4.3 Accumulation

• cost tile, cost tracer

The ’driver’ routine cost tile is called at the end of each time step. Within this ’driver’ routine, S/R are
called for each of the chosen cost function contributions. In the present example (ALLOW COST TRACER),
S/R cost tracer is called. It accumulates objf tracer according to eqn. (ref:ask-the-author).

5.2.4.4 Finalize all contributions

• cost final

At the end of the forward integration S/R cost final is called. It accumulates the total cost function fc
from each contribution and sums over all tiles:

J = fc = mult tracer
∑

global sum

nSx, nSy∑

bi, bj

objf tracer(bi, bj) + ... (5.13)

The total cost function fc will be the ’dependent’ variable in the argument list for TAF, i.e.

taf -output ’fc’ ...

5.2.5 The control variables (independent variables)

The control variables are a subset of the model input (initial conditions, boundary conditions, model
parameters). Here we identify them with the variable ~u. All intermediate variables whose derivative
w.r.t. control variables do not vanish are called active variables. All subroutines whose derivative w.r.t.
the control variables don’t vanish are called active routines. Read and write operations from and to file
can be viewed as variable assignments. Therefore, files to which active variables are written and from
which active variables are read are called active files. All aspects relevant to the treatment of the control
variables (parameter setting, initialization, perturbation) are controlled by the package pkg/ctrl.

5.2.5.1 genmake and CPP options

• genmake, CPP OPTIONS.h, ECCO CPPOPTIONS.h

To enable the directory to be included to the compile list, ctrl has to be added to the enable list in
.genmakerc or in genmake itself (analogous to cost package, cf. previous section). Each control variable
is enabled via its own CPP option in ECCO CPPOPTIONS.h.

5.2.5.2 Initialization

• Parameters: ctrl readparms

This S/R reads runtime flags and parameters from file data.ctrl. For the present example the file
contains the file names of each control variable that is used. In addition, the number of wet points
for each control variable and the net dimension of the space of control variables (counting wet points
only) nvarlength is determined. Masks for wet points for each tile (bi, bj) and vertical layer k are
generated for the three relevant categories on the C-grid: nWetCtile for tracer fields, nWetWtile
for zonal velocity fields, nWetStile for meridional velocity fields.

272 CHAPTER 5. AUTOMATIC DIFFERENTIATION

the_main_loop

|
|--- initialise_varia

| |
| ...
| |--- packages_init_varia

| | |
| | ...

| | |--- #ifdef ALLOW_ADJOINT_RUN
| | | call ctrl_map_ini

| | | call cost_ini
| | | #endif
| | ...

| | o
| ...

| o
...
|--- #ifdef ALLOW_ADJOINT_RUN

| call ctrl_map_forcing
| #endif

...
|--- #ifdef ALLOW_TAMC_CHECKPOINTING

do ilev_3 = 1,nchklev_3
| do ilev_2 = 1,nchklev_2
| do ilev_1 = 1,nchklev_1

| iloop = (ilev_3-1)*nchklev_2*nchklev_1 +
| (ilev_2-1)*nchklev_1 + ilev_1

| #else
| do iloop = 1, nTimeSteps
| #endif

| |
| |--- call forward_step

| |
| |--- #ifdef ALLOW_COST

| | call cost_tile
| | #endif
| |

| | enddo
| o

|
|--- #ifdef ALLOW_COST
| call cost_final

| #endif
o

Figure 5.4:

5.2. TLM AND ADM GENERATION IN GENERAL 273

the_model_main
|
|-- initialise_fixed

| |
| |-- packages_readparms

| |
| |-- ctrl_init - initialise control

| o package
|
|-- ctrl_unpack - unpack control vector

|
|-- adthe_main_loop - forward/adjoint run

| |
| |-- initialise_variables
| | |

| | |-- packages_init_variables
| | |

| | |-- ctrl_map_ini - link init. state and
| | o parameters to control

| | variables
| |-- ctrl_map_forcing - link forcing fields to
| ... control variables

|
|-- ctrl_pack - pack control vector

Figure 5.5:

• Control variables, control vector, and their gradients: ctrl unpack

Two important issues related to the handling of the control variables in MITgcm need to be ad-
dressed. First, in order to save memory, the control variable arrays are not kept in memory, but
rather read from file and added to the initial fields during the model initialization phase. Simi-
larly, the corresponding adjoint fields which represent the gradient of the cost function w.r.t. the
control variables are written to file at the end of the adjoint integration. Second, in addition to
the files holding the 2-dim. and 3-dim. control variables and the corresponding cost gradients, a
1-dim. control vector and gradient vector are written to file. They contain only the wet points of the
control variables and the corresponding gradient. This leads to a significant data compression. Fur-
thermore, an option is available (ALLOW NONDIMENSIONAL CONTROL IO) to non-dimensionalise the
control and gradient vector, which otherwise would contain different pieces of different magnitudes
and units. Finally, the control and gradient vector can be passed to a minimization routine if an
update of the control variables is sought as part of a minimization exercise.

The files holding fields and vectors of the control variables and gradient are generated and initialised
in S/R ctrl unpack.

5.2.5.3 Perturbation of the independent variables

The dependency flow for differentiation w.r.t. the controls starts with adding a perturbation onto the
input variable, thus defining the independent or control variables for TAF. Three types of controls may
be considered:

• ctrl map ini (initial value sensitivity):

Consider as an example the initial tracer distribution tr1 as control variable. After tr1 has been ini-
tialised in ini tr1 (dynamical variables such as temperature and salinity are initialised in ini fields),
a perturbation anomaly is added to the field in S/R ctrl map ini

u = u[0] + ∆u

tr1(...) = tr1ini(...) + xx tr1(...)
(5.14)

xx tr1 is a 3-dim. global array holding the perturbation. In the case of a simple sensitivity study
this array is identical to zero. However, it’s specification is essential in the context of automatic
differentiation since TAF treats the corresponding line in the code symbolically when determining
the differentiation chain and its origin. Thus, the variable names are part of the argument list when
calling TAF:

taf -input ’xx_tr1 ...’ ...

274 CHAPTER 5. AUTOMATIC DIFFERENTIATION

Now, as mentioned above, MITgcm avoids maintaining an array for each control variable by reading
the perturbation to a temporary array from file. To ensure the symbolic link to be recognized by
TAF, a scalar dummy variable xx tr1 dummy is introduced and an ’active read’ routine of the
adjoint support package pkg/autodiff is invoked. The read-procedure is tagged with the variable
xx tr1 dummy enabling TAF to recognize the initialization of the perturbation. The modified
call of TAF thus reads

taf -input ’xx_tr1_dummy ...’ ...

and the modified operation to (5.14) in the code takes on the form

call active_read_xyz(

& ..., tmpfld3d, ..., xx_tr1_dummy, ...)

tr1(...) = tr1(...) + tmpfld3d(...)

Note, that reading an active variable corresponds to a variable assignment. Its derivative corre-
sponds to a write statement of the adjoint variable, followed by a reset. The ’active file’ routines
have been designed to support active read and corresponding adjoint active write operations (and
vice versa).

• ctrl map forcing (boundary value sensitivity):

The handling of boundary values as control variables proceeds exactly analogous to the initial values
with the symbolic perturbation taking place in S/R ctrl map forcing. Note however an important
difference: Since the boundary values are time dependent with a new forcing field applied at each
time steps, the general problem may be thought of as a new control variable at each time step (or,
if the perturbation is averaged over a certain period, at each N timesteps), i.e.

uforcing = { uforcing(tn) }n =1,...,nTimeSteps

In the current example an equilibrium state is considered, and only an initial perturbation to surface
forcing is applied with respect to the equilibrium state. A time dependent treatment of the surface
forcing is implemented in the ECCO environment, involving the calendar (cal) and external forcing
(exf) packages.

• ctrl map params (parameter sensitivity):

This routine is not yet implemented, but would proceed proceed along the same lines as the initial
value sensitivity. The mixing parameters diffkr and kapgm are currently added as controls in
ctrl map ini.F.

5.2.5.4 Output of adjoint variables and gradient

Several ways exist to generate output of adjoint fields.

• ctrl map ini, ctrl map forcing:

– xx ...: the control variable fields
Before the forward integration, the control variables are read from file xx ... and added to
the model field.

– adxx ...: the adjoint variable fields, i.e. the gradient ∇uJ for each control variable
After the adjoint integration the corresponding adjoint variables are written to adxx

• ctrl unpack, ctrl pack:

– vector ctrl: the control vector
At the very beginning of the model initialization, the updated compressed control vector is
read (or initialised) and distributed to 2-dim. and 3-dim. control variable fields.

5.2. TLM AND ADM GENERATION IN GENERAL 275

– vector grad: the gradient vector
At the very end of the adjoint integration, the 2-dim. and 3-dim. adjoint variables are read,
compressed to a single vector and written to file.

• addummy in stepping:

In addition to writing the gradient at the end of the forward/adjoint integration, many more adjoint
variables of the model state at intermediate times can be written using S/R addummy in stepping.
This routine is part of the adjoint support package pkg/autodiff (cf.f. below). The procedure is en-
abled using via the CPP-option ALLOW AUTODIFF MONITOR (file ECCO CPPOPTIONS.h).
To be part of the adjoint code, the corresponding S/R dummy in stepping has to be called in the
forward model (S/R the main loop) at the appropriate place. The adjoint common blocks are
extracted from the adjoint code via the header file adcommon.h.

dummy in stepping is essentially empty, the corresponding adjoint routine is hand-written rather
than generated automatically. Appropriate flow directives (dummy in stepping.flow) ensure that
TAMC does not automatically generate addummy in stepping by trying to differentiate dummy in stepping,
but instead refers to the hand-written routine.

dummy in stepping is called in the forward code at the beginning of each timestep, before the call
to dynamics, thus ensuring that addummy in stepping is called at the end of each timestep in the
adjoint calculation, after the call to addynamics.

addummy in stepping includes the header files adcommon.h. This header file is also hand-written.
It contains the common blocks /addynvars r/, /addynvars cd/, /addynvars diffkr/, /ad-
dynvars kapgm/, /adtr1 r/, /adffields/, which have been extracted from the adjoint code to
enable access to the adjoint variables.

WARNING: If the structure of the common blocks /dynvars r/, /dynvars cd/, etc., changes
similar changes will occur in the adjoint common blocks. Therefore, consistency between the TAMC-
generated common blocks and those in adcommon.h have to be checked.

5.2.5.5 Control variable handling for optimization applications

In optimization mode the cost function J (u) is sought to be minimized with respect to a set of control
variables δJ = 0, in an iterative manner. The gradient ∇uJ |u[k]

together with the value of the cost
function itself J (u[k]) at iteration step k serve as input to a minimization routine (e.g. quasi-Newton
method, conjugate gradient, ... Gilbert and Lemaréchal [1989]) to compute an update in the control
variable for iteration step k + 1

u[k+1] = u[0] + ∆u[k+1] satisfying J
(
u[k+1]

)
< J

(
u[k]

)

u[k+1] then serves as input for a forward/adjoint run to determine J and ∇uJ at iteration step k + 1.
Tab. ref:ask-the-author sketches the flow between forward/adjoint model and the minimization routine.

u[0] , ∆u[k]
?

?

y

u[k] = u[0] + ∆u[k]
forward
−→ v[k] = M

`

u[k]

´ forward
−→ J[k] = J

`

M
`

u[k]

´´

?

?

y

∇uJ[k](δJ) = T∗ · ∇vJ |v[k]
(δJ)

adjoint
←− ad v[k](δJ) = ∇vJ |v[k]

(δJ)
adjoint
←− adJ = δJ

?

?

?

?

y

J[k], ∇uJ[k]

J[k] , ∇uJ[k] −→ minimisation −→ ∆u[k+1]

?

?

y

∆u[k+1]

276 CHAPTER 5. AUTOMATIC DIFFERENTIATION

The routines ctrl unpack and ctrl pack provide the link between the model and the minimization
routine. As described in Section ref:ask-the-author the unpack and pack routines read and write control
and gradient vectors which are compressed to contain only wet points, in addition to the full 2-dim. and
3-dim. fields. The corresponding I/O flow looks as follows:

vector ctrl <k>
?

y

ctrl unpack
?

y

xx theta0...<k>

xx salt0...<k>
read
−→ forward integration

.

.

.

↓
adxx theta0...<k>

adjoint integration
write
−→ adxx salt0...<k>

.

.

.
?

y

ctrl pack
?

y

vector grad <k>

ctrl unpack reads the updated control vector vector ctrl <k>. It distributes the different control
variables to 2-dim. and 3-dim. files xx ...<k>. At the start of the forward integration the control variables
are read from xx ...<k> and added to the field. Correspondingly, at the end of the adjoint integration
the adjoint fields are written to adxx ...<k>, again via the active file routines. Finally, ctrl pack collects
all adjoint files and writes them to the compressed vector file vector grad <k>.

5.3. THE GRADIENT CHECK PACKAGE 277

5.3 The gradient check package

An indispensable test to validate the gradient computed via the adjoint is a comparison against finite
difference gradients. The gradient check package pkg/grdchk enables such tests in a straightforward and
easy manner. The driver routine grdchk main is called from the model main after the gradient has been
computed via the adjoint model (cf. flow chart ???).

The gradient check proceeds as follows: The i−th component of the gradient (∇uJ T)i is compared
with the following finite-difference gradient:

(
∇uJ T

)
i

vs.
∂J
∂ui

=
J (ui + ǫ) − J (ui)

ǫ

A gradient check at point ui may generally considered to be successful if the deviation of the ratio between
the adjoint and the finite difference gradient from unity is less than 1 percent,

1 − (gradJ)i(adjoint)

(gradJ)i(finite difference)
< 1%

5.3.1 Code description

5.3.2 Code configuration

The relevant CPP precompile options are set in the following files:

• .genmakerc
option grdchk is added to the enable list (alternatively, genmake may be invoked with the option
-enable=grdchk).

• CPP OPTIONS.h
Together with the flag ALLOW ADJOINT RUN, define the flag ALLOW GRADIENT CHECK.

The relevant runtime flags are set in the files

• data.pkg
Set useGrdchk = .TRUE.

• data.grdchk

– grdchk eps

– nbeg

– nstep

– nend

– grdchkvarindex

278 CHAPTER 5. AUTOMATIC DIFFERENTIATION

the_model_main

|
|-- ctrl_unpack

|-- adthe_main_loop - unperturbed cost function and
|-- ctrl_pack adjoint gradient are computed here

|
|-- grdchk_main

|

|-- grdchk_init
|-- do icomp=... - loop over control vector elements

|
|-- grdchk_loc - determine location of icomp on grid
|

|-- grdchk_getxx - get control vector component from file
| perturb it and write back to file

|-- grdchk_getadxx - get gradient component calculated
| via adjoint

|-- the_main_loop - forward run and cost evaluation
| with perturbed control vector element
|-- calculate ratio of adj. vs. finite difference gradient

|
|-- grdchk_setxx - Reset control vector element

|
|-- grdchk_print - print results

Figure 5.6:

5.4 Adjoint dump & restart – divided adjoint (DIVA)

Patrick Heimbach & Geoffrey Gebbie, MIT/EAPS, 07-Mar-2003
NOTE:

THIS SECTION IS SUBJECT TO CHANGE. IT REFERS TO TAF-1.4.26.
Previous TAF versions are incomplete and have problems with both TAF options ’-pure’

and ’-mpi’.
The code which is tuned to the DIVA implementation of this TAF version is checkpoint50

(MITgcm) and ecco c50 e28 (ECCO).

5.4.1 Introduction

Most high performance computing (HPC) centres require the use of batch jobs for code execution. Limits
in maximum available CPU time and memory may prevent the adjoint code execution from fitting into
any of the available queues. This presents a serious limit for large scale / long time adjoint ocean and
climate model integrations. The MITgcm itself enables the split of the total model integration into sub-
intervals through standard dump/restart of/from the full model state. For a similar procedure to run
in reverse mode, the adjoint model requires, in addition to the model state, the adjoint model state, i.e.
all variables with derivative information which are needed in an adjoint restart. This adjoint dump &
restart is also termed ’divided adjoint (DIVA).

For this to work in conjunction with automatic differentiation, an AD tool needs to perform the
following tasks:

1. identify an adjoint state, i.e. those sensitivities whose accumulation is interrupted by a dump/restart
and which influence the outcome of the gradient. Ideally, this state consists of

• the adjoint of the model state,

• the adjoint of other intermediate results (such as control variables, cost function contributions,
etc.)

• bookkeeping indices (such as loop indices, etc.)

2. generate code for storing and reading adjoint state variables

3. generate code for bookkeeping , i.e. maintaining a file with index information

4. generate a suitable adjoint loop to propagate adjoint values for dump/restart with a minimum
overhad of adjoint intermediate values.

5.4. ADJOINT DUMP & RESTART – DIVIDED ADJOINT (DIVA) 279

TAF (but not TAMC!) generates adjoint code which performs the above specified tasks. It is closely
tied to the adjoint multi-level checkpointing. The adjoint state is dumped (and restarted) at each step of
the outermost checkpointing level and adjoint intergration is performed over one outermost checkpointing
interval. Prior to the adjoint computations, a full foward sweep is performed to generate the outermost
(forward state) tapes and to calculate the cost function. In the current implementation, the forward
sweep is immediately followed by the first adjoint leg. Thus, in theory, the following steps are performed
(automatically)

• 1st model call:
This is the case if file costfinal does not exist. S/R mdthe main loop is called.

1. calculate forward trajectory and dump model state after each outermost checkpointing interval
to files tapelev3

2. calculate cost function fc and write it to file costfinal

• 2nd and all remaining model call:
This is the case if file costfinal does exist. S/R adthe main loop is called.

1. (forward run and cost function call is avoided since all values are known)

– if 1st adjoint leg:
create index file divided.ctrl which contains info on current checkpointing index ilev3

– if not i-th adjoint leg:
adjoint picks up at ilev3 = nlev3 − i+ 1 and runs to nlev3 − i

2. perform adjoint leg from nlev3 − i+ 1 to nlev3 − i

3. dump adjoint state to file snapshot

4. dump index file divided.ctrl for next adjoint leg

5. in the last step the gradient is written.

A few modififications were performed in the forward code, obvious ones such as adding the corre-
sponding TAF-directive at the appropriate place, and less obvious ones (avoid some re-initializations,
when in an intermediate adjoint integration interval).

[For TAF-1.4.20 a number of hand-modifications were necessary to compensate for TAF bugs. Since
we refer to TAF-1.4.26 onwards, these modifications are not documented here].

5.4.2 Recipe 1: single processor

1. In ECCO CPPOPTIONS.h set:

#define ALLOW_DIVIDED_ADJOINT

#undef ALLOW_DIVIDED_ADJOINT_MPI

2. Generate adjoint code. Using the TAF option ’-pure’, two codes are generated:

• mdthe main loop:
Is responsible for the forward trajectory, storing of outermost checkpoint levels to file, compu-
tation of cost function, and storing of cost function to file (1st step).

• adthe main loop:
Is responsible for computing one adjoint leg, dump adjoint state to file and write index info to
file (2nd and consecutive steps).
for adjoint code generation, e.g. add ’-pure’ to TAF option list

make adtaf

• One modification needs to be made to adjoint codes in S/R adecco the main loop:

There’s a remaining issue with the ’-pure’ option. The ’call ad...’ between ’call ad...’
and the read of the snapshot file should be called only in the firt adjoint leg between nlev3
and nlev3− 1. In the ecco-branch, the following lines should be bracketed by an if (idivbeg

.GE. nchklev 3) then, thus:

280 CHAPTER 5. AUTOMATIC DIFFERENTIATION

...

xx_psbar_mean_dummy = onetape_xx_psbar_mean_dummy_3h(1)

xx_tbar_mean_dummy = onetape_xx_tbar_mean_dummy_4h(1)

xx_sbar_mean_dummy = onetape_xx_sbar_mean_dummy_5h(1)

call barrier(mythid)

cAdd(

if (idivbeg .GE. nchklev_3) then

cAdd)

call adcost_final(mythid)

call barrier(mythid)

call adcost_sst(mythid)

call adcost_ssh(mythid)

call adcost_hyd(mythid)

call adcost_averagesfields(mytime,myiter,mythid)

call barrier(mythid)

cAdd(

endif

cAdd)

C--

C read snapshot

C--

if (idivbeg .lt. nchklev_3) then

open(unit=77,file=’snapshot’,status=’old’,form=’unformatted’,

$iostat=iers)

...

For the main code, in all likelihood the block which needs to be bracketed consists of adcost final

only.

• Now the code can be copied as usual to adjoint model.F and then be compiled:

make adchange

then compile

5.4.3 Recipe 2: multi processor (MPI)

1. On the machine where you execute the code (most likely not the machine where you run TAF)
find the includes directory for MPI containing mpif.h. Either copy mpif.h to the machine where
you generate the .f files before TAF-ing, or add the path to the includes directory to you gen-
make platform setup, TAF needs some MPI parameter settings (essentially mpi comm world and
mpi integer) to incorporate those in the adjoint code.

2. In ECCO CPPOPTIONS.h set

#define ALLOW_DIVIDED_ADJOINT

#define ALLOW_DIVIDED_ADJOINT_MPI

This will include the header file mpif.h into the top level routine for TAF.

3. Add the TAF option ’-mpi’ to the TAF argument list in the makefile.

4. Follow the same steps as in Recipe 1 (previous section).

That’s it. Good luck & have fun.

5.5. ADJOINT CODE GENERATION USING OPENAD 281

5.5 Adjoint code generation using OpenAD

Authors: Jean Utke, Patrick Heimbach and Chris Hill

5.5.1 Introduction

The development of OpenAD was initiated as part of the ACTS (Adjoint Compiler Technology & Stan-
dards) project funded by the NSF Information Technology Research (ITR) program. The main goals for
OpenAD initially defined for the ACTS project are:

1. develop a flexible, modular, open source tool that can ge‘nerate adjoint codes of numerical simulation
programs,

2. establish a platform for easy implementation and testing of source transformation algorithms via a
language-independent abstract intermediate representation,

3. support for source code written in C and Fortan,

4. generate efficient tangent linear and adjoint for the MIT general circulation model.

OpenAD’s homepage is at http://www-unix.mcs.anl.gov/OpenAD/. A development WIKI is at
http://wiki.mcs.anl.gov/OpenAD/index.php/Main Page. From the WIKI’s main page, click on Handling

GCM for various aspects pertaining to differentiating the MITgcm with OpenAD.

5.5.2 Downloading and installing OpenAD

The OpenAD webpage has a detailed description on how to download and build OpenAD. From its home-
page, please click on Download Test Binaries. You may either download pre-built binaries for quick
trial, or follow the detailed build process described at http://www-unix.mcs.anl.gov/OpenAD/access.html

5.5.3 Building MITgcm adjoint with OpenAD

17-January-2008
OpenAD was successfully built on head node of itrda.acesgrid.org, for following system:

> uname -a

Linux itrda 2.6.22.2-42.fc6 #1 SMP Wed Aug 15 12:34:26 EDT 2007 i686 i686 i386 GNU/Linux

> cat /proc/version

Linux version 2.6.22.2-42.fc6 (brewbuilder@hs20-bc2-4.build.redhat.com)

(gcc version 4.1.2 20070626 (Red Hat 4.1.2-13)) #1 SMP Wed Aug 15 12:34:26 EDT 2007

> module load ifc/9.1.036 icc/9.1.042

Head of MITgcm branch (checkpoint59m with some modif.s) was used for building adjoint code.
Following routing needed special care (revert to revision 1.1):
MITgcm contrib/heimbach/OpenAD/OAD support/active module.f90

282 CHAPTER 5. AUTOMATIC DIFFERENTIATION

Chapter 6

Physical Parameterizations -
Packages I

In this chapter and in the following chapter, the MITgcm “packages” are described. While you can carry
out many experiments with MITgcm by starting from case studies in section 3.8, configuring a brand new
experiment or making major changes to an experimental configuration requires some knowledge of the
packages that make up the full MITgcm code. Packages are used in MITgcm to help organize and layer
various code building blocks that are assembled and selected to perform a specific experiment. Each of the
specific experiments described in section 3.8 uses a particular combination of packages. Figure 6.1 shows
the full set of packages that are available. As shown in the figure packages are classified into different
groupings that layer on top of each other. The top layer packages are generally specialized to specific
simulation types. In this layer there are packages that deal with biogeochemical processes, ocean interior
and boundary layer processes, atmospheric processes, sea-ice, coupled simulations and state estimation.
Below this layer are a set of general purpose numerical and computational packages. The general purpose
numerical packages provide code for kernel numerical alogorithms that apply to many different simulation
types. Similarly, the general purpose computational packages implement non-numerical alogorithms that
provide parallelism, I/O and time-keeping functions that are used in many different scenarios.

The following sections describe the packages shown in figure 6.1. Section 6.1 describes the general
procedure for using any package in MITgcm. Following that sections 6.2.1-7.4 layout the algorithms
implemented in specific packages and describe how to use the individual packages. A brief synopsis of
the function of each package is given in table 6.1. Organizationally package code is assigned a separate
subdirectory in the MITgcm code distribution (within the source code directory pkg). The name of this
subdirectory is used as the package name in table 6.1.

Table 6.1:
.

283

284 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

!"#"$%&'()$(*+"'
,*-().%./*#%&'

/#0$%+.$),.)$"

(%,1%2"+3

4*)#5%./*#'
,*5"

6(",/%&/7"5'
(%,1%2"+3

!"#$%&'()&* !"#$%&+,)&* $$'-..&'()&* $$'-..&+,)&*

8/*2"*,9"-/+.$:

%#5';$%,"$+
!"#

$#%&'
#(#

)((*"+&

',-."/

<,"%#

011

&/(
#%&,1,'*

23*04().#&

&2'

'567

$$*89
)11:

116;

&/#%7

=.-*+(9"$"

!",$+):-"#:

,"'4<7=

(">%"
*,+!

>,"

!"#"$%&'()$(*+"'
#)-"$/,%&'

/#0$%+.$),.)$"

(%,1%2"+3

1-.,#&.:

$&+&."#4,!<!"((

?*)(&/#2 6.%."'@+./-%./*#'%#5

%).*-%./,'5/00"$"#./%./*#

-%:"#&

:&,"#&
:%&*("#&

"#&(.)+-

:-.&,'"#&

,"'4#)'1)+4"+-&.(

,"'4)#+4#)31*&.
#)'1)+4#)''3+"#

)#+4#)'1)+4"+-&.(

,!'-*'

,3-)!"((
#):-

#-.*

&##)

$.!#%0

)1&+,!
:2)?@&ABCD?.ECACFEGH

:1%&.&

#,*

#%.)+):

)2#:

#!4#)!&

'+#

(*- $."!,*-

'!:")

-"'&,<&

')+"-).

>)+,*4("*-

:%,14("*-

.I

!&23$

')'4#)'')+

')'4(*3/().'

')'4<&#"+<

.3+#*)#0

.$(/$0.$(+!$,1/)"#$/2##+1+",'/2,#/!"#+3+)21+",'
A+"$'B$/.."#',*5"

Figure 6.1: Hierarchy of code layers that are assembled to make up an MITgcm simulation. Conceptually
(and in terms of code organization) MITgcm consists of several layers. At the base is a layer of core
software that provides a basic numerical and computational foundation for MITgcm simulations. This
layer is shown marked Foundation Code at the bottom of the figure and corresponds to code in the
italicised subdirectories on the figure. This layer is not organized into packages. All code above the
foundation layer is organized as packages. Much of the code in MITgcm is contained in packages which
serve as a useful way of organizing and layering the different levels of functionality that make up the full
MITgcm software distribution. The figure shows the different packages in MITgcm as boxes containing
bold face upper case names. Directly above the foundation layer are two layers of general purpose
infrastructure software that consist of computational and numerical packages. These general purpose
packages can be applied to both online and offline simulations and are used in many different physical
simulation types. Above these layers are more specialized packages.

6.1. USING MITGCM PACKAGES 285

6.1 Using MITgcm Packages

The set of packages that will be used within a partiucular model can be configured using a combination
of both “compile–time” and “run–time” options. Compile–time options are those used to select which
packages will be “compiled in” or implemented within the program. Packages excluded at compile time
are completely absent from the executable program(s) and thus cannot be later activated by any set of
subsequent run–time options.

6.1.1 Package Inclusion/Exclusion

There are numerous ways that one can specify compile–time package inclusion or exclusion and they are
all implemented by the genmake2 program which was previously described in Section 3.4. The options
are as follows:

1. Setting the genamake2 options --enable PKG and/or --disable PKG specifies inclusion or exclu-
sion. This method is intended as a convenient way to perform a single (perhaps for a quick test)
compilation.

2. By creating a text file with the name packages.conf in either the local build directory or the
-mods=DIR directory, one can specify a list of packages (one package per line, with ’#’ as the comment
character) to be included. Since the packages.conf file can be saved, this is the preferred method
for setting and recording (for future reference) the package configuration.

3. For convenience, a list of “standard” package groups is contained in the pkg/pkg groups file. By
selecting one of the package group names in the packages.conf file, one automatically obtains all
packages in that group.

4. By default (that is, if a packages.conf file is not found), the genmake2 program will use the
package group default “default pkg list” as defined in pkg/pkg groups file.

5. To help prevent users from creating unusable package groups, the genmake2 program will parse the
contents of the pkg/pkg depend file to determine:

• whether any two requested packages cannot be simultaneously included (eg. seaice and thsice
are mutually exclusive),

• whether additional packages must be included in order to satisfy package dependencies (eg.
rw depends upon functionality within the mdsio package), and

• whether the set of all requested packages is compatible with the dependencies (and producing
an error if they aren’t).

Thus, as a result of the dependencies, additional packages may be added to those originally re-
quested.

6.1.2 Package Activation

For run–time package control, MITgcm uses flags set through a data.pkg file. While some packages (eg.
debug, mnc, exch2) may have their own usage conventions, most follow a simple flag naming convention
of the form:

usePackageName=.TRUE.

where the usePackageName variable can activate or disable the package at runtime. As mentioned previ-
ously, packages must be included in order to be activated. Generally, such mistakes will be detected and
reported as errors by the code. However, users should still be aware of the dependency.

6.1.3 Package Coding Standards

The following sections describe how to modify and/or create new MITgcm packages.

286 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.1.3.1 Packages are Not Libraries

To a beginner, the MITgcm packages may resemble libraries as used in myriad software projects. While
future versions are likely to implement packages as libraries (perhaps using FORTRAN90/95 syntax) the
current packages (FORTRAN77) are not based upon any concept of libraries.

6.1.3.2 File Inclusion Rules

Instead, packages should be viewed only as directories containing “sets of source files” that are built using
some simple mechanisms provided by genmake2. Conceptually, the build process adds files as they are
found and proceeds according to the following rules:

1. genmake2 locates a “core” or main set of source files (the -standarddirs option sets these locations
and the default value contains the directories eesupp and model).

2. genmake2 then finds additional source files by inspecting the contents of each of the package direc-
tories:

(a) As the new files are found, they are added to a list of source files.

(b) If there is a file name “collision” (that is, if one of the files in a package has the same name as
one of the files previously encountered) then the file within the newer (more recently visited)
package will superseed (or “hide”) any previous file(s) with the same name.

(c) Packages are visited (and thus files discovered) in the order that the packages are enabled within
genmake2. Thus, the files in PackB may superseed the files in PackA if PackA is enabled before
PackB. Thus, package ordering can be significant! For this reason, genmake2 honors the order
in which packages are specified.

These rules were adopted since they provide a relatively simple means for rapidly including (or “hid-
ing”) existing files with modified versions.

6.1.3.3 Conditional Compilation and PACKAGES CONFIG.h

Given that packages are simply groups of files that may be added or removed to form a whole, one may
wonder how linking (that is, FORTRAN symbol resolution) is handled. This is the second way that
genmake2 supports the concept of packages. Basically, genmake2 creates a Makefile that, in turn, is able
to create a file called PACKAGES CONFIG.h that contains a set of C pre-processor (or “CPP”) directives
such as:

#undef ALLOW_KPP

#undef ALLOW_LAND

...

#define ALLOW_GENERIC_ADVDIFF

#define ALLOW_MDSIO

...

These CPP symbols are then used throughout the code to conditionally isolate variable definitions,
function calls, or any other code that depends upon the presence or absence of any particular package.

An example illustrating the use of these defines is:

#ifdef ALLOW_GMREDI

IF (useGMRedi) CALL GMREDI_CALC_DIFF(

I bi,bj,iMin,iMax,jMin,jMax,K,

I maskUp,

O KappaRT,KappaRS,

I myThid)

#endif

which is included from the file calc diffusivity.F and shows how both the compile–time ALLOW GMREDI

flag and the run–time useGMRedi are nested.

file:../code_reference/vdb/byname/model-src-calc_diffusivity.F.html

6.1. USING MITGCM PACKAGES 287

There are some benefits to using the technique described here. The first is that code snippets or
subroutines associated with packages can be placed or called from almost anywhere else within the
code. The second benefit is related to memory footprint and performance. Since unused code can be
removed, there is no performance penalty due to unnecessary memory allocation, unused function calls,
or extra run-time IF (...) conditions. The major problems with this approach are the potentially
difficult-to-read and difficult-to-debug code caused by an overuse of CPP statements. So while it can
be done, developers should exerecise some discipline and avoid unnecesarily “smearing” their package
implementation details across numerous files.

6.1.3.4 Package Startup or Boot Sequence

Calls to package routines within the core code timestepping loop can vary. However, all packages should
follow a required ”boot” sequence outlined here:

1. S/R PACKAGES_BOOT()

:

CALL OPEN_COPY_DATA_FILE(’data.pkg’, ’PACKAGES_BOOT’, ...)

2. S/R PACKAGES_READPARMS()

:

#ifdef ALLOW_${PKG}

if (use${Pkg})

& CALL ${PKG}_READPARMS(retCode)

#endif

3. S/R PACKAGES_INIT_FIXED()

:

#ifdef ALLOW_${PKG}

if (use${Pkg})

& CALL ${PKG}_INIT_FIXED(retCode)

#endif

4. S/R PACKAGES_CHECK()

:

#ifdef ALLOW_${PKG}

if (use${Pkg})

& CALL ${PKG}_CHECK(retCode)

#else

if (use${Pkg})

& CALL PACKAGES_CHECK_ERROR(’${PKG}’)

#endif

5. S/R PACKAGES_INIT_VARIABLES()

:

#ifdef ALLOW_${PKG}

if (use${Pkg})

& CALL ${PKG}_INIT_VARIA()

#endif

6. S/R DO_THE_MODEL_IO

#ifdef ALLOW_${PKG}

if (use${Pkg})

& CALL ${PKG}_OUTPUT()

#endif

7. S/R PACKAGES_WRITE_PICKUP()

#ifdef ALLOW_${PKG}

if (use${Pkg})

& CALL ${PKG}_WRITE_PICKUP()

#endif

6.1.3.5 Adding a package to PARAMS.h and packages boot()

An MITgcm package directory contains all the code needed for that package apart from one variable for
each package. This variable is the use${Pkg} flag. This flag, which is of type logical, must be declared in

288 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

the shared header file PARAMS.h in the PARM PACKAGES block. This convention is used to support
a single runtime control file data.pkg which is read by the startup routine packages boot() and that sets a
flag controlling the runtime use of a package. This routine needs to be able to read the flags for packages
that were not built at compile time. Therefore when adding a new package, in addition to creating the
per-package directory in the pkg/ subdirectory a developer should add a use${Pkg} flag to PARAMS.h
and a use${Pkg} entry to the packages boot() PACKAGES namelist. The only other package specific
code that should appear outside the individual package directory are calls to the specific package API.

6.2. PACKAGES RELATED TO HYDRODYNAMICAL KERNEL 289

6.2 Packages Related to Hydrodynamical Kernel

6.2.1 Generic Advection/Diffusion

The generic advdiff package contains high-level subroutines to solve the advection-diffusion equation
of any tracer, either active (potential temperature, salinity or water vapor) or passive (see pkg/ptracers).
(see also sections 2.16 to 2.19).

6.2.1.1 Introduction

Package “generic advdiff” provides a common set of routines for calculating advective/diffusive fluxes for
tracers (cell centered quantities on a C-grid).

Many different advection schemes are available: the standard centered second order, centered fourth
order and upwind biased third order schemes are known as linear methods and require some stable time-
stepping method such as Adams-Bashforth. Alternatives such as flux-limited schemes are stable in the
forward sense and are best combined with the multi-dimensional method provided in gad advection.

6.2.1.2 Key subroutines, parameters and files

There are two high-level routines:

• GAD CALC RHS calculates all fluxes at time level “n” and is used for the standard linear schemes.
This must be used in conjuction with Adams–Bashforth time stepping. Diffusive and parameterized
fluxes are always calculated here.

• GAD ADVECTION calculates just the advective fluxes using the non-linear schemes and can not
be used in conjuction with Adams–Bashforth time stepping.

6.2.1.3 GAD Diagnostics

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

ADVr_TH | 15 |WM LR |degC.m^3/s |Vertical Advective Flux of Pot.Temperature

ADVx_TH | 15 |UU 087MR |degC.m^3/s |Zonal Advective Flux of Pot.Temperature

ADVy_TH | 15 |VV 086MR |degC.m^3/s |Meridional Advective Flux of Pot.Temperature

DFrE_TH | 15 |WM LR |degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Explicit part)

DIFx_TH | 15 |UU 090MR |degC.m^3/s |Zonal Diffusive Flux of Pot.Temperature

DIFy_TH | 15 |VV 089MR |degC.m^3/s |Meridional Diffusive Flux of Pot.Temperature

DFrI_TH | 15 |WM LR |degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Implicit part)

ADVr_SLT| 15 |WM LR |psu.m^3/s |Vertical Advective Flux of Salinity

ADVx_SLT| 15 |UU 094MR |psu.m^3/s |Zonal Advective Flux of Salinity

ADVy_SLT| 15 |VV 093MR |psu.m^3/s |Meridional Advective Flux of Salinity

DFrE_SLT| 15 |WM LR |psu.m^3/s |Vertical Diffusive Flux of Salinity (Explicit part)

DIFx_SLT| 15 |UU 097MR |psu.m^3/s |Zonal Diffusive Flux of Salinity

DIFy_SLT| 15 |VV 096MR |psu.m^3/s |Meridional Diffusive Flux of Salinity

DFrI_SLT| 15 |WM LR |psu.m^3/s |Vertical Diffusive Flux of Salinity (Implicit part)

6.2.1.4 Experiments and tutorials that use GAD

• Offline tutorial, in tutorial offline verification directory, described in section 3.20

• Baroclinic gyre experiment, in tutorial baroclinic gyre verification directory, described in section
3.10

• Tracer Sensitivity tutorial, in tutorial tracer adjsens verification directory, described in section 3.19

290 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.2.2 Shapiro Filter

(in directory: pkg/shap filt/)

6.2.2.1 Key subroutines, parameters and files

Implementation of Shapiro [1970] filter is described in section 2.20.

Name Default value Description Reference

Shap funct 2 select Shapiro filter function
nShapT 4 power of Shapiro filter for Temperat
nShapS 4 power of Shapiro filter for Salinity
nShapUV 4 power of Shapiro filter for momentum
nShapTrPhys 0 power of physical-space filter (Tracer)
nShapUVPhys 0 power of physical-space filter (Momentum)
Shap Trtau 5.4E+03 time scale of Shapiro filter (Tracer)
Shap TrLength 0.0E+00 Length scale of Shapiro filter (Tracer)
Shap uvtau 1.8E+03 time scale of Shapiro filter (Momentum)
Shap uvLength 0.0E+00 Length scale of Shapiro filter (Momentum)
Shap noSlip 0.0E+00 No-slip parameter (0=Free-slip ; 1=No-slip)
Shap diagFreq 0.0E+00 Frequency−1 for diagnostic output (s)

6.2.2.2 Experiments and tutorials that use shap filter

• Held Suarez tutorial, in tutorial held suarez cs verification directory, described in section 3.14

• other Held Suarez verification experiments (hs94.128x64x5, hs94.1x64x5, hs94.cs-32x32x5)

• AIM verification experiments (aim.5l cs, aim.5l Equatorial Channel, aim.5l LatLon)

• fizhi verification experiments (fizhi-cs-32x32x40, fizhi-cs-aqualev20, fizhi-gridalt-hs)

6.2. PACKAGES RELATED TO HYDRODYNAMICAL KERNEL 291

6.2.3 FFT Filtering Code

(in directory: pkg/zonal filt/)

6.2.3.1 Key subroutines, parameters and files

6.2.3.2 Experiments and tutorials that use zonal filter

• Held Suarez verification experiment (hs94.128x64x5)

• AIM verification experiment (aim.5l LatLon)

292 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.2.4 exch2: Extended Cubed Sphere Topology

6.2.4.1 Introduction

The exch2 package extends the original cubed sphere topology configuration to allow more flexible domain
decomposition and parallelization. Cube faces (also called subdomains) may be divided into any number
of tiles that divide evenly into the grid point dimensions of the subdomain. Furthermore, the tiles can run
on separate processors individually or in groups, which provides for manual compile-time load balancing
across a relatively arbitrary number of processors.

The exchange parameters are declared in pkg/exch2/W2 EXCH2 TOPOLOGY.h and assigned in pkg/exch2/w2 e2setup.F.
The validity of the cube topology depends on the SIZE.h file as detailed below. The default files pro-
vided in the release configure a cubed sphere topology of six tiles, one per subdomain, each with 32×32
grid points, with all tiles running on a single processor. Both files are generated by Matlab scripts in
utils/exch2/matlab-topology-generator; see Section 6.2.4.3 Generating Topology Files for exch2 for
details on creating alternate topologies. Pregenerated examples of these files with alternate topologies
are provided under utils/exch2/code-mods along with the appropriate SIZE.h file for single-processor
execution.

6.2.4.2 Invoking exch2

To use exch2 with the cubed sphere, the following conditions must be met:

• The exch2 package is included when genmake2 is run. The easiest way to do this is to add the line
exch2 to the packages.conf file – see Section 3.4 Building the code for general details.

• An example of W2 EXCH2 TOPOLOGY.h and w2 e2setup.F must reside in a directory containing files
symbolically linked by the genmake2 script. The safest place to put these is the directory indicated
in the -mods=DIR command line modifier (typically ../code), or the build directory. The default
versions of these files reside in pkg/exch2 and are linked automatically if no other versions exist
elsewhere in the build path, but they should be left untouched to avoid breaking configurations
other than the one you intend to modify.

• Files containing grid parameters, named tile00n.mitgrid where n=(1:6) (one per subdomain),
must be in the working directory when the MITgcm executable is run. These files are provided in
the example experiments for cubed sphere configurations with 32×32 cube sides – please contact
MITgcm support if you want to generate files for other configurations.

• As always when compiling MITgcm, the file SIZE.h must be placed where genmake2 will find it.
In particular for exch2, the domain decomposition specified in SIZE.h must correspond with the
particular configuration’s topology specified in W2 EXCH2 TOPOLOGY.h and w2 e2setup.F. Domain
decomposition issues particular to exch2 are addressed in Section 6.2.4.3 Generating Topology Files
for exch2 and 6.2.4.4 exch2, SIZE.h, and Multiprocessing ; a more general background on the subject
relevant to MITgcm is presented in Section 4.3.1 Specifying a decomposition.

At the time of this writing the following examples use exch2 and may be used for guidance:

verification/adjust_nlfs.cs-32x32x1

verification/adjustment.cs-32x32x1

verification/aim.5l_cs

verification/global_ocean.cs32x15

verification/hs94.cs-32x32x5

6.2.4.3 Generating Topology Files for exch2

Alternate cubed sphere topologies may be created using the Matlab scripts in utils/exch2/matlab-topology-generator.
Running the m-file driver.m from the Matlab prompt (there are no parameters to pass) generates exch2
topology files W2 EXCH2 TOPOLOGY.h and w2 e2setup.F in the working directory and displays a figure of
the topology via Matlab – figures 6.4, 6.3, and 6.2 are examples of the generated diagrams. The other
m-files in the directory are subroutines called from driver.m and should not be run “bare” except for

file:../code_reference/vdb/byname/pkg-exch2-W2_EXCH2_TOPOLOGY.h.html
file:../code_reference/vdb/byname/pkg-exch2-w2_e2setup.F.html
file:../code_reference/vdb/byname/utils-exch2-matlab-topology-generator_driver.m.html

6.2. PACKAGES RELATED TO HYDRODYNAMICAL KERNEL 293

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

f1

t1f5
n

f6
n

t2f6
n

f2
w

t3f5
n t4 f2

w

t5f5
n t6 f2

w

t7f5
n

f3
w

t8
f3

w f2
w

f2

t9f1
e

f6
e

t10f6
e

f4
s

t11f1
e t12 f4

s

t13f1
e t14 f4

s

t15f1
e

f3
s

t16
f3

s f4
s

f3

t17f1
n

f2
n

t18f2
n

f4
w

t19f1
n t20 f4

w

t21f1
n t22 f4

w

t23f1
n

f5
w

t24
f5

w f4
w

f4

t25f3
e

f2
e

t26f2
e

f6
s

t27f3
e t28 f6

s

t29f3
e t30 f6

s

t31f3
e

f5
s

t32
f5

s f6
s

f5

t33f3
n

f4
n

t34f4
n

f6
w

t35f3
n t36 f6

w

t37f3
n t38 f6

w

t39f3
n

f1
w

t40
f1

w f6
w

f6

t41f5
e

f4
e

t42f4
e

f2
s

t43f5
e t44 f2

s

t45f5
e t46 f2

s

t47f5
e

f1
s

t48
f1

s f2
s

Figure 6.2: Plot of a cubed sphere topology with a 32×192 domain divided into six 32×32 subdomains,
each of which is divided into eight tiles of width tnx=16 and height tny=8 for a total of forty-eight tiles.
The colored borders of the subdomains represent the parameters nr (red), ng (green), and nb (blue).
This tiling is used in the example verification/adjustment.cs-32x32x1/ with the option (blanklist.txt) to
remove the land-only 4 tiles (11,12,13,14) which are filled in red on the plot.

development purposes.

The parameters that determine the dimensions and topology of the generated configuration are nr,
nb, ng, tnx and tny, and all are assigned early in the script.

The first three determine the height and width of the subdomains and hence the size of the overall
domain. Each one determines the number of grid points, and therefore the resolution, along the subdo-
main sides in a “great circle” around each the three spatial axes of the cube. At the time of this writing
MITgcm requires these three parameters to be equal, but they provide for future releases to accomodate
different resolutions around the axes to allow subdomains with differing resolutions.

The parameters tnx and tny determine the width and height of the tiles into which the subdomains
are decomposed, and must evenly divide the integer assigned to nr, nb and ng. The result is a rectangular
tiling of the subdomain. Figure 6.2 shows one possible topology for a twenty-four-tile cube, and figure
6.4 shows one for six tiles.

Tiles can be selected from the topology to be omitted from being allocated memory and processors.
This tuning is useful in ocean modeling for omitting tiles that fall entirely on land. The tiles omitted are
specified in the file blanklist.txt by their tile number in the topology, separated by a newline.

file:../code_reference/vdb/byname/utils-exch2-matlab-topology-generator_blanklist.txt.html

294 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

f1

t1f5
n

f6
n

f2
w

t2f5
n

f2
w

t3f5
n

f2
w

t4f5
n

f3
w

f2
w

f2

t5f1
e

f6
e

f4
s

t6f1
e

f4
s

t7f1
e

f4
s

t8f1
e

f3
s

f4
s

f3 t9f1
n

f5
w

f2
n

f4
w f4t10f3

e

f5
s

f2
e

t11

f5
s

f2
e

t12

f5
s

f2
e

t13

f5
s

f2
e

f6
s

f5t14f3
n

f1
w

f4
n

t15

f1
w

f4
n

t16

f1
w

f4
n

t17

f1
w

f4
n

f6
w f6 t18f5

e

f1
s

f4
e

f2
s

Figure 6.3: Plot of a non-square cubed sphere topology with 6 subdomains of different size
(nr=90,ng=360,nb=90), divided into one to four tiles each (tnx=90, tny=90), resulting in a total of
18 tiles.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

f1 t1f5
n

f3
w

f6
n

f2
w f2 t2f1

e

f3
s

f6
e

f4
s

f3 t3f1
n

f5
w

f2
n

f4
w f4 t4f3

e

f5
s

f2
e

f6
s

f5 t5f3
n

f1
w

f4
n

f6
w f6 t6f5

e

f1
s

f4
e

f2
s

Figure 6.4: Plot of a cubed sphere topology with a 32×192 domain divided into six 32×32 subdomains
with one tile each (tnx=32, tny=32). This is the default configuration.

6.2. PACKAGES RELATED TO HYDRODYNAMICAL KERNEL 295

6.2.4.4 exch2, SIZE.h, and Multiprocessing

Once the topology configuration files are created, the Fortran PARAMETERs in SIZE.h must be configured to
match. Section 4.3.1 Specifying a decomposition provides a general description of domain decomposition
within MITgcm and its relation to SIZE.h. The current section specifies constraints that the exch2
package imposes and describes how to enable parallel execution with MPI.

As in the general case, the parameters sNx and sNy define the size of the individual tiles, and so must
be assigned the same respective values as tnx and tny in driver.m.

The halo width parameters OLx and OLy have no special bearing on exch2 and may be assigned as in
the general case. The same holds for Nr, the number of vertical levels in the model.

The parameters nSx, nSy, nPx, and nPy relate to the number of tiles and how they are distributed on
processors. When using exch2, the tiles are stored in the x dimension, and so nSy=1 in all cases. Since
the tiles as configured by exch2 cannot be split up accross processors without regenerating the topology,
nPy=1 as well.

The number of tiles MITgcm allocates and how they are distributed between processors depends on
nPx and nSx. nSx is the number of tiles per processor and nPx is the number of processors. The total
number of tiles in the topology minus those listed in blanklist.txt must equal nSx*nPx. Note that in
order to obtain maximum usage from a given number of processors in some cases, this restriction might
entail sharing a processor with a tile that would otherwise be excluded because it is topographically
outside of the domain and therefore in blanklist.txt. For example, suppose you have five processors
and a domain decomposition of thirty-six tiles that allows you to exclude seven tiles. To evenly distribute
the remaining twenty-nine tiles among five processors, you would have to run one “dummy” tile to make
an even six tiles per processor. Such dummy tiles are not listed in blanklist.txt.

The following is an example of SIZE.h for the six-tile configuration illustrated in figure 6.4 running
on one processor:

PARAMETER (

& sNx = 32,

& sNy = 32,

& OLx = 2,

& OLy = 2,

& nSx = 6,

& nSy = 1,

& nPx = 1,

& nPy = 1,

& Nx = sNx*nSx*nPx,

& Ny = sNy*nSy*nPy,

& Nr = 5)

The following is an example for the forty-eight-tile topology in figure 6.2 running on six processors:

PARAMETER (

& sNx = 16,

& sNy = 8,

& OLx = 2,

& OLy = 2,

& nSx = 8,

& nSy = 1,

& nPx = 6,

& nPy = 1,

& Nx = sNx*nSx*nPx,

& Ny = sNy*nSy*nPy,

& Nr = 5)

6.2.4.5 Key Variables

The descriptions of the variables are divided up into scalars, one-dimensional arrays indexed to the tile
number, and two and three-dimensional arrays indexed to tile number and neighboring tile. This divi-
sion reflects the functionality of these variables: The scalars are common to every part of the topology,

file:../code_reference/vdb/byname/sNx.html
file:../code_reference/vdb/byname/sNy.html
file:../code_reference/vdb/byname/OLx.html
file:../code_reference/vdb/byname/OLy.html
file:../code_reference/vdb/byname/Nr.html
file:../code_reference/vdb/byname/nSx.html
file:../code_reference/vdb/byname/nSy.html
file:../code_reference/vdb/byname/nPx.html
file:../code_reference/vdb/byname/nPy.html
file:../code_reference/vdb/byname/nSy.html
file:../code_reference/vdb/byname/nPy.html
file:../code_reference/vdb/byname/nPx.html
file:../code_reference/vdb/byname/nSx.html
file:../code_reference/vdb/byname/nSx.html
file:../code_reference/vdb/byname/nPx.html

296 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

the tile-indexed arrays to individual tiles, and the arrays indexed by tile and neighbor to relationships
between tiles and their neighbors.

Scalars:
The number of tiles in a particular topology is set with the parameter NTILES, and the maximum

number of neighbors of any tiles by MAX NEIGHBOURS. These parameters are used for defining the size of
the various one and two dimensional arrays that store tile parameters indexed to the tile number and are
assigned in the files generated by driver.m.

The scalar parameters exch2 domain nxt and exch2 domain nyt express the number of tiles in the x
and y global indices. For example, the default setup of six tiles (Fig. 6.4) has exch2 domain nxt=6 and
exch2 domain nyt=1. A topology of forty-eight tiles, eight per subdomain (as in figure 6.2), will have
exch2 domain nxt=12 and exch2 domain nyt=4. Note that these parameters express the tile layout in
order to allow global data files that are tile-layout-neutral. They have no bearing on the internal storage
of the arrays. The tiles are stored internally in a range from bi=(1:NTILES) in the x axis, and the y axis
variable bj is assumed to equal 1 throughout the package.

Arrays indexed to tile number:
The following arrays are of length NTILES and are indexed to the tile number, which is indicated in

the diagrams with the notation tn. The indices are omitted in the descriptions.

The arrays exch2 tnx and exch2 tny express the x and y dimensions of each tile. At present for each
tile exch2 tnx=sNx and exch2 tny=sNy, as assigned in SIZE.h and described in Section 6.2.4.4 exch2,
SIZE.h, and Multiprocessing. Future releases of MITgcm may allow varying tile sizes.

The arrays exch2 tbasex and exch2 tbasey determine the tiles’ Cartesian origin within a subdo-
main and locate the edges of different tiles relative to each other. As an example, in the default six-tile
topology (Fig. 6.4) each index in these arrays is set to 0 since a tile occupies its entire subdomain. The
twenty-four-tile case discussed above will have values of 0 or 16, depending on the quadrant of the tile
within the subdomain. The elements of the arrays exch2 txglobalo and exch2 txglobalo are similar
to exch2 tbasex and exch2 tbasey, but locate the tile edges within the global address space, similar to
that used by global output and input files.

The array exch2 myFace contains the number of the subdomain of each tile, in a range (1:6) in
the case of the standard cube topology and indicated by fn in figures 6.4 and 6.2. exch2 nNeighbours

contains a count of the neighboring tiles each tile has, and sets the bounds for looping over neighboring
tiles. exch2 tProc holds the process rank of each tile, and is used in interprocess communication.

The arrays exch2 isWedge, exch2 isEedge, exch2 isSedge, and exch2 isNedge are set to 1 if the
indexed tile lies on the edge of its subdomain, 0 if not. The values are used within the topology generator
to determine the orientation of neighboring tiles, and to indicate whether a tile lies on the corner of a
subdomain. The latter case requires special exchange and numerical handling for the singularities at the
eight corners of the cube.

Arrays Indexed to Tile Number and Neighbor:
The following arrays have vectors of length MAX NEIGHBOURS and NTILES and describe the orientations

between the the tiles.

The array exch2 neighbourId(a,T) holds the tile number Tn for each of the tile number T’s neigh-
boring tiles a. The neighbor tiles are indexed (1:exch2 nNeighbours(T)) in the order right to left on
the north then south edges, and then top to bottom on the east then west edges.

The exch2 opposingSend record(a,T) array holds the index b of the element in exch2 neighbourId(b,Tn)

that holds the tile number T, given Tn=exch2 neighborId(a,T). In other words,

exch2_neighbourId(exch2_opposingSend_record(a,T),

exch2_neighbourId(a,T)) = T

file:../code_reference/vdb/byname/exch2_domain_nxt.html
file:../code_reference/vdb/byname/exch2_domain_nyt.html
file:../code_reference/vdb/byname/bi.html
file:../code_reference/vdb/byname/bj.html
file:../code_reference/vdb/byname/exch2_tnx.html
file:../code_reference/vdb/byname/exch2_tny.html
file:../code_reference/vdb/byname/exch2_tbasex.html
file:../code_reference/vdb/byname/exch2_tbasey.html
file:../code_reference/vdb/byname/exch2_txglobalo.html
file:../code_reference/vdb/byname/exch2_txglobalo.html
file:../code_reference/vdb/byname/exch2_tbasex.html
file:../code_reference/vdb/byname/exch2_tbasey.html
file:../code_reference/vdb/byname/exch2_myFace.html
file:../code_reference/vdb/byname/exch2_nNeighbours.html
file:../code_reference/vdb/byname/exch2_tProc.html
file:../code_reference/vdb/byname/exch2_isWedge.html
file:../code_reference/vdb/byname/exch2_isEedge.html
file:../code_reference/vdb/byname/exch2_isSedge.html
file:../code_reference/vdb/byname/exch2_isNedge.html

6.2. PACKAGES RELATED TO HYDRODYNAMICAL KERNEL 297

This provides a back-reference from the neighbor tiles.

The arrays exch2 pi and exch2 pj specify the transformations of indices in exchanges between the
neighboring tiles. These transformations are necessary in exchanges between subdomains because a hor-
izontal dimension in one subdomain may map to other horizonal dimension in an adjacent subdomain,
and may also have its indexing reversed. This swapping arises from the “folding” of two-dimensional
arrays into a three-dimensional cube.

The dimensions of exch2 pi(t,N,T) and exch2 pj(t,N,T) are the neighbor ID N and the tile number
T as explained above, plus a vector of length 2 containing transformation factors t. The first element of
the transformation vector holds the factor to multiply the index in the same dimension, and the second
element holds the the same for the orthogonal dimension. To clarify, exch2 pi(1,N,T) holds the mapping
of the x axis index of tile T to the x axis of tile T’s neighbor N, and exch2 pi(2,N,T) holds the mapping
of T’s x index to the neighbor N’s y index.

One of the two elements of exch2 pi or exch2 pj for a given tile T and neighbor N will be 0, reflecting
the fact that the two axes are orthogonal. The other element will be 1 or -1, depending on whether
the axes are indexed in the same or opposite directions. For example, the transform vector of the arrays
for all tile neighbors on the same subdomain will be (1,0), since all tiles on the same subdomain are
oriented identically. An axis that corresponds to the orthogonal dimension with the same index direction
in a particular tile-neighbor orientation will have (0,1). Those with the opposite index direction will
have (0,-1) in order to reverse the ordering.

The arrays exch2 oi, exch2 oj, exch2 oi f, and exch2 oj f are indexed to tile number and neigh-
bor and specify the relative offset within the subdomain of the array index of a variable going from a
neighboring tile N to a local tile T. Consider T=1 in the six-tile topology (Fig. 6.4), where

exch2_oi(1,1)=33

exch2_oi(2,1)=0

exch2_oi(3,1)=32

exch2_oi(4,1)=-32

The simplest case is exch2 oi(2,1), the southern neighbor, which is Tn=6. The axes of T and Tn

have the same orientation and their x axes have the same origin, and so an exchange between the
two requires no changes to the x index. For the western neighbor (Tn=5), code oi(3,1)=32 since the
x=0 vector on T corresponds to the y=32 vector on Tn. The eastern edge of T shows the reverse case
(exch2 oi(4,1)=-32)), where x=32 on T exchanges with x=0 on Tn=2.

The most interesting case, where exch2 oi(1,1)=33 and Tn=3, involves a reversal of indices. As in
every case, the offset exch2 oi is added to the original x index of T multiplied by the transformation
factor exch2 pi(t,N,T). Here exch2 pi(1,1,1)=0 since the x axis of T is orthogonal to the x axis of
Tn. exch2 pi(2,1,1)=-1 since the x axis of T corresponds to the y axis of Tn, but the index is reversed.
The result is that the index of the northern edge of T, which runs (1:32), is transformed to (-1:-32).
exch2 oi(1,1) is then added to this range to get back (32:1) – the index of the y axis of Tn relative to
T. This transformation may seem overly convoluted for the six-tile case, but it is necessary to provide a
general solution for various topologies.

Finally, exch2 itlo c, exch2 ithi c, exch2 jtlo c and exch2 jthi c hold the location and index
bounds of the edge segment of the neighbor tile N’s subdomain that gets exchanged with the local tile T.
To take the example of tile T=2 in the forty-eight-tile topology (Fig. 6.2):

exch2_itlo_c(4,2)=17

exch2_ithi_c(4,2)=17

exch2_jtlo_c(4,2)=0

exch2_jthi_c(4,2)=33

file:../code_reference/vdb/byname/exch2_pi.html
file:../code_reference/vdb/byname/exch2_pj.html
file:../code_reference/vdb/byname/exch2_oi.html
file:../code_reference/vdb/byname/exch2_oj.html
file:../code_reference/vdb/byname/exch2_oi_f.html
file:../code_reference/vdb/byname/exch2_oj_f.html
file:../code_reference/vdb/byname/exch2_itlo_c.html
file:../code_reference/vdb/byname/exch2_ithi_c.html
file:../code_reference/vdb/byname/exch2_jtlo_c.html
file:../code_reference/vdb/byname/exch2_jthi_c.html

298 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Here N=4, indicating the western neighbor, which is Tn=1. Tn resides on the same subdomain as T, so
the tiles have the same orientation and the same x and y axes. The x axis is orthogonal to the western
edge and the tile is 16 points wide, so exch2 itlo c and exch2 ithi c indicate the column beyond Tn’s
eastern edge, in that tile’s halo region. Since the border of the tiles extends through the entire height of
the subdomain, the y axis bounds exch2 jtlo c to exch2 jthi c cover the height of (1:32), plus 1 in
either direction to cover part of the halo.

For the north edge of the same tile T=2 where N=1 and the neighbor tile is Tn=5:

exch2_itlo_c(1,2)=0

exch2_ithi_c(1,2)=0

exch2_jtlo_c(1,2)=0

exch2_jthi_c(1,2)=17

T’s northern edge is parallel to the x axis, but since Tn’s y axis corresponds to T’s x axis, T’s northern
edge exchanges with Tn’s western edge. The western edge of the tiles corresponds to the lower bound
of the x axis, so exch2 itlo c and exch2 ithi c are 0, in the western halo region of Tn. The range of
exch2 jtlo c and exch2 jthi c correspond to the width of T’s northern edge, expanded by one into the
halo.

6.2.4.6 Key Routines

Most of the subroutines particular to exch2 handle the exchanges themselves and are of the same format
as those described in 4.3.3.3 Cube sphere communication. Like the original routines, they are written as
templates which the local Makefile converts from RX into RL and RS forms.

The interfaces with the core model subroutines are EXCH UV XY RX, EXCH UV XYZ RX and EXCH XY RX.
They override the standard exchange routines when genmake2 is run with exch2 option. They in turn
call the local exch2 subroutines EXCH2 UV XY RX and EXCH2 UV XYZ RX for two and three-dimensional
vector quantities, and EXCH2 XY RX and EXCH2 XYZ RX for two and three-dimensional scalar quantities.
These subroutines set the dimensions of the area to be exchanged, call EXCH2 RX1 CUBE for scalars and
EXCH2 RX2 CUBE for vectors, and then handle the singularities at the cube corners.

The separate scalar and vector forms of EXCH2 RX1 CUBE and EXCH2 RX2 CUBE reflect that the vector-
handling subroutine needs to pass both the u and v components of the physical vectors. This swapping
arises from the topological folding discussed above, where the x and y axes get swapped in some cases,
and is not an issue with the scalar case. These subroutines call EXCH2 SEND RX1 and EXCH2 SEND RX2,
which do most of the work using the variables discussed above.

6.2.4.7 Experiments and tutorials that use exch2

• Held Suarez tutorial, in tutorial held suarez cs verification directory, described in section 3.14

6.2. PACKAGES RELATED TO HYDRODYNAMICAL KERNEL 299

6.2.5 Gridalt - Alternate Grid Package

6.2.5.1 Introduction

The gridalt package [Molod, 2009] is designed to allow different components of MITgcm to be run using
horizontal and/or vertical grids which are different from the main model grid. The gridalt routines handle
the definition of the all the various alternative grid(s) and the mappings between them and the MITgcm
grid. The implementation of the gridalt package which allows the high end atmospheric physics (fizhi)
to be run on a high resolution and quasi terrain-following vertical grid is documented here. The package
has also (with some user modifications) been used for other calculations within the GCM.

The rationale for implementing the atmospheric physics on a high resolution vertical grid involves the
fact that the MITgcm p∗ (or any pressure-type) coordinate cannot maintain the vertical resolution near
the surface as the bottom topography rises above sea level. The vertical length scales near the ground are
small and can vary on small time scales, and the vertical grid must be adequate to resolve them. Many
studies with both regional and global atmospheric models have demonstrated the improvements in the
simulations when the vertical resolution near the surface is increased (Bushell and Martin [1999]; Inness
et al. [2001]; Williamson and Olsen [1998]; Bretherton et al. [1999]). Some of the benefit of increased
resolution near the surface is realized by employing the higher resolution for the computation of the
forcing due to turbulent and convective processes in the atmosphere.

The parameterizations of atmospheric subgrid scale processes are all essentially one-dimensional in
nature, and the computation of the terms in the equations of motion due to these processes can be
performed for the air column over one grid point at a time. The vertical grid on which these computa-
tions take place can therefore be entirely independant of the grid on which the equations of motion are
integrated, and the ’tendency’ terms can be interpolated to the vertical grid on which the equations of
motion are integrated. A modified p∗ coordinate, which adjusts to the local terrain and adds additional
levels between the lower levels of the existing p∗ grid (and perhaps between the levels near the tropopause
as well), is implemented. The vertical discretization is different for each grid point, although it consist
of the same number of levels. Additional ’sponge’ levels aloft are added when needed. The levels of the
physics grid are constrained to fit exactly into the existing p∗ grid, simplifying the mapping between the
two vertical coordinates. This is illustrated as follows:

Figure 6.5: Vertical discretization for MITgcm (dark grey lines) and for the atmospheric physics (light
grey lines). In this implementation, all MITgcm level interfaces must coincide with atmospheric physics
level interfaces.

The algorithm presented here retains the state variables on the high resolution ’physics’ grid as well
as on the coarser resolution ’dynamics‘ grid, and ensures that the two estimates of the state ’agree’ on the
coarse resolution grid. It would have been possible to implement a technique in which the tendencies due
to atmospheric physics are computed on the high resolution grid and the state variables are retained at
low resolution only. This, however, for the case of the turbulence parameterization, would mean that the
turbulent kinetic energy source terms, and all the turbulence terms that are written in terms of gradients
of the mean flow, cannot really be computed making use of the fine structure in the vertical.

300 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.2.5.2 Equations on Both Grids

In addition to computing the physical forcing terms of the momentum, thermodynamic and humidity
equations on the modified (higher resolution) grid, the higher resolution structure of the atmosphere (the
boundary layer) is retained between physics calculations. This neccessitates a second set of evolution
equations for the atmospheric state variables on the modified grid. If the equation for the evolution of U
on p∗ can be expressed as:

∂U

∂t

∣∣∣∣
total

p∗

=
∂U

∂t

∣∣∣∣
dynamics

p∗

+
∂U

∂t

∣∣∣∣
physics

p∗

where the physics forcing terms on p∗ have been mapped from the modified grid, then an additional
equation to govern the evolution of U (for example) on the modified grid is written:

∂U

∂t

∣∣∣∣
total

p∗m

=
∂U

∂t

∣∣∣∣
dynamics

p∗m

+
∂U

∂t

∣∣∣∣
physics

p∗m

+ γ(U |p∗ − U |p∗m)

where p∗m refers to the modified higher resolution grid, and the dynamics forcing terms have been mapped
from p∗ space. The last term on the RHS is a relaxation term, meant to constrain the state variables on
the modified vertical grid to ‘track’ the state variables on the p∗ grid on some time scale, governed by γ.
In the present implementation, γ = 1, requiring an immediate agreement between the two ’states’.

6.2.5.3 Time stepping Sequence

If we write Tphys as the temperature (or any other state variable) on the high resolution physics grid,
and Tdyn as the temperature on the coarse vertical resolution dynamics grid, then:

1. Compute the tendency due to physics processes.

2. Advance the physics state: T n+1∗∗
phys(l) = T n

phys(l) + δTphys.

3. Interpolate the physics tendency to the dynamics grid, and advance the dynamics state by physics
and dynamics tendencies: T n+1

dyn(L) = T n
dyn(L) + δTdyn(L) + [δTphys(l)](L).

4. Interpolate the dynamics tendency to the physics grid, and update the physics grid due to dynamics
tendencies: T n+1∗

phys(l) = T n+1∗∗
phys(l) + δTdyn(L)(l).

5. Apply correction term to physics state to account for divergence from dynamics state: T n+1
phys(l)

= T n+1∗
phys(l) + γ{Tdyn(L) − [Tphys(l)](L)}(l).

Where γ = 1 here.

6.2.5.4 Interpolation

In order to minimize the correction terms for the state variables on the alternative, higher resolution grid,
the vertical interpolation scheme must be constructed so that a dynamics-to-physics interpolation can be
exactly reversed with a physics-to-dynamics mapping. The simple scheme employed to achieve this is:

Coarse to fine: For all physics layers l in dynamics layer L, Tphys(l) = {Tdyn(L)} = Tdyn(L).
Fine to coarse: For all physics layers l in dynamics layer L, Tdyn(L) = [Tphys(l)] =

∫
Tphysdp.

Where {} is defined as the dynamics-to-physics operator and [] is the physics-to-dynamics operator,
T stands for any state variable, and the subscripts phys and dyn stand for variables on the physics and
dynamics grids, respectively.

6.2.5.5 Key subroutines, parameters and files

One of the central elements of the gridalt package is the routine which is called from subroutine gri-
dalt initialise to define the grid to be used for the high end physics calculations. Routine make phys grid
passes back the parameters which define the grid, ultimately stored in the common block gridalt mapping.

6.2. PACKAGES RELATED TO HYDRODYNAMICAL KERNEL 301

subroutine make_phys_grid(drF,hfacC,im1,im2,jm1,jm2,Nr,

. Nsx,Nsy,i1,i2,j1,j2,bi,bj,Nrphys,Lbot,dpphys,numlevphys,nlperdyn)

c***

c Purpose: Define the grid that the will be used to run the high-end

c atmospheric physics.

c

c Algorithm: Fit additional levels of some (~) known thickness in

c between existing levels of the grid used for the dynamics

c

c Need: Information about the dynamics grid vertical spacing

c

c Input: drF - delta r (p*) edge-to-edge

c hfacC - fraction of grid box above topography

c im1, im2 - beginning and ending i - dimensions

c jm1, jm2 - beginning and ending j - dimensions

c Nr - number of levels in dynamics grid

c Nsx,Nsy - number of processes in x and y direction

c i1, i2 - beginning and ending i - index to fill

c j1, j2 - beginning and ending j - index to fill

c bi, bj - x-dir and y-dir index of process

c Nrphys - number of levels in physics grid

c

c Output: dpphys - delta r (p*) edge-to-edge of physics grid

c numlevphys - number of levels used in the physics

c nlperdyn - physics level number atop each dynamics layer

c

c NOTES: 1) Pressure levs are built up from bottom, using p0, ps and dp:

c p(i,j,k)=p(i,j,k-1) + dp(k)*ps(i,j)/p0(i,j)

c 2) Output dp’s are aligned to fit EXACTLY between existing

c levels of the dynamics vertical grid

c 3) IMPORTANT! This routine assumes the levels are numbered

c from the bottom up, ie, level 1 is the surface.

c IT WILL NOT WORK OTHERWISE!!!

c 4) This routine does NOT work for surface pressures less

c (ie, above in the atmosphere) than about 350 mb

c***

In the case of the grid used to compute the atmospheric physical forcing (fizhi package), the locations
of the grid points move in time with the MITgcm p∗ coordinate, and subroutine gridalt update is called
during the run to update the locations of the grid points:

subroutine gridalt_update(myThid)

c***

c Purpose: Update the pressure thicknesses of the layers of the

c alternative vertical grid (used now for atmospheric physics).

c

c Calculate: dpphys - new delta r (p*) edge-to-edge of physics grid

c using dpphys0 (initial value) and rstarfacC

c***

The gridalt package also supplies utility routines which perform the mappings from one grid to the other.
These routines are called from the code which computes the fields on the alternative (fizhi) grid.

subroutine dyn2phys(qdyn,pedyn,im1,im2,jm1,jm2,lmdyn,Nsx,Nsy,

. idim1,idim2,jdim1,jdim2,bi,bj,windphy,pephy,Lbot,lmphy,nlperdyn,

. flg,qphy)

C***

302 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

C Purpose:

C To interpolate an arbitrary quantity from the ’dynamics’ eta (pstar)

C grid to the higher resolution physics grid

C Algorithm:

C Routine works one layer (edge to edge pressure) at a time.

C Dynamics -> Physics retains the dynamics layer mean value,

C weights the field either with the profile of the physics grid

C wind speed (for U and V fields), or uniformly (T and Q)

C

C Input:

C qdyn..... [im,jm,lmdyn] Arbitrary Quantity on Input Grid

C pedyn.... [im,jm,lmdyn+1] Pressures at bottom edges of input levels

C im1,2 ... Limits for Longitude Dimension of Input

C jm1,2 ... Limits for Latitude Dimension of Input

C lmdyn.... Vertical Dimension of Input

C Nsx...... Number of processes in x-direction

C Nsy...... Number of processes in y-direction

C idim1,2.. Beginning and ending i-values to calculate

C jdim1,2.. Beginning and ending j-values to calculate

C bi....... Index of process number in x-direction

C bj....... Index of process number in x-direction

C windphy.. [im,jm,lmphy] Magnitude of the wind on the output levels

C pephy.... [im,jm,lmphy+1] Pressures at bottom edges of output levels

C lmphy.... Vertical Dimension of Output

C nlperdyn. [im,jm,lmdyn] Highest Physics level in each dynamics level

C flg...... Flag to indicate field type (0 for T or Q, 1 for U or V)

C

C Output:

C qphy..... [im,jm,lmphy] Quantity at output grid (physics grid)

C

C Notes:

C 1) This algorithm assumes that the output (physics) grid levels

C fit exactly into the input (dynamics) grid levels

C***

And similarly, gridalt contains subroutine phys2dyn.

6.2.5.6 Gridalt Diagnostics

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

DPPHYS | 20 |SM ML |Pascal |Pressure Thickness of Layers on Fizhi Grid

6.2.5.7 Dos and donts

6.2.5.8 Gridalt Reference

6.2.5.9 Experiments and tutorials that use gridalt

• Fizhi experiment, in fizhi-cs-32x32x10 verification directory

6.3. GENERAL PURPOSE NUMERICAL INFRASTRUCTURE PACKAGES 303

6.3 General purpose numerical infrastructure packages

6.3.1 OBCS: Open boundary conditions for regional modeling

Authors: Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch

6.3.1.1 Introduction

The OBCS-package is fundamental to regional ocean modelling with the MITgcm, but there are so many
details to be considered in regional ocean modelling that this package cannot accomodate all imaginable
and possible options. Therefore, for a regional simulation with very particular details, it is recommended
to familiarize oneself not only with the compile- and runtime-options of this package, but also with the
code itself. In many cases it will be necessary to adapt the obcs-code (in particular S/R OBCS CALC)
to the application in question; in these cases the obcs-package (together with the rbcs-package, section
6.3.2) is a very useful infrastructure for implementing special regional models.

6.3.1.2 OBCS configuration and compiling

As with all MITgcm packages, OBCS can be turned on or off at compile time

• using the packages.conf file by adding obcs to it,

• or using genmake2 adding -enable=obcs or -disable=obcs switches

• Required packages and CPP options:
To alternatives are available for prescribing open boundary values, which differ in the way how
OB’s are treated in time: A simple time-management (e.g. constant in time, or cyclic with fixed fe-
quency) is provided through S/R obcs external fields load. More sophisticated “real-time” (i.e.
calendar time) management is available through obcs prescribe read. The latter case requires
packages cal and exf to be enabled.

(see also Section 3.4).
Parts of the OBCS code can be enabled or disabled at compile time via CPP preprocessor flags. These

options are set in OBCS OPTIONS.h. Table 6.3.1.2 summarizes them.

CPP option Description

ALLOW OBCS NORTH enable Northern OB
ALLOW OBCS SOUTH enable Southern OB
ALLOW OBCS EAST enable Eastern OB
ALLOW OBCS WEST enable Western OB
ALLOW OBCS PRESCRIBE enable code for prescribing OB’s
ALLOW OBCS SPONGE enable sponge layer code
ALLOW OBCS BALANCE enable code for balancing transports through OB’s
ALLOW ORLANSKI enable Orlanski radiation conditions at OB’s
ALLOW OBCS STEVENS enable Stevens (1990) boundary conditions at OB’s

(currently only implemented for eastern and western
boundaries and NOT for ptracers)

Table 6.2:

6.3.1.3 Run-time parameters

Run-time parameters are set in files data.pkg, data.obcs, and data.exf if “real-time” prescription is
requested (i.e. package exf enabled). vThese parameter files are read in S/R packages readparms.F,
obcs readparms.F, and exf readparms.F, respectively. Run-time parameters may be broken into 3
categories: (i) switching on/off the package at runtime, (ii) OBCS package flags and parameters, (iii)
additional timing flags in data.exf, if selected.

Enabling the package
The OBCS package is switched on at runtime by setting useOBCS = .TRUE. in data.pkg.

304 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Package flags and parameters
Table 6.3 summarizes the runtime flags that are set in data.obcs, and their default values.

Flag/parameter default Description

basic flags & parameters (OBCS PARM01)
OB Jnorth 0 Nx-vector of J-indices (w.r.t. Ny) of Northern OB at each I-position (w.r.t. Nx)
OB Jsouth 0 Nx-vector of J-indices (w.r.t. Ny) of Southern OB at each I-position (w.r.t. Nx)
OB Ieast 0 Ny-vector of I-indices (w.r.t. Nx) of Eastern OB at each J-position (w.r.t. Ny)
OB Iwest 0 Ny-vector of I-indices (w.r.t. Nx) of Western OB at each J-position (w.r.t. Ny)
useOBCSprescribe .FALSE.

useOBCSsponge .FALSE.

useOBCSbalance .FALSE.

OBCS balanceFacN/S/E/W 1 factor(s) determining the details of the balaning code
useOrlanskiNorth/South/EastWest .FALSE. turn on Orlanski boundary conditions for individual boundary
useStevensNorth/South/EastWest .FALSE. turn on Stevens boundary conditions for individual boundary
OBXyFile file name of OB field

X: N(orth), S(outh), E(ast), W(est)
y: t(emperature), s(salinity), u(-velocity), v(-velocity),
w(-velocity), eta(sea surface height)
a(sea ice area), h(sea ice thickness), sn(snow thickness), sl(sea ice salinity)

Orlanski parameters (OBCS PARM02)
cvelTimeScale 2000 sec averaging period for phase speed
CMAX 0.45 m/s maximum allowable phase speed-CFL for AB-II
CFIX 0.8 m/s fixed boundary phase speed
useFixedCEast .FALSE.

useFixedCWest .FALSE.

Sponge-layer parameters (OBCS PARM03)
spongeThickness 0 sponge layer thickness (in # grid points)
Urelaxobcsinner 0 sec relaxation time scale at the innermost sponge layer point of a meridional OB
Vrelaxobcsinner 0 sec relaxation time scale at the innermost sponge layer point of a zonal OB
Urelaxobcsbound 0 sec relaxation time scale at the outermost sponge layer point of a meridional OB
Vrelaxobcsbound 0 sec relaxation time scale at the outermost sponge layer point of a zonal OB

Stevens parameters (OBCS PARM04)
T/SrelaxStevens 0 sec relaxation time scale for temperature/salinity
useStevensPhaseVel .TRUE.

useStevensAdvection .TRUE.

Table 6.3: pkg OBCS run-time parameters

6.3.1.4 Defining open boundary positions

There are four open boundaries (OBs), a Northern, Southern, Eastern, and Western. All OB locations are
specified by their absolute meridional (Northern/Southern) or zonal (Eastern/Western) indices. Thus, for
each zonal position i = 1, . . . , Nx a meridional index j specifies the Northern/Southern OB position, and
for each meridional position j = 1, . . . , Ny, a zonal index i specifies the Eastern/Western OB position.
For Northern/Southern OB this defines an Nx-dimensional “row” array OB Jnorth(Nx) / OB Jsouth(Nx),
and an Ny-dimenisonal “column” array OB Ieast(Ny) / OB Iwest(Ny). Positions determined in this way
allows Northern/Southern OBs to be at variable j (or y) positions, and Eastern/Western OBs at variable
i (or x) positions. Here, indices refer to tracer points on the C-grid. A zero (0) element in OB I . . .,
OB J . . . means there is no corresponding OB in that column/row. For a Northern/Southern OB, the OB
V point is to the South/North. For an Eastern/Western OB, the OB U point is to the West/East. For
example,

OB Jnorth(3)=34 means that:
T(3,34) is a an OB point
U(3,34) is a an OB point
V(3,34) is a an OB point

OB Jsouth(3)=1 means that:
T(3,1) is a an OB point
U(3,1) is a an OB point
V(3,2) is a an OB point

OB Ieast(10)=69 means that:

6.3. GENERAL PURPOSE NUMERICAL INFRASTRUCTURE PACKAGES 305

T(69,10) is a an OB point
U(69,10) is a an OB point
V(69,10) is a an OB point

OB Iwest(10)=1 means that:
T(1,10) is a an OB point
U(2,10) is a an OB point
V(1,10) is a an OB point

For convenience, negative values for Jnorth/Ieast refer to points relative to the Northern/Eastern edges
of the model eg. OB Jnorth(3) = −1 means that the point (3, Ny) is a northern OB.
Simple examples: For a model grid with Nx ×Ny = 120 × 144 horizontal grid points with four open
boundaries along the four egdes of the domain, the simplest way of specifying the boundary points in
data.obcs is:

OB_Ieast = 144*-1,

or OB_Ieast = 144*120,

OB_Iwest = 144*1,

OB_Jnorth = 120*-1,

or OB_Jnorth = 120*144,

OB_Jsouth = 120*1,

If only the first 50 grid points of the southern boundary are boundary points:

OB_Jsouth(1:50) = 50*1,

Add special comments for case #define NONLIN FRSURF, see obcs ini fixed.F

6.3.1.5 Equations and key routines

OBCS READPARMS:
Set OB positions through arrays OB Jnorth(Nx), OB Jsouth(Nx), OB Ieast(Ny), OB Iwest(Ny), and
runtime flags (see Table 6.3).

OBCS CALC:
Top-level routine for filling values to be applied at OB for T, S, U, V, η into corresponding “slice” arrays
(x, z), (y, z) for each OB: OB[N/S/E/W][t/s/u/v]; e.g. for salinity array at Southern OB, array name is
OBSt. Values filled are either

• constant vertical T, S profiles as specified in file data (tRef(Nr), sRef(Nr)) with zero velocities
U, V ,

• T, S, U, V values determined via Orlanski radiation conditions (see below),

• prescribed time-constant or time-varying fields (see below).

• use prescribed boundary fields to compute Stevens boundary conditions.

ORLANSKI:
Orlanski radiation conditions [Orlanski, 1976], examples can be found in verification/domeand verification/tutorial

(3.16).

OBCS PRESCRIBE READ:
When useOBCSprescribe = .TRUE. the model tries to read temperature, salinity, u- and v-velocities
from files specified in the runtime parameters OB[N/S/E/W][t/s/u/v]File. These files are the usual
IEEE, big-endian files with dimensions of a section along an open boundary:

• For North/South boundary files the dimensions are (Nx×Nr×time levels), for East/West boundary
files the dimensions are (Ny ×Nr × time levels).

• If a non-linear free surface is used (2.10.2), additional files OB[N/S/E/W]etaFile for the sea surface
height η with dimension (Nx/y × time levels) may be specified.

306 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

• If non-hydrostatic dynamics are used (2.9), additional files OB[N/S/E/W]wFile for the vertical
velocity w with dimensions (Nx/y ×Nr × time levels) can be specified.

• If useSEAICE=.TRUE. then additional files OB[N/S/E/W][a,h,sl,sn,uice,vice] for sea ice area,
thickness (HEFF), seaice salinity, snow and ice velocities (Nx/y × time levels) can be specified.

As in S/R external fields load or the exf-package, the code reads two time levels for each variable,
e.g. OBNu0 and OBNu1, and interpolates linearly between these time levels to obtain the value OBNu

at the current model time (step). When the exf-package is used, the time levels are controlled for
each boundary separately in the same way as the exf-fields in data.exf, namelist EXF NML OBCS. The
runtime flags follow the above naming conventions, e.g. for the western boundary the corresponding
flags are OBCWstartdate1/2 and OBCWperiod. Sea-ice boundary values are controlled separately with
siobWstartdate1/2 and siobWperiod. When the exf-package is not used, the time levels are controlled
by the runtime flags externForcingPeriod and externForcingCycle in data, see verification/exp4

for an example.

OBCS CALC STEVENS:
(THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT COMPLETE. PASSIVE
TRACERS, SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT SUPPORTED PROPERLY.)
The boundary conditions following Stevens [1990] require the vertically averaged normal velocity (origi-
nally specified as a stream function along the open boundary) ūob and the tracer fields χob (note: passive
tracers are currently not implemented and the code stops when package ptracers is used together with
this option). Currently, the code vertically averages the normal velocity as specified in OB[E,W]u or
OB[N,S]v. From these prescribed values the code computes the boundary values for the next timestep
n+ 1 as follows (as an example, we use the notation for an eastern or western boundary):

• un+1(y, z) = ūob(y) + (u′)n(y, z), where (u′)n is the deviation from the vertically averaged velocity
at timestep n on the boundary. (u′)n is computed in the previous time step n from the intermediate
velocity u∗ prior to the correction step (see section 2.2, e.g., eq. (2.17)). (This velocity is not available
at the beginning of the next time step n + 1, when S/R OBCS CALC/OBCS CALC STEVENS
are called, therefore it needs to be saved in S/R DYNAMICS by calling S/R OBCS SAVE UV N
and also stored in a separate restart files pickup_stevens[N/S/E/W].${iteration}.data)

• If un+1 is directed into the model domain, the boudary value for tracer χ is restored to the prescribed
values:

χn+1 = χn +
∆t

τχ
(χob − χn),

where τχ is the relaxation time scale T/SrelaxStevens. The new χn+1 is then subject to the
advection by un+1.

• If un+1 is directed out of the model domain, the tracer χn+1 on the boundary at timestep n+ 1 is
estimated from advection out of the domain with un+1 + c, where c is a phase velocity estimated
as 1

2
∂χ
∂t /

∂χ
∂x . The numerical scheme is (as an example for an eastern boundary):

χn+1
ib,j,k = χn

ib,j,k + ∆t(un+1 + c)ib,j,k

χn
ib,j,k − χn

ib−1,j,k

∆xC
ib,j

, if un+1
ib,j,k > 0,

where ib is the boundary index.
For test purposes, the phase velocity contribution or the entire advection can be turned off by setting
the corresponding parameters useStevensPhaseVel and useStevensAdvection to .FALSE..

See Stevens [1990] for details. With this boundary condition specifying the exact net transport across
the open boundary is simple, so that balancing the flow with (S/R OBCS BALANCE FLOW, see next
paragraph) is usually not necessary.

6.3. GENERAL PURPOSE NUMERICAL INFRASTRUCTURE PACKAGES 307

OBCS BALANCE FLOW:
When turned on (ALLOW OBCS BALANCE defined in OBCS OPTIONS.h and useOBCSbalance=.true. in
data.obcs/OBCS PARM01), this routine balances the net flow across the open boundaries. By default the
net flow across the boundaries is computed and all normal velocities on boundaries are adjusted to obtain
zero net inflow.

This behavior can be controlled with the runtime flags OBCS balanceFacN/S/E/W. The values of these
flags determine how the net inflow is redistributed as small correction velocities between the individual
sections. A value “-1” balances an individual boundary, values > 0 determine the relative size of the
correction. For example, the values

OBCS balanceFacE = 1.,

OBCS balanceFacW = -1.,

OBCS balanceFacN = 2.,

OBCS balanceFacS = 0.,

make the model

• correct Western OBWu by substracting a uniform velocity to ensure zero net transport through the
Western open boundary;

• correct Eastern and Northern normal flow, with the Northern velocity correction two times larger
than the Eastern correction, but not the Southern normal flow, to ensure that the total inflow
through East, Northern, and Southern open boundary is balanced.

The old method of balancing the net flow for all sections individually can be recovered by setting all
flags to -1. Then the normal velocities across each of the four boundaries are modified separately, so that
the net volume transport across each boundary is zero. For example, for the western boundary at i = ib,
the modified velocity is:

u(y, z)−
∫

western boundary
u dy dz ≈ OBNu(j, k) −

∑

j,k

OBNu(j, k)hw(ib, j, k)∆yG(ib, j)∆z(k).

This also ensures a net total inflow of zero through all boundaries, but this combination of flags is not
useful if you want to simulate, say, a sector of the Southern Ocean with a strong ACC entering through
the western and leaving through the eastern boundary, because the value of “-1” for these flags will make
sure that the strong inflow is removed. Clearly, gobal balancing with OBCS balanceFacE/W/N/S ≥ 0 is
the preferred method.

OBCS APPLY *:

OBCS SPONGE:
The sponge layer code (turned on with ALLOW OBCS SPONGE and useOBCSsponge) adds a relaxation term
to the right-hand-side of the momentum and tracer equations. The variables are relaxed towards the
boundary values with a relaxation time scale that increases linearly with distance from the boundary

G
(sponge)
χ = −χ− [(L− δL)χBC + δLχ]/L

[(L− δL)τb + δLτi]/L
= −χ− [(1 − l)χBC + lχ]

[(1 − l)τb + lτi]

where χ is the model variable (U/V/T/S) in the interior, χBC the boundary value, L the thickness of the
sponge layer (runtime parameter spongeThickness in number of grid points), δL ∈ [0, L] (δL

L = l ∈ [0, 1])
the distance from the boundary (also in grid points), and τb (runtime parameters Urelaxobcsbound

and Vrelaxobcsbound) and τi (runtime parameters Urelaxobcsinner and Vrelaxobcsinner) the re-
laxation time scales on the boundary and at the interior termination of the sponge layer. The param-
eters Urelaxobcsbound/inner set the relaxation time scales for the Eastern and Western boundaries,
Vrelaxobcsbound/inner for the Northern and Southern boundaries.

OB’s with nonlinear free surface

308 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.3.1.6 Flow chart

C !CALLING SEQUENCE:

c ...

6.3.1.7 OBCS diagnostics

Diagnostics output is available via the diagnostics package (see Section 7.1). Available output fields are
summarized in Table 6.3.1.7.

--

<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

--

Table 6.4:

6.3.1.8 Reference experiments

In the directory verifcation, the following experiments use obcs:

• exp4: box with 4 open boundaries, simulating flow over a Gaussian bump based on Adcroft et al.
[1997], also tests Stevens-boundary conditions;

• dome: based on the project “Dynamics of Overflow Mixing and Entrainment” (http://www.rsmas.miami.edu/personal/ta
uses Orlanski-BCs;

• internal wave: uses a heavily modified S/R OBCS CALC

• seaice obcs: simple example who to use the sea-ice related code, based on lab sea;

• tutorial plume on slope: uses Orlanski-BCs, see also section 3.16.

6.3.1.9 References

6.3.1.10 Experiments and tutorials that use obcs

• tutorial plume on slope (section 3.16)

http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html

6.3. GENERAL PURPOSE NUMERICAL INFRASTRUCTURE PACKAGES 309

6.3.2 RBCS Package

6.3.2.1 Introduction

A package which provides the flexibility to relax fields (temperature, salinity, ptracers) in any 3-D location:
so could be used as a sponge layer, or as a ”source” anywhere in the domain.

For a tracer (T) at every grid point the tendency is modified so that:

dT

dt
=
dT

dt
− Mrbc

τT
(T − Trbc)

where Mrbc is a 3-D mask (no time dependence) with values between 0 and 1. Where Mrbc is 1, relaxing
timescale is 1/τT . Where it is 0 there is no relaxing. The value relaxed to is a 3-D (potentially varying
in time) field given by Trbc.

A seperate mask can be used for T,S and ptracers and each of these can be relaxed or not and can
have its own timescale τT . These are set in data.rbcs (see below).

6.3.2.2 Key subroutines and parameters

The only compile-time parameter you are likely to have to change is in RBCS.h, the number of masks,
PARAMETER(maskLEN = 3), see below.

The runtime parameters are set in data.rbcs:

Set in RBCS PARM01:
• rbcsForcingPeriod: time interval between forcing fields (in seconds), zero means constant-in-time
forcing.
• rbcsForcingCycle: repeat cycle of forcing fields (in seconds), zero means non-cyclic forcing.
• rbcsForcingOffset: time offset of forcing fields (in seconds, default 0); this is relative to time averages
starting at t = 0, i.e., the first forcing record/file is placed at rbcsForcingOffset + rbcsForcingPeriod/2;
see below for examples.
• rbcsSingleTimeFiles: true or false (default false), if true, forcing fields are given 1 file per rbcsForc-
ingPeriod.
• deltaTrbcs: time step used to compute the iteration numbers for rbcsSingleTimeFiles=T.
• rbcsIter0: shift in iteration numbers used to label files if rbcsSingleTimeFiles=T (default 0, see below
for examples).
• useRBCtemp: true or false (default false)
• useRBCsalt: true or false (default false)
• useRBCptracers: true or false (default false), must be using ptracers to set true
• tauRelaxT: timescale in seconds of relaxing in temperature (τT in equation above). Where mask is 1,
relax rate will be 1/tauRelaxT. Default is 1.
• tauRelaxS: same for salinity.
• relaxMaskFile(irbc): filename of 3-D file with mask (Mrbc in equation above. Need a file for each
irbc. 1=temperature, 2=salinity, 3=ptracer01, 4=ptracer02 etc. If the mask numbers end (see maskLEN)
are less than the number tracers, then relaxMaskFile(maskLEN) is used for all remaining ptracers.
• relaxTFile: name of file where temperatures that need to be relaxed to (Trbc in equation above) are
stored. The file must contain 3-D records to match the model domain. If rbcsSingleTimeFiles=F, it must
have one record for each forcing period. If T, there must be a separate file for each period and a 10-digit
iteration number is appended to the file name (see Table 6.5 and examples below).
• relaxSFile: same for salinity.

Set in RBCS PARM02 for each of the ptracers (iTrc):
• useRBCptrnum(iTrc): true or false (default is false).
• tauRelaxPTR(iTrc): relax timescale.
• relaxPtracerFile(iTrc): file with relax fields.

310 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

rbcsSingleTimeFiles = T F
c = 0 c 6= 0 c 6= 0

model time file number file number record

t0 − p/2 i0 i0 + c/∆trbcs c/p
t0 + p/2 i0 + p/∆trbcs i0 + p/∆trbcs 1
t0 + p+ p/2 i0 + 2p/∆trbcs i0 + 2p/∆trbcs 2
.
t0 + c− p/2 . . . i0 + c/∆trbcs c/p
.

where

p = rbcsForcingPeriod
c = rbcsForcingCycle
t0 = rbcsForcingOffset
i0 = rbcsIter0

∆trbcs = deltaTrbcs

Table 6.5: Timing of relaxation forcing fields.

6.3.2.3 Timing of relaxation forcing fields

For constant-in-time relaxation, set rbcsForcingPeriod=0. For time-varying relaxation, Table 6.5 illus-
trates the relation between model time and forcing fields (either records in one big file or, for rbcsSin-
gleTimeFiles=T, individual files labeled with an iteration number). With rbcsSingleTimeFiles=T, this
is the same as in the offline package, except that the forcing offset is in seconds.

6.3.2.4 Example 1: forcing with time averages starting at t = 0

Cyclic data in a single file. Set rbcsSingleTimeFiles=F and rbcsForcingOffset=0, and the model will
start by interpolating the last and first records of rbcs data, placed at −p/2 and p/2, resp., as appropriate
for fields averaged over the time intervals [−p, 0] and [0, p].

Non-cyclic data, multiple files. Set rbcsForcingCycle=0 and rbcsSingleTimeFiles=T. With rbcs-
ForcingOffset=0, rbcsIter0=0 and deltaTrbcs=rbcsForcingPeriod, the model would then start by inter-
polating data from files relax*File.0000000000.data and relax*File.0000000001.data, . . . , again placed at
−p/2 and p/2.

6.3.2.5 Example 2: forcing with snapshots starting at t = 0

Cyclic data in a single file. Set rbcsSingleTimeFiles=F and rbcsForcingOffset=−p/2, and the model
will start forcing with the first record at t = 0.

Non-cyclic data, multiple files. Set rbcsForcingCycle=0 and rbcsSingleTimeFiles=T. In this case,
it is more natural to set rbcsForcingOffset=+p/2. With rbcsIter0=0 and deltaTrbcs=rbcsForcingPeriod,
the model would then start with data from files relax*File.0000000000.data at t = 0. It would then
proceed to interpolate between this file and files relax*File.0000000001.data at t = rbcsForcingPeriod.

6.3.2.6 Do’s and Don’ts

6.3.2.7 Reference Material

6.3.2.8 Experiments and tutorials that use rbcs

In the directory verifcation, the following experiments use rbcs:

• exp4: box with 4 open boundaries, simulating flow over a Gaussian bump based on Adcroft et al.
[1997].

6.3. GENERAL PURPOSE NUMERICAL INFRASTRUCTURE PACKAGES 311

6.3.3 PTRACERS Package

6.3.3.1 Introduction

This is a ”passive” tracer package. Passive here means that the tracers don’t affect the density of the
water (as opposed to temperature and salinity) so no not actively affect the physics of the ocean. Tracers
are initialized, advected, diffused and various outputs are taken care of in this package. For methods to
add additional sources and sinks of tracers use the pkg/gchem (section 6.8.1).

Can use up tp 3843 tracers. But can not use pkg/diagnostics with more than about 90 tracers. Use
utils/matlab/ioLb2num.m and num2ioLb.m to find correspondence between tracer number and tracer
designation in the code for more than 99 tracers (since tracers only have two digit designations).

6.3.3.2 Equations

6.3.3.3 Key subroutines and parameters

The only code you shoul dhave to modify is: PTRACERS SIZE.h where you need to set in the number
of tracers to be used in the experiment: PTRACERS num.

bf RUN TIME PARAMETERS SET IN data.ptracers:
• PTRACERS Iter0 which is the integer timestep when the tracer experiment is initialized. If nIter0
= PTRACERS Iter0 then the tracers are initialized to zero or from initial files. If nIter0 > PTRAC-
ERS Iter0 then tracers (and previous timestep tendency terms) are read in from a the ptracers pickup
file. Note that tracers of zeros will be carried around if nIter0 < PTRACERS Iter0.
• PTRACERS numInUse: number of tracers to be used in the run (needs to be <= PTRACERS num
set in PTRACERS SIZE.h)
• PTRACERS dumpFreq: defaults to dumpFreq (set in data)
• PTRACERS taveFreq: defaults to taveFreq (set in data)
• PTRACERS monitorFreq: defaults to monitorFreq (set in data)
• PTRACERS timeave mnc: needs useMNC, timeave mnc, default to false
• PTRACERS snapshot mnc: needs useMNC, snapshot mnc, default to false
• PTRACERS monitor mnc: needs useMNC, monitor mnc, default to false
• PTRACERS pickup write mnc: needs useMNC, pickup write mnc, default to false
• PTRACERS pickup read mnc: needs useMNC, pickup read mnc, default to false
• PTRACERS useRecords: defaults to false. If true, will write all tracers in a single file, otherwise
each tracer in a seperate file.

The following can be set for each tracer (tracer number iTrc):
• PTRACERS advScheme(iTrc) will default to saltAdvScheme (set in data). For other options see
Table 2.2.
• PTRACERS ImplVertAdv(iTrc): implicit vertical advection flag, default to .FALSE.
• PTRACERS diffKh(iTrc): horizontal Laplacian Diffusivity, dafaults to diffKhS (set in data).
• PTRACERS diffK4(iTrc): Biharmonic Diffusivity, defaults to diffK4S (set in data).
• PTRACERS diffKr(iTrc): vertical diffusion, defaults to un-set.
• PTRACERS diffKrNr(k,iTrc): level specific vertical diffusion, defaults to diffKrNrS. Will be set
to PTRACERS diffKr if this is set.
• PTRACERS ref(k,iTrc): reference tracer value for each level k, defaults to 0. Currently only used
for dilution/concentration of tracers at surface if PTRACERS EvPrRn(iTrc) is set and convertFW2Salt
(set in data) is set to something other than -1 (note default is convertFW2Salt=35).
• PTRACERS EvPrRn(iTrc): tracer concentration in freshwater. Needed for calculation of dilu-
tion/concentration in surface layer due to freshwater addition/evaporation. Defaults to un-set in which
case no dilution/concentration occurs.
• PTRACERS useGMRedi(iTrc): apply GM or not. Defaults to useGMREdi.
• PTRACERS useKPP(iTrc): apply KPP or not. Defaults to useKPP.
• PTRACERS initialFile(iTrc): file with initial tracer concentration. Will be used if PTRAC-
ERS Iter0 = nIter0. Default is no name, in which case tracer is initialised as zero. If PTRACERS Iter0

312 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

< nIter0, then tracer concentration will come from pickup ptracer.
• PTRACERS names(iTrc): tracer name. Needed for netcdf. Defaults to nothing.
• PTRACERS long names(iTrc): optional name in long form of tracer.
• PTRACERS units(iTrc): optional units of tracer.

6.3.3.4 PTRACERS Diagnostics

Note that these will only work for 90 or less tracers (some problems with the numbering/designation over
this number)

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

TRAC01 | 15 |SM P MR |mol C/m |Mass-Weighted Dissolved Inorganic Carbon

UTRAC01 | 15 |UU 171MR |mol C/m.m/s |Zonal Mass-Weighted Transp of Dissolved Inorganic Carbon

VTRAC01 | 15 |VV 170MR |mol C/m.m/s |Merid Mass-Weighted Transp of Dissolved Inorganic Carbon

WTRAC01 | 15 |WM MR |mol C/m.m/s |Vert Mass-Weighted Transp of Dissolved Inorganic Carbon

ADVrTr01| 15 |WM LR |mol C/m.m^3/s |Vertical Advective Flux of Dissolved Inorganic Carbon

ADVxTr01| 15 |UU 175MR |mol C/m.m^3/s |Zonal Advective Flux of Dissolved Inorganic Carbon

ADVyTr01| 15 |VV 174MR |mol C/m.m^3/s |Meridional Advective Flux of Dissolved Inorganic Carbon

DFrETr01| 15 |WM LR |mol C/m.m^3/s |Vertical Diffusive Flux of Dissolved Inorganic Carbon (Explicit part)

DIFxTr01| 15 |UU 178MR |mol C/m.m^3/s |Zonal Diffusive Flux of Dissolved Inorganic Carbon

DIFyTr01| 15 |VV 177MR |mol C/m.m^3/s |Meridional Diffusive Flux of Dissolved Inorganic Carbon

DFrITr01| 15 |WM LR |mol C/m.m^3/s |Vertical Diffusive Flux of Dissolved Inorganic Carbon (Implicit part)

TRAC02 | 15 |SM P MR |mol eq/ |Mass-Weighted Alkalinity

UTRAC02 | 15 |UU 182MR |mol eq/.m/s |Zonal Mass-Weighted Transp of Alkalinity

VTRAC02 | 15 |VV 181MR |mol eq/.m/s |Merid Mass-Weighted Transp of Alkalinity

WTRAC02 | 15 |WM MR |mol eq/.m/s |Vert Mass-Weighted Transp of Alkalinity

ADVrTr02| 15 |WM LR |mol eq/.m^3/s |Vertical Advective Flux of Alkalinity

ADVxTr02| 15 |UU 186MR |mol eq/.m^3/s |Zonal Advective Flux of Alkalinity

ADVyTr02| 15 |VV 185MR |mol eq/.m^3/s |Meridional Advective Flux of Alkalinity

DFrETr02| 15 |WM LR |mol eq/.m^3/s |Vertical Diffusive Flux of Alkalinity (Explicit part)

DIFxTr02| 15 |UU 189MR |mol eq/.m^3/s |Zonal Diffusive Flux of Alkalinity

DIFyTr02| 15 |VV 188MR |mol eq/.m^3/s |Meridional Diffusive Flux of Alkalinity

DFrITr02| 15 |WM LR |mol eq/.m^3/s |Vertical Diffusive Flux of Alkalinity (Implicit part)

TRAC03 | 15 |SM P MR |mol P/m |Mass-Weighted Phosphate

UTRAC03 | 15 |UU 193MR |mol P/m.m/s |Zonal Mass-Weighted Transp of Phosphate

VTRAC03 | 15 |VV 192MR |mol P/m.m/s |Merid Mass-Weighted Transp of Phosphate

WTRAC03 | 15 |WM MR |mol P/m.m/s |Vert Mass-Weighted Transp of Phosphate

ADVrTr03| 15 |WM LR |mol P/m.m^3/s |Vertical Advective Flux of Phosphate

ADVxTr03| 15 |UU 197MR |mol P/m.m^3/s |Zonal Advective Flux of Phosphate

ADVyTr03| 15 |VV 196MR |mol P/m.m^3/s |Meridional Advective Flux of Phosphate

DFrETr03| 15 |WM LR |mol P/m.m^3/s |Vertical Diffusive Flux of Phosphate (Explicit part)

DIFxTr03| 15 |UU 200MR |mol P/m.m^3/s |Zonal Diffusive Flux of Phosphate

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

DIFyTr03| 15 |VV 199MR |mol P/m.m^3/s |Meridional Diffusive Flux of Phosphate

DFrITr03| 15 |WM LR |mol P/m.m^3/s |Vertical Diffusive Flux of Phosphate (Implicit part)

TRAC04 | 15 |SM P MR |mol P/m |Mass-Weighted Dissolved Organic Phosphorus

UTRAC04 | 15 |UU 204MR |mol P/m.m/s |Zonal Mass-Weighted Transp of Dissolved Organic Phosphorus

VTRAC04 | 15 |VV 203MR |mol P/m.m/s |Merid Mass-Weighted Transp of Dissolved Organic Phosphorus

WTRAC04 | 15 |WM MR |mol P/m.m/s |Vert Mass-Weighted Transp of Dissolved Organic Phosphorus

ADVrTr04| 15 |WM LR |mol P/m.m^3/s |Vertical Advective Flux of Dissolved Organic Phosphorus

ADVxTr04| 15 |UU 208MR |mol P/m.m^3/s |Zonal Advective Flux of Dissolved Organic Phosphorus

ADVyTr04| 15 |VV 207MR |mol P/m.m^3/s |Meridional Advective Flux of Dissolved Organic Phosphorus

DFrETr04| 15 |WM LR |mol P/m.m^3/s |Vertical Diffusive Flux of Dissolved Organic Phosphorus (Explicit part)

DIFxTr04| 15 |UU 211MR |mol P/m.m^3/s |Zonal Diffusive Flux of Dissolved Organic Phosphorus

DIFyTr04| 15 |VV 210MR |mol P/m.m^3/s |Meridional Diffusive Flux of Dissolved Organic Phosphorus

DFrITr04| 15 |WM LR |mol P/m.m^3/s |Vertical Diffusive Flux of Dissolved Organic Phosphorus (Implicit part)

TRAC05 | 15 |SM P MR |mol O/m |Mass-Weighted Dissolved Oxygen

UTRAC05 | 15 |UU 215MR |mol O/m.m/s |Zonal Mass-Weighted Transp of Dissolved Oxygen

VTRAC05 | 15 |VV 214MR |mol O/m.m/s |Merid Mass-Weighted Transp of Dissolved Oxygen

WTRAC05 | 15 |WM MR |mol O/m.m/s |Vert Mass-Weighted Transp of Dissolved Oxygen

ADVrTr05| 15 |WM LR |mol O/m.m^3/s |Vertical Advective Flux of Dissolved Oxygen

ADVxTr05| 15 |UU 219MR |mol O/m.m^3/s |Zonal Advective Flux of Dissolved Oxygen

ADVyTr05| 15 |VV 218MR |mol O/m.m^3/s |Meridional Advective Flux of Dissolved Oxygen

6.3. GENERAL PURPOSE NUMERICAL INFRASTRUCTURE PACKAGES 313

DFrETr05| 15 |WM LR |mol O/m.m^3/s |Vertical Diffusive Flux of Dissolved Oxygen (Explicit part)

DIFxTr05| 15 |UU 222MR |mol O/m.m^3/s |Zonal Diffusive Flux of Dissolved Oxygen

DIFyTr05| 15 |VV 221MR |mol O/m.m^3/s |Meridional Diffusive Flux of Dissolved Oxygen

DFrITr05| 15 |WM LR |mol O/m.m^3/s |Vertical Diffusive Flux of Dissolved Oxygen (Implicit part)

6.3.3.5 Do’s and Don’ts

6.3.3.6 Reference Material

314 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.4 Ocean Packages

6.4.1 GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization

There are two parts to the Redi/GM parameterization of geostrophic eddies. The first, the Redi scheme
[Redi, 1982], aims to mix tracer properties along isentropes (neutral surfaces) by means of a diffusion
operator oriented along the local isentropic surface. The second part, GM [Gent and McWilliams, 1990;
Gent et al., 1995], adiabatically re-arranges tracers through an advective flux where the advecting flow
is a function of slope of the isentropic surfaces.

The first GCM implementation of the Redi scheme was by Cox [1987] in the GFDL ocean circulation
model. The original approach failed to distinguish between isopycnals and surfaces of locally referenced
potential density (now called neutral surfaces) which are proper isentropes for the ocean. As will be
discussed later, it also appears that the Cox implementation is susceptible to a computational mode.
Due to this mode, the Cox scheme requires a background lateral diffusion to be present to conserve the
integrity of the model fields.

The GM parameterization was then added to the GFDL code in the form of a non-divergent bolus
velocity. The method defines two stream-functions expressed in terms of the isoneutral slopes subject to
the boundary condition of zero value on upper and lower boundaries. The horizontal bolus velocities are
then the vertical derivative of these functions. Here in lies a problem highlighted by Griffies et al. [1998]:
the bolus velocities involve multiple derivatives on the potential density field, which can consequently
give rise to noise. Griffies et al. point out that the GM bolus fluxes can be identically written as a skew
flux which involves fewer differential operators. Further, combining the skew flux formulation and Redi
scheme, substantial cancellations take place to the point that the horizontal fluxes are unmodified from
the lateral diffusion parameterization.

6.4.1.1 Redi scheme: Isopycnal diffusion

The Redi scheme diffuses tracers along isopycnals and introduces a term in the tendency (rhs) of such a
tracer (here τ) of the form:

∇ · κρKRedi∇τ (6.1)

where κρ is the along isopycnal diffusivity and KRedi is a rank 2 tensor that projects the gradient of τ
onto the isopycnal surface. The unapproximated projection tensor is:

KRedi =
1

1 + |S|2

1 + S2
y −SxSy Sx

−SxSy 1 + S2
x Sy

Sx Sy |S|2

 (6.2)

Here, Sx = −∂xσ/∂zσ and Sy = −∂yσ/∂zσ are the components of the isoneutral slope.
The first point to note is that a typical slope in the ocean interior is small, say of the order 10−4. A

maximum slope might be of order 10−2 and only exceeds such in unstratified regions where the slope is
ill defined. It is therefore justifiable, and customary, to make the small slope approximation, |S| << 1.
The Redi projection tensor then becomes:

KRedi =

1 0 Sx

0 1 Sy

Sx Sy |S|2

 (6.3)

6.4.1.2 GM parameterization

The GM parameterization aims to represent the “advective” or “transport” effect of geostrophic eddies
by means of a “bolus” velocity, u⋆. The divergence of this advective flux is added to the tracer tendency
equation (on the rhs):

−∇ · τu⋆ (6.4)

The bolus velocity u⋆ is defined as the rotational of a streamfunction F⋆=(F ⋆
x , F

⋆
y , 0):

u⋆ = ∇× F⋆ =

−∂zF
⋆
y

+∂zF
⋆
x

∂xF
⋆
y − ∂yF

⋆
x

 , (6.5)

6.4. OCEAN PACKAGES 315

and thus is automatically non-divergent. In the GM parameterization, the streamfunction is specified in
terms of the isoneutral slopes Sx and Sy:

F ⋆
x = −κGMSy (6.6)

F ⋆
y = κGMSx (6.7)

with boundary conditions F ⋆
x = F ⋆

y = 0 on upper and lower boundaries. In the end, the bolus transport
in the GM parameterization is given by:

u⋆ =

u⋆

v⋆

w⋆

 =

−∂z(κGMSx)
−∂z(κGMSy)

∂x(κGMSx) + ∂y(κGMSy)

 (6.8)

This is the form of the GM parameterization as applied by Donabasaglu, 1997, in MOM versions 1
and 2.

Note that in the MITgcm, the variables containing the GM bolus streamfunction are:
(
GM PsiX
GM PsiY

)
=

(
κGMSx

κGMSy

)
=

(
F ⋆

y

−F ⋆
x

)
. (6.9)

6.4.1.3 Griffies Skew Flux

Griffies [1998] notes that the discretisation of bolus velocities involves multiple layers of differencing and
interpolation that potentially lead to noisy fields and computational modes. He pointed out that the
bolus flux can be re-written in terms of a non-divergent flux and a skew-flux:

u⋆τ =

−∂z(κGMSx)τ
−∂z(κGMSy)τ

(∂xκGMSx + ∂yκGMSy)τ

=

−∂z(κGMSxτ)
−∂z(κGMSyτ)

∂x(κGMSxτ) + ∂y(κGMSyτ)

+

κGMSx∂zτ
κGMSy∂zτ

−κGMSx∂xτ − κGMSy∂yτ

The first vector is non-divergent and thus has no effect on the tracer field and can be dropped. The
remaining flux can be written:

u⋆τ = −κGMKGM∇τ (6.10)

where

KGM =

0 0 −Sx

0 0 −Sy

Sx Sy 0

 (6.11)

is an anti-symmetric tensor.
This formulation of the GM parameterization involves fewer derivatives than the original and also

involves only terms that already appear in the Redi mixing scheme. Indeed, a somewhat fortunate
cancellation becomes apparent when we use the GM parameterization in conjunction with the Redi
isoneutral mixing scheme:

κρKRedi∇τ − u⋆τ = (κρKRedi + κGMKGM)∇τ (6.12)

In the instance that κGM = κρ then

κρKRedi + κGMKGM = κρ

1 0 0
0 1 0

2Sx 2Sy |S|2

 (6.13)

which differs from the variable Laplacian diffusion tensor by only two non-zero elements in the z-row.

S/R GMREDI CALC TENSOR (pkg/gmredi/gmredi calc tensor.F)
σx: SlopeX (argument on entry)
σy: SlopeY (argument on entry)
σz : SlopeY (argument)
Sx: SlopeX (argument on exit)
Sy: SlopeY (argument on exit)

316 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Slope |S|

Ta
pe

r f
n f(

S)

DM95 {1+tanh[(S
c
−|S|)/S

d
] }/2

GKW91 (S
max

/|S|)2

Figure 6.6: Taper functions used in GKW91 and DM95.

6.4.1.4 Variable κGM

Visbeck et al. [1997] suggest making the eddy coefficient, κGM , a function of the Eady growth rate,
|f |/

√
Ri. The formula involves a non-dimensional constant, α, and a length-scale L:

κGM = αL2 |f |√
Ri

z

where the Eady growth rate has been depth averaged (indicated by the over-line). A local Richardson
number is defined Ri = N2/(∂u/∂z)2 which, when combined with thermal wind gives:

1

Ri
=

(∂u
∂z)2

N2
=

(g
fρo

|∇σ|)2

N2
=

M4

|f |2N2

where M2 is defined M2 = g
ρo
|∇σ|. Substituting into the formula for κGM gives:

κGM = αL2M
2

N

z

= αL2M
2

N2
N

z

= αL2|S|Nz

6.4.1.5 Tapering and stability

Experience with the GFDL model showed that the GM scheme has to be matched to the convective
parameterization. This was originally expressed in connection with the introduction of the KPP boundary
layer scheme [Large et al., 1994] but in fact, as subsequent experience with the MIT model has found, is
necessary for any convective parameterization.

S/R GMREDI SLOPE LIMIT (pkg/gmredi/gmredi slope limit.F)
σx, sx: SlopeX (argument)
σy, sy: SlopeY (argument)
σz : dSigmadRReal (argument)
z∗σ: dRdSigmaLtd (argument)

Slope clipping

Deep convection sites and the mixed layer are indicated by homogenized, unstable or nearly unstable
stratification. The slopes in such regions can be either infinite, very large with a sign reversal or simply

6.4. OCEAN PACKAGES 317

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Slope S

Ef
fe

ct
ive

 s
lo

pe
 S

* =
 f(

S)
 S

DM95 {1+tanh[(S
c
−|S|)/S

d
] }/2 S

GKW91 (S
max

/|S|)2 S

Cox Slope Clipping

Figure 6.7: Effective slope as a function of “true” slope using Cox slope clipping, GKW91 limiting and
DM95 limiting.

very large. From a numerical point of view, large slopes lead to large variations in the tensor elements
(implying large bolus flow) and can be numerically unstable. This was first recognized by Cox [1987]
who implemented “slope clipping” in the isopycnal mixing tensor. Here, the slope magnitude is simply
restricted by an upper limit:

|∇σ| =
√
σ2

x + σ2
y (6.14)

Slim = − |∇σ|
Smax

where Smax is a parameter (6.15)

σ⋆
z = min(σz , Slim) (6.16)

[sx, sy] = − [σx, σy]

σ⋆
z

(6.17)

Notice that this algorithm assumes stable stratification through the “min” function. In the case where
the fluid is well stratified (σz < Slim) then the slopes evaluate to:

[sx, sy] = − [σx, σy]

σz
(6.18)

while in the limited regions (σz > Slim) the slopes become:

[sx, sy] =
[σx, σy]

|∇σ|/Smax
(6.19)

so that the slope magnitude is limited
√
s2x + s2y = Smax.

The slope clipping scheme is activated in the model by setting GM taper scheme = ’clipping’ in
data.gmredi.

Even using slope clipping, it is normally the case that the vertical diffusion term (with coefficient
κρK33 = κρS

2
max) is large and must be time-stepped using an implicit procedure (see section on discreti-

sation and code later). Fig. 6.8 shows the mixed layer depth resulting from a) using the GM scheme
with clipping and b) no GM scheme (horizontal diffusion). The classic result of dramatically reduced
mixed layers is evident. Indeed, the deep convection sites to just one or two points each and are much
shallower than we might prefer. This, it turns out, is due to the over zealous re-stratification due to the
bolus transport parameterization. Limiting the slopes also breaks the adiabatic nature of the GM/Redi
parameterization, re-introducing diabatic fluxes in regions where the limiting is in effect.

318 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Figure missing.

Figure 6.8: Mixed layer depth using GM parameterization with a) Cox slope clipping and for comparison
b) using horizontal constant diffusion.

Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991

The tapering scheme used in Gerdes et al. [1991] addressed two issues with the clipping method: the
introduction of large vertical fluxes in addition to convective adjustment fluxes is avoided by tapering
the GM/Redi slopes back to zero in low-stratification regions; the adjustment of slopes is replaced by a
tapering of the entire GM/Redi tensor. This means the direction of fluxes is unaffected as the amplitude
is scaled.

The scheme inserts a tapering function, f1(S), in front of the GM/Redi tensor:

f1(S) = min

[
1,

(
Smax

|S|

)2
]

(6.20)

where Smax is the maximum slope you want allowed. Where the slopes, |S| < Smax then f1(S) = 1 and
the tensor is un-tapered but where |S| ≥ Smax then f1(S) scales down the tensor so that the effective
vertical diffusivity term κf1(S)|S|2 = κS2

max.
The GKW91 tapering scheme is activated in the model by setting GM taper scheme = ’gkw91’

in data.gmredi.

Tapering: Danabasoglu and McWilliams, J. Clim. 1995

The tapering scheme used by Danabasoglu and McWilliams [1995] followed a similar procedure but used
a different tapering function, f1(S):

f1(S) =
1

2

(
1 + tanh

[
Sc − |S|
Sd

])
(6.21)

where Sc = 0.004 is a cut-off slope and Sd = 0.001 is a scale over which the slopes are smoothly tapered.
Functionally, the operates in the same way as the GKW91 scheme but has a substantially lower cut-off,
turning off the GM/Redi SGS parameterization for weaker slopes.

The DM95 tapering scheme is activated in the model by setting GM taper scheme = ’dm95’ in
data.gmredi.

Tapering: Large, Danabasoglu and Doney, JPO 1997

The tapering used in Large et al. [1997] is based on the DM95 tapering scheme, but also tapers the
scheme with an additional function of height, f2(z), so that the GM/Redi SGS fluxes are reduced near
the surface:

f2(z) =
1

2

(
1 + sin(π

z

D
− π

2
)
)

(6.22)

where D = Lρ|S| is a depth-scale and Lρ = c/f with c = 2 m s−1. This tapering with height was
introduced to fix some spurious interaction with the mixed-layer KPP parameterization.

The LDD97 tapering scheme is activated in the model by setting GM taper scheme = ’ldd97’ in
data.gmredi.

6.4.1.6 Package Reference

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

GM_VisbK| 1 |SM P M1 |m^2/s |Mixing coefficient from Visbeck etal parameterization

GM_Kux | 15 |UU P 177MR |m^2/s |K_11 element (U.point, X.dir) of GM-Redi tensor

GM_Kvy | 15 |VV P 176MR |m^2/s |K_22 element (V.point, Y.dir) of GM-Redi tensor

GM_Kuz | 15 |UU 179MR |m^2/s |K_13 element (U.point, Z.dir) of GM-Redi tensor

6.4. OCEAN PACKAGES 319

GM_Kvz | 15 |VV 178MR |m^2/s |K_23 element (V.point, Z.dir) of GM-Redi tensor

GM_Kwx | 15 |UM 181LR |m^2/s |K_31 element (W.point, X.dir) of GM-Redi tensor

GM_Kwy | 15 |VM 180LR |m^2/s |K_32 element (W.point, Y.dir) of GM-Redi tensor

GM_Kwz | 15 |WM P LR |m^2/s |K_33 element (W.point, Z.dir) of GM-Redi tensor

GM_PsiX | 15 |UU 184LR |m^2/s |GM Bolus transport stream-function : X component

GM_PsiY | 15 |VV 183LR |m^2/s |GM Bolus transport stream-function : Y component

GM_KuzTz| 15 |UU 186MR |degC.m^3/s |Redi Off-diagonal Tempetature flux: X component

GM_KvzTz| 15 |VV 185MR |degC.m^3/s |Redi Off-diagonal Tempetature flux: Y component

6.4.1.7 Experiments and tutorials that use gmredi

• Global Ocean tutorial, in tutorial global oce latlon verification directory, described in section 3.12

• Front Relax experiment, in front relax verification directory.

• Ideal 2D Ocean experiment, in ideal 2D oce verification directory.

320 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.4.2 KPP: Nonlocal K-Profile Parameterization for Vertical Mixing

Authors: Dimitris Menemenlis and Patrick Heimbach

6.4.2.1 Introduction

The nonlocal K-Profile Parameterization (KPP) scheme of Large et al. [1994] unifies the treatment of a
variety of unresolved processes involved in vertical mixing. To consider it as one mixing scheme is, in the
view of the authors, somewhat misleading since it consists of several entities to deal with distinct mixing
processes in the ocean’s surface boundary layer, and the interior:

1. mixing in the interior is goverened by shear instability (modeled as function of the local gradient
Richardson number), internal wave activity (assumed constant), and double-diffusion (not imple-
mented here).

2. a boundary layer depth h or hbl is determined at each grid point, based on a critical value of
turbulent processes parameterized by a bulk Richardson number;

3. mixing is strongly enhanced in the boundary layer under the stabilizing or destabilizing influence
of surface forcing (buoyancy and momentum) enabling boundary layer properties to penetrate well
into the thermocline; mixing is represented through a polynomial profile whose coefficients are
determined subject to several contraints;

4. the boundary-layer profile is made to agree with similarity theory of turbulence and is matched, in
the asymptotic sense (function and derivative agree at the boundary), to the interior thus fixing the
polynomial coefficients; matching allows for some fraction of the boundary layer mixing to affect
the interior, and vice versa;

5. a “non-local” term γ̂ or ghat which is independent of the vertical property gradient further enhances
mixing where the water column is unstable

The scheme has been extensively compared to observations (see e.g. Large et al. [1997]) and is now
coomon in many ocean models.

The current code originates in the NCAR NCOM 1-D code and was kindly provided by Bill Large and
Jan Morzel. It has been adapted first to the MITgcm vector code and subsequently to the current parallel
code. Adjustment were mainly in conjunction with WRAPPER requirements (domain decomposition and
threading capability), to enable automatic differentiation of tangent linear and adjoint code via TAMC.

The following sections will describe the KPP package configuration and compiling (6.4.2.2), the set-
tings and choices of runtime parameters (6.4.2.3), more detailed description of equations to which these
parameters relate (6.4.2.4), and key subroutines where they are used (6.4.2.5), and diagnostics output of
KPP-derived diffusivities, viscosities and boundary-layer/mixed-layer depths (6.4.2.6).

6.4.2.2 KPP configuration and compiling

As with all MITgcm packages, KPP can be turned on or off at compile time

• using the packages.conf file by adding kpp to it,

• or using genmake2 adding -enable=kpp or -disable=kpp switches

• Required packages and CPP options:
No additional packages are required, but the MITgcm kernel flag enabling the penetration of short-
wave radiation below the surface layer needs to be set in CPP OPTIONS.h as follows:
#define SHORTWAVE HEATING

(see Section 3.4).

Parts of the KPP code can be enabled or disabled at compile time via CPP preprocessor flags. These
options are set in KPP OPTIONS.h. Table 6.4.2.2 summarizes them.

6.4. OCEAN PACKAGES 321

CPP option Description

KPP RL

FRUGAL KPP

KPP SMOOTH SHSQ

KPP SMOOTH DVSQ

KPP SMOOTH DENS

KPP SMOOTH VISC

KPP SMOOTH DIFF

KPP ESTIMATE UREF

INCLUDE DIAGNOSTICS INTERFACE CODE

KPP GHAT

EXCLUDE KPP SHEAR MIX

Table 6.6:

6.4.2.3 Run-time parameters

Run-time parameters are set in files data.pkg and data.kpp which are read in kpp readparms.F. Run-
time parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) required
MITgcm flags, (iii) package flags and parameters.

Enabling the package
The KPP package is switched on at runtime by setting useKPP = .TRUE. in data.pkg.

Required MITgcm flags
The following flags/parameters of the MITgcm dynamical kernel need to be set in conjunction with KPP:

implicitViscosity = .TRUE. enable implicit vertical viscosity
implicitDiffusion = .TRUE. enable implicit vertical diffusion

Package flags and parameters
Table 6.4.2.3 summarizes the runtime flags that are set in data.pkg, and their default values.

6.4.2.4 Equations and key routines

We restrict ourselves to writing out only the essential equations that relate to main processes and pa-
rameters mentioned above. We closely follow the notation of Large et al. [1994].

KPP CALC: Top-level routine.

KPP MIX: Intermediate-level routine

BLMIX: Mixing in the boundary layer

The vertical fluxes wx of momentum and tracer properties X is composed of a gradient-flux term
(proportional to the vertical property divergence ∂zX), and a “nonlocal” term γx that enhances the
gradient-flux mixing coefficient Kx

wx(d) = −Kx

(
∂X

∂z
− γx

)
(6.23)

• Boundary layer mixing profile
It is expressed as the product of the boundary layer depth h, a depth-dependent turbulent velocity
scale wx(σ) and a non-dimensional shape function G(σ)

Kx(σ) = hwx(σ)G(σ) (6.24)

with dimensionless vertical coordinate σ = d/h. For details of wx(σ) and G(σ) we refer to Large
et al. [1994].

322 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Flag/parameter default Description

I/O related parameters
kpp freq deltaTClock Recomputation frequency for KPP fields
kpp dumpFreq dumpFreq Dump frequency of KPP field snapshots
kpp taveFreq taveFreq Averaging and dump frequency of KPP fields
KPPmixingMaps .FALSE. include KPP diagnostic maps in STDOUT
KPPwriteState .FALSE. write KPP state to file
KPP ghatUseTotalDiffus .FALSE. if .T. compute non-local term using total vertical diffusivity

if .F. use KPP vertical diffusivity
Genral KPP parameters

minKPPhbl delRc(1) Minimum boundary layer depth
epsilon 0.1 nondimensional extent of the surface layer
vonk 0.4 von Karman constant
dB dz 5.2E-5 1/s2 maximum dB/dz in mixed layer hMix
concs 98.96
concv 1.8

Boundary layer parameters (S/R bldepth)
Ricr 0.3 critical bulk Richardson number
cekman 0.7 coefficient for Ekman depth
cmonob 1.0 coefficient for Monin-Obukhov depth
concv 1.8 ratio of interior to entrainment depth buoyancy frequency
hbf 1.0 fraction of depth to which absorbed solar radiation contributes

to surface buoyancy forcing
Vtc non-dim. coeff. for velocity scale of turbulant velocity shear

(= function of concv,concs,epsilon,vonk,Ricr)
Boundary layer mixing parameters (S/R blmix)

cstar 10. proportionality coefficient for nonlocal transport
cg non-dimensional coefficient for counter-gradient term

(= function of cstar,vonk,concs,epsilon)
Interior mixing parameters (S/R Ri iwmix)

Riinfty 0.7 gradient Richardson number limit for shear instability
BVDQcon -0.2E-4 1/s2 Brunt-Väïsalä squared
difm0 0.005 m2/s viscosity max. due to shear instability
difs0 0.005 m2/s tracer diffusivity max. due to shear instability
dift0 0.005 m2/s heat diffusivity max. due to shear instability
difmcon 0.1 viscosity due to convective instability
difscon 0.1 tracer diffusivity due to convective instability
diftcon 0.1 heat diffusivity due to convective instability

Double-diffusive mixing parameters (S/R ddmix)
Rrho0 not used limit for double diffusive density ratio
dsfmax not used maximum diffusivity in case of salt fingering

Table 6.7:

• Nonlocal mixing term
The nonlocal transport term γ is nonzero only for tracers in unstable (convective) forcing conditions.
Thus, depending on the stability parameter ζ = d/L (with depth d, Monin-Obukhov length scale
L) it has the following form:

γx = 0 ζ ≥ 0

γm = 0

γs = Cs
ws0

ws(σ)h

γθ = Cs
wθ0+wθR

ws(σ)h

ζ < 0
(6.25)

In practice, the routine peforms the following tasks:

1. compute velocity scales at hbl

2. find the interior viscosities and derivatives at hbl

3. compute turbulent velocity scales on the interfaces

6.4. OCEAN PACKAGES 323

4. compute the dimensionless shape functions at the interfaces

5. compute boundary layer diffusivities at the interfaces

6. compute nonlocal transport term

7. find diffusivities at kbl-1 grid level

RI IWMIX: Mixing in the interior
Compute interior viscosity and diffusivity coefficients due to

• shear instability (dependent on a local gradient Richardson number),

• to background internal wave activity, and

• to static instability (local Richardson number < 0).

TO BE CONTINUED.

BLDEPTH: Boundary layer depth calculation:
The oceanic planetary boundary layer depth, hbl, is determined as the shallowest depth where the bulk
Richardson number is equal to the critical value, Ricr.

Bulk Richardson numbers are evaluated by computing velocity and buoyancy differences between
values at zgrid(kl) ¡ 0 and surface reference values. In this configuration, the reference values are equal
to the values in the surface layer. When using a very fine vertical grid, these values should be computed
as the vertical average of velocity and buoyancy from the surface down to epsilon*zgrid(kl).

When the bulk Richardson number at k exceeds Ricr, hbl is linearly interpolated between grid levels
zgrid(k) and zgrid(k-1).

The water column and the surface forcing are diagnosed for stable/ustable forcing conditions, and
where hbl is relative to grid points (caseA), so that conditional branches can be avoided in later subrou-
tines.

TO BE CONTINUED.

KPP CALC DIFF T/ S, KPP CALC VISC:
Add contribution to net diffusivity/viscosity from KPP diffusivity/viscosity.

TO BE CONTINUED.

KPP TRANSPORT T/ S/ PTR:
Add non local KPP transport term (ghat) to diffusive temperature/salinity/passive tracer flux. The
nonlocal transport term is nonzero only for scalars in unstable (convective) forcing conditions.

TO BE CONTINUED.

Implicit time integration
TO BE CONTINUED.

Penetration of shortwave radiation
TO BE CONTINUED.

6.4.2.5 Flow chart

C !CALLING SEQUENCE:

c ...

c kpp_calc (TOP LEVEL ROUTINE)

c |

c |-- statekpp: o compute all EOS/density-related arrays

c | o uses S/R FIND_ALPHA, FIND_BETA, FIND_RHO

c |

c |-- kppmix

c | |--- ri_iwmix (compute interior mixing coefficients due to constant

324 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

c | | internal wave activity, static instability,

c | | and local shear instability).

c | |

c | |--- bldepth (diagnose boundary layer depth)

c | |

c | |--- blmix (compute boundary layer diffusivities)

c | |

c | |--- enhance (enhance diffusivity at interface kbl - 1)

c | o

c |

c |-- swfrac

c o

6.4.2.6 KPP diagnostics

Diagnostics output is available via the diagnostics package (see Section 7.1). Available output fields are
summarized here:

--

<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

--

KPPviscA| 23 |SM |m^2/s |KPP vertical eddy viscosity coefficient

KPPdiffS| 23 |SM |m^2/s |Vertical diffusion coefficient for salt & tracers

KPPdiffT| 23 |SM |m^2/s |Vertical diffusion coefficient for heat

KPPghat | 23 |SM |s/m^2 |Nonlocal transport coefficient

KPPhbl | 1 |SM |m |KPP boundary layer depth, bulk Ri criterion

KPPmld | 1 |SM |m |Mixed layer depth, dT=.8degC density criterion

KPPfrac | 1 |SM | |Short-wave flux fraction penetrating mixing layer

6.4.2.7 Reference experiments

lab sea:
natl box:

6.4.2.8 References

6.4.2.9 Experiments and tutorials that use kpp

• Labrador Sea experiment, in lab sea verification directory

6.4. OCEAN PACKAGES 325

6.4.3 GGL90: a TKE vertical mixing scheme

(in directory: pkg/ggl90/)

6.4.3.1 Key subroutines, parameters and files

see Gaspar et al. [1990]

6.4.3.2 Experiments and tutorials that use zonal filter

• Vertical mixing verification experiment (vermix/input.ggl90)

326 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.4.4 OPPS: Ocean Penetrative Plume Scheme

(in directory: pkg/opps/)

6.4.4.1 Key subroutines, parameters and files

see Paluszkiewicz and Romea [1997]

6.4.4.2 Experiments and tutorials that use zonal filter

• Vertical mixing verification experiment (vermix/input.opps)

6.4. OCEAN PACKAGES 327

6.4.5 KL10: Vertical Mixing Due to Breaking Internal Waves

(in directory: pkg/kl10/)

Authors: Jody M. Klymak

6.4.5.1 Introduction

The Klymak and Legg [2010, KL10] parameterization for breaking internal waves is meant to represent
mixing in the ocean “interior” due to convective instability. Many mixing schemes in the presence of
unstable stratification simply turn on an arbitrarily large diffusivity and viscosity in the overturning
region. This assumes the fluid completely mixes, which is probably not a terrible assumption, but it also
makes estimating the turbulence dissipation rate in the overturning region meaningless.

The KL10 scheme overcomes this limitation by estimating the viscosity and diffusivity from a com-
bination of the Ozmidov relation and the Osborn relation, assuming a turbulent Prandtl number of one.
The Ozmidov relation says that outer scale of turbulence in an overturn will scale with the strength of
the turbulence ǫ, and the stratification N , as

L2
O ≈ ǫN−3. (6.26)

The Osborn relation relates the strength of the dissipation to the vertical diffusivity as

Kv = ΓǫN−2, (6.27)

where Γ ≈ 0.2 is the mixing ratio of buoyancy flux to thermal dissipation due to the turbulence. Com-
bining the two gives us

Kv ≈ ΓL2
ON. (6.28)

The ocean turbulence community often approximates the Ozmidov scale by the root-mean-square of
the Thorpe displacement, δz, in an overturn [Thorpe, 1977]. The Thorpe displacement is the distance
one would have to move a water parcel for the water column to be stable, and is readily measured in
a measured profile by sorting the profile and tracking how far each parcel moves during the sorting
procedure. This method gives an imperfect estimate of the turbulence, but it has been found to agree on
average over a large range of overturns [Wesson and Gregg, 1994; Seim and Gregg, 1994; Moum, 1996].

The algorithm coded here is a slight simplification of the usual Thorpe method for estimating turbu-
lence in overturning regions. Usually, overturns are identified and N is averaged over the overturn. Here,
instead we estimate

Kv(z) ≈ Γδ2z Ns(z). (6.29)

where Ns(z) is the local sorted stratification. This saves complexity in the code and adds a slight
inaccuracy, but we don’t believe is biased.

We assume a turbulent Prandtl number of 1, so Av = Kv.
We also calculate and output a turbulent dissipation from this scheme. We do not simply evaluate

the overturns for ǫ using (6.26). Instead we compute the vertical shear terms that the viscosity is acting
on:

ǫv = Av

((
∂u

∂z

)2

+

(
∂v

∂z

)2
)
. (6.30)

There are straightforward caveats to this approach, covered in Klymak and Legg [2010].

• If your resolution is too low to resolve the breaking internal waves, you won’t have any turbulence.

• If the model resolution is too high, the estimates of ǫv will start to be exaggerated, particularly if
the run in non-hydrostatic. That is because there will be significant shear at small scales that repre-
sents the turbulence being parameterized in the scheme. At very high resolutions direct numerical
simulation or more sophisticated large-eddy schemes should be used.

• We find that grid cells of approximately 10 to 1 aspect ratio are a good rule of thumb for achieving
good results are usual oceanic scales. For a site like the Hawaiian Ridge, and Luzon Strait, this
means 10-m vertical resolusion and approximately 100-m horizontal. The 10-m resolution can be
relaxed if the stratification drops, and we often WKB-stretch the grid spacing with depth.

328 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

• The dissipation estimate is useful for pinpoiting the location of turbulence, but again, is grid size
dependent to some extent, and should be treated with a grain of salt. It will also not include any
numerical dissipation such as you may find with higher order advection schemes.

6.4.5.2 KL10 configuration and compiling

As with all MITgcm packages, KL10 can be turned on or off at compile time

• using the packages.conf file by adding kl10 to it,

• or using genmake2 adding -enable=kl10 or -disable=kl10 switches

• Required packages and CPP options:
No additional packages are required.

(see Section 3.4).

KL10 has no compile-time options (KL10 OPTIONS.h is empty).

6.4.5.3 Run-time parameters

Run-time parameters are set in files data.pkg and data.kl10 which are read in kl10 readparms.F.
Run-time parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii)
required MITgcm flags, (iii) package flags and parameters.

Enabling the package
The KL10 package is switched on at runtime by setting useKL10 = .TRUE. in data.pkg.

Required MITgcm flags
The following flags/parameters of the MITgcm dynamical kernel need to be set in conjunction with KL10:

implicitViscosity = .TRUE. enable implicit vertical viscosity
implicitDiffusion = .TRUE. enable implicit vertical diffusion

Package flags and parameters
Table 6.4.5.3 summarizes the runtime flags that are set in data.kl10, and their default values.

Flag/parameter default Description

I/O related parameters
KLviscMax 300 m2 s−1 Maximum viscosity the scheme will ever give (useful for stability)
KLdumpFreq dumpFreq Dump frequency of KL10 field snapshots
KLtaveFreq taveFreq Averaging and dump frequency of KL10 fields
KLwriteState .FALSE. write KL10 state to file

Table 6.8: KL10 runtime parameters

6.4.5.4 Equations and key routines

KL10 CALC: Top-level routine. Calculates viscosity and diffusivity on the grid cell centers. Note
that the runtime parameters viscAz and diffKzT act as minimum viscosity and diffusivities. So if there
are no overturns (or they are weak) then these will be returned.

KL10 CALC VISC: Calculates viscosity on the W and S grid faces for U and V respectively.

KL10 CALC DIFF: Calculates the added diffusion from KL10.

6.4. OCEAN PACKAGES 329

6.4.5.5 KL10 diagnostics

Diagnostics output is available via the diagnostics package (see Section 7.1). Available output fields are
summarized here:

--

<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

--

KLviscAr| Nr |SM |m^2/s |KL10 vertical eddy viscosity coefficient

KLdiffKr| Nr |SM |m^2/s |Vertical diffusion coefficient for salt, temperature, & tracers

KLeps | Nr |SM |m^3/s^3 | Turbulence dissipation estimate.

subsubsectionReference experiments
internal wavekl10:

6.4.5.6 References

Klymak and Legg, 2010, Oc. Modell..

6.4.5.7 Experiments and tutorials that use KL10

• Modified Internal Wave experiment, in internal wave verification directory

330 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.4.6 BULK FORCE: Bulk Formula Package

author: Stephanie Dutkiewicz

Instead of forcing the model with heat and fresh water flux data, this package calculates these fluxes using
the changing sea surface temperature. We need to read in some atmospheric data: air temperature, air
humidity, down shortwave radiation, down longwave radiation, precipitation, wind speed.
The current setup also reads in wind stress, but this can be changed so that the stresses are calculated
from the wind speed.

The current setup requires that there is the thermodynamic-seaice package (pkg/thsice, also refered
below as seaice) is also used. It would be useful though to have it also setup to run with some very simple
parametrization of the sea ice.

The heat and fresh water fluxes are calculated in bulkf forcing.F called from forward step.F. These fluxes
are used over open water, fluxes over seaice are recalculated in the sea-ice package. Before the call to
bulkf forcing.F we call bulkf fields load.F to find the current atmospheric conditions. The only other
changes to the model code come from the initializing and writing diagnostics of these fluxes.

subroutine BULKF FIELDS LOAD

Here we find the atmospheric data needed for the bulk formula calculations. These are read in at periodic
intervals and values are interpolated to the current time. The data file names come from data.blk. The
values that can be read in are: air temperature, air humidity, precipitation, down solar radiation, down
long wave radiation, zonal and meridional wind speeds, total wind speed, net heat flux, net freshwater
forcing, cloud cover, snow fall, zonal and meridional wind stresses, and SST and SSS used for relaxation
terms. Not all these files are necessary or used. For instance cloud cover and snow fall are not used in
the current bulk formula calculation. If total wind speed is not supplied, wind speed is calculate from
the zonal and meridional components. If wind stresses are not read in, then the stresses are calculated
from the wind speed. Net heat flux and net freshwater can be read in and used over open ocean instead
of the bulk formula calculations (but over seaice the bulkf formula is always used). This is ”hardwired”
into bulkf forcing and the ”ch” in the variable names suggests that this is ”cheating”. SST and SSS need
to be read in if there is any relaxation used.

subroutine BULKF FORCING

In bulkf forcing.F, we calculate heat and fresh water fluxes (and wind stress, if necessary) for each grid
cell. First we determine if the grid cell is open water or seaice and this information is carried by iceornot.
There is a provision here for a different designation if there is snow cover (but currently this does not
make any difference). We then call bulkf formula lanl.F which provides values for: up long wave radiation,
latent and sensible heat fluxes, the derivative of these three with respect to surface temperature, wind
stress, evaporation. Net long wave radiation is calculated from the combination of the down long wave
read in and the up long wave calculated.

We then find the albedo of the surface - with a call to sfc albedo if there is sea-ice (see the seaice
package for information on the subroutine). If the grid cell is open ocean the albedo is set as 0.1. Note
that this is a parameter that can be used to tune the results. The net short wave radiation is then the
down shortwave radiation minus the amount reflected.

If the wind stress needed to be calculated in bulkf formula lanl.F, it was calculated to grid cell center
points, so in bulkf forcing.F we regrid to u and v points. We let the model know if it has read in stresses
or calculated stresses by the switch readwindstress which is can be set in data.blk, and defaults to
.TRUE..

We then calculate Qnet and EmPmR that will be used as the fluxes over the open ocean. There is
a provision for using runoff. If we are ”cheating” and using observed fluxes over the open ocean, then
there is a provision here to use read in Qnet and EmPmR.

The final call is to calculate averages of the terms found in this subroutine.

6.4. OCEAN PACKAGES 331

subroutine BULKF FORMULA LANL
This is the main program of the package where the heat fluxes and freshwater fluxes over ice and open
water are calculated. Note that this subroutine is also called from the seaice package during the iterations
to find the ice surface temperature.

Latent heat (L) used in this subroutine depends on the state of the surface: vaporization for open
water, fusion and vaporization for ice surfaces. Air temperature is converted from Celsius to Kelvin.
If there is no wind speed (us) given, then the wind speed is calculated from the zonal and meridional
components.

We calculate the virtual temperature:

To = Tair(1 + γqair)

where Tair is the air temperature at hT , qair is humidity at hq and γ is a constant.
The saturated vapor pressure is calculate (QQ ref):

qsat =
a

po
e

L(b− c
Tsrf

)

where a, b, c are constants, Tsrf is surface temperature and po is the surface pressure.
The two values crucial for the bulk formula calculations are the difference between air at sea surface

and sea surface temperature:
∆T = Tair − Tsrf + αhT

where α is adiabatic lapse rate and hT is the height where the air temperature was taken; and the
difference between the air humidity and the saturated humidity

∆q = qair − qsat.

We then calculate the turbulent exchange coefficients following Bryan et al (1996) and the numerical
scheme of Hunke and Lipscombe (1998). We estimate initial values for the exchange coefficients, cu, cT
and cq as

κ

ln(zref/zrou)

where κ is the Von Karman constant, zref is a reference height and zrou is a roughness length scale which
could be a function of type of surface, but is here set as a constant. Turbulent scales are:

u∗ = cuus

T ∗ = cT ∆T

q∗ = cq∆q

We find the ”integrated flux profile” for momentum and stability if there are stable QQ conditions
(Υ > 0) :

ψm = ψs = −5Υ

and for unstable QQ conditions (Υ < 0):

ψm = 2ln(0.5(1 + χ)) + ln(0.5(1 + χ2)) − 2 tan−1 χ+ π/2

ψs = 2ln(0.5(1 + χ2))

where

Υ =
κgzref

u∗2
(
T ∗

To
+

q∗

1/γ + qa
)

and χ = (1 − 16Υ)1/2.
The coefficients are updated through 5 iterations as:

cu =
ĉu

1 + ĉu(λ− ψm)/κ

cT =
ĉT

1 + ĉT (λ − ψs)/κ

cq = c′T (6.31)

332 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

where λ = ln(hT/zref).

We can then find the bulk formula heat fluxes:

Sensible heat flux:

Qs = ρaircpair
uscucT ∆T

Latent heat flux:

Ql = ρairLuscucq∆q

Up long wave radiation

Qup
lw = ǫσT 4

srf

where ǫ is emissivity (which can be different for open ocean, ice and snow), σ is Stefan-Boltzman constant.

We calculate the derivatives of the three above functions with respect to surface temperature

dQs

dT
= ρaircpair

uscucT

dQl

dT
=

ρairL
2uscucqc

T 2
srf

dQup
]lw

dT
= 4ǫσt3srf

And total derivative dQo

dT = dQs

dT + dQl

dT +
dQup

lw

dT .

If we do not read in the wind stress, it is calculated here.

Initializing subroutines

bulkf init.F: Set bulkf variables to zero.

bulkf readparms.F: Reads data.blk

Diagnostic subroutines

bulkf ave.F: Keeps track of means of the bulkf variables

bulkf diags.F: Finds averages and writes out diagnostics

Common Blocks

BULKF.h: BULKF Variables, data file names, and logicals readwindstress and readsurface

BULKF DIAGS.h: matrices for diagnostics: averages of fields from bulkf diags.F

BULKF ICE CONSTANTS.h: all the parameters need by the ice model and in the bulkf formula calcu-
lations.

Input file DATA.ICE

We read in the file names of atmospheric data used in the bulk formula calculations. Here we can also
set the logicals: readwindstress if we read in the wind stress rather than calculate it from the wind
speed; and readsurface to read in the surface temperature and salinity if these will be used as part of
a relaxing term.

Important Notes

1) heat fluxes have different signs in the ocean and ice models.

2) StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).

6.4. OCEAN PACKAGES 333

References

Bryan F.O., B.G Kauffman, W.G. Large, P.R. Gent, 1996: The NCAR CSM flux coupler. Technical note
TN-425+STR, NCAR.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice Model Documentation and
Software User’s Manual. LACC-98-16v.2.
(note: this documentation is no longer available as CICE has progressed to a very different version 3)

6.4.6.1 Experiments and tutorials that use bulk force

• Global ocean experiment in global ocean.cs32x15 verification directory, input from input.thsice
directory.

334 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.4.7 EXF: The external forcing package

Authors: Patrick Heimbach and Dimitris Menemenlis

6.4.7.1 Introduction

The external forcing package, in conjunction with the calendar package (cal), enables the handling of real-
time (or “model-time”) forcing fields of differing temporal forcing patterns. It comprises climatological
restoring and relaxation. Bulk formulae are implemented to convert atmospheric fields to surface fluxes.
An interpolation routine provides on-the-fly interpolation of forcing fields an arbitrary grid onto the
model grid.

CPP options enable or disable different aspects of the package (Section 6.4.7.2). Runtime options,
flags, filenames and field-related dates/times are set in data.exf (Section 6.4.7.3). A description of key
subroutines is given in Section 6.4.7.6. Input fields, units and sign conventions are summarized in Section
6.4.7.5, and available diagnostics output is listed in Section 6.4.7.7.

6.4.7.2 EXF configuration, compiling & running

Compile-time options
As with all MITgcm packages, EXF can be turned on or off at compile time

• using the packages.conf file by adding exf to it,

• or using genmake2 adding -enable=exf or -disable=exf switches

• required packages and CPP options :
EXF requires the calendar package cal to be enabled; no additional CPP options are required.

(see Section 3.4).
Parts of the EXF code can be enabled or disabled at compile time via CPP preprocessor flags. These

options are set in either EXF OPTIONS.h or in ECCO CPPOPTIONS.h. Table 6.9 summarizes these options.

6.4.7.3 Run-time parameters

Run-time parameters are set in files data.pkg and data.exf which is read in exf readparms.F. Run-
time parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) general
flags and parameters, and (iii) attributes for each forcing and climatological field.

Enabling the package
A package is switched on/off at runtime by setting (e.g. for EXF) useEXF = .TRUE. in data.pkg.

General flags and parameters

CPP option Description

EXF VERBOSE verbose mode (recommended only for testing)
ALLOW ATM TEMP compute heat/freshwater fluxes from atmos. state input
ALLOW ATM WIND compute wind stress from wind speed input
ALLOW BULKFORMULAE is used if ALLOW ATM TEMP or ALLOW ATM WIND is enabled
EXF READ EVAP read evaporation instead of computing it
ALLOW RUNOFF read time-constant river/glacier run-off field
ALLOW DOWNWARD RADIATION compute net from downward or downward from net radiation
USE EXF INTERPOLATION enable on-the-fly bilinear or bicubic interpolation of input fields

used in conjunction with relaxation to prescribed (climatological) fields
ALLOW CLIMSST RELAXATION relaxation to 2-D SST climatology
ALLOW CLIMSSS RELAXATION relaxation to 2-D SSS climatology

these are set outside of EXF in CPP OPTIONS.h

SHORTWAVE HEATING enable shortwave radiation
ATMOSPHERIC LOADING enable surface pressure forcing

Table 6.9:

6.4. OCEAN PACKAGES 335

Flag/parameter default Description

useExfCheckRange .TRUE. check range of input fields and stop if out of range
useExfYearlyFields .FALSE. append current year postfix of form YYYY on filename
twoDigitYear .FALSE. instead of appending YYYY append YY

repeatPeriod 0.0 > 0 : cycle through all input fields at the same period (in seconds)
= 0 : use period assigned to each field

exf offset atemp 0.0 set to 273.16 to convert from deg. Kelvin (assumed input) to Celsius
windstressmax 2.0 max. allowed wind stress N/m2

exf albedo 0.1 surface albedo used to compute downward vs. net radiative fluxes
climtempfreeze -1.9 ???
ocean emissivity longwave ocean-surface emissivity
ice emissivity longwave seaice emissivity
snow emissivity longwave snow emissivity
exf iceCd 1.63E-3 drag coefficient over sea-ice
exf iceCe 1.63E-3 evaporation transfer coeff. over sea-ice
exf iceCh 1.63E-3 sensible heat transfer coeff. over sea-ice
exf scal BulkCdn 1. overall scaling of neutral drag coeff.
useStabilityFct overIce .FALSE. compute turbulent transfer coeff. over sea-ice
readStressOnAgrid .FALSE. read wind-streess located on model-grid, A-grid point
readStressOnCgrid .FALSE. read wind-streess located on model-grid, C-grid point
useRelativeWind .FALSE. subtract [U/V]VEL or [U/VICE from U/V]WIND before

computing [U/V]STRESS
zref 10. reference height
hu 10. height of mean wind
ht 2. height of mean temperature and rel. humidity
umin 0.5 minimum absolute wind speed for computing Cd

atmrho 1.2 mean atmospheric density [kg/m3̂]
atmcp 1005. mean atmospheric specific heat [J/kg/K]
cdrag [n] ??? n = 1,2,3; parameters for drag coeff. function
cstanton [n] ??? n = 1,2; parameters for Stanton number function
cdalton ??? parameter for Dalton number function
flamb 2500000. latent heat of evaporation [J/kg]
flami 334000. latent heat of melting of pure ice [J/kg]
zolmin -100. minimum stability parameter
cvapor fac 640380.

cvapor exp 5107.4

cvapor fac ice 11637800.

cvapor fac ice 5897.8

humid fac 0.606 parameter for virtual temperature calculation
gamma blk 0.010 adiabatic lapse rate
saltsat 0.980 reduction of saturation vapor pressure over salt-water
psim fac 5.

exf monFreq monitorFreq output frequency [s]
exf iprec 32 precision of input fields (32-bit or 64-bit)
exf yftype ’RL’ precision of arrays (’RL’ vs. ’RS’)

Table 6.10:

Field attributes
All EXF fields are listed in Section 6.4.7.5. Each field has a number of attributes which can be customized.
They are summarized in Table 6.11. To obtain an attribute for a specific field, e.g. uwind prepend the
field name to the listed attribute, e.g. for attribute period this yields uwindperiod:

field & attribute −→ parameter

e.g. uwind & period −→ uwindperiod

Example configuration
The following block is taken from the data.exf file of the verification experiment global with exf/. It
defines attributes for the heat flux variable hflux:

hfluxfile = ’ncep_qnet.bin’,

hfluxstartdate1 = 19920101,

hfluxstartdate2 = 000000,

hfluxperiod = 2592000.0,

hflux_lon0 = 2

336 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

attribute Default Description

fieldfile ’ ’ filename; if left empty no file will be read; const will be used instead
fieldconst 0. constant that will be used if no file is read
fieldstartdate1 0. format: YYYYMMDD; start year (YYYY), month (MM), day (YY)

of field to determine record number
fieldstartdate2 0. format: HHMMSS; start hour (HH), minute (MM), second(SS)

of field to determine record number
fieldperiod 0. interval in seconds between two records
exf inscal field optional rescaling of input fields to comply with EXF units
exf outscal field optional rescaling of EXF fields when mapped onto MITgcm fields

used in conjunction with EXF USE INTERPOLATION

field lon0 xgOrigin + delX/2 starting longitude of input
field lon inc delX increment in longitude of input
field lat0 ygOrigin + delY/2 starting latitude of input
field lat inc delY increment in latitude of input
field nlon Nx number of grid points in longitude of input
field nlat Ny number of grid points in longitude of input

Table 6.11:Note one exception for the default of atempconst = celsius2K = 273.16

hflux_lon_inc = 4

hflux_lat0 = -78

hflux_lat_inc = 39*4

hflux_nlon = 90

hflux_nlat = 40

EXF will read a file of name ’ncep qnet.bin’. Its first record represents January 1st, 1992 at 00:00
UTC. Next record is 2592000 seconds (or 30 days) later. Note that the first record read and used by
the EXF package corresponds to the value ’startDate1’ set in data.cal. Therefore if you want to start
the EXF forcing from later in the ’ncep qnet.bin’ file, it suffices to specify startDate1 in data.cal as a
date later than 19920101 (for example, startDate1 = 19940101, for starting January 1st, 1994). For
this to work, ’ncep qnet.bin’ must have at least 2 years of data because in this configuration EXF will
read 2 years into the file to find the 1994 starting value. Interpolation on-the-fly is used (in the present
case trivially on the same grid, but included nevertheless for illustration), and input field grid starting
coordinates and increments are supplied as well.

6.4.7.4 EXF bulk formulae

T.B.D. (cross-ref. to parameter list table)

6.4.7.5 EXF input fields and units

The following list is taken from the header file EXF FIELDS.h. It comprises all EXF input fields.
Output fields which EXF provides to the MITgcm are fields fu, fv, Qnet, Qsw, EmPmR, and

pload. They are defined in FFIELDS.h.

c--

c |

c field :: Description

c |

c--

c ustress :: Zonal surface wind stress in N/m^2

c | > 0 for increase in uVel, which is west to

c | east for cartesian and spherical polar grids

c | Typical range: -0.5 < ustress < 0.5

c | Southwest C-grid U point

c | Input field

c--

c vstress :: Meridional surface wind stress in N/m^2

c | > 0 for increase in vVel, which is south to

c | north for cartesian and spherical polar grids

c | Typical range: -0.5 < vstress < 0.5

c | Southwest C-grid V point

6.4. OCEAN PACKAGES 337

c | Input field

c--

c hs :: sensible heat flux into ocean in W/m^2

c | > 0 for increase in theta (ocean warming)

c--

c hl :: latent heat flux into ocean in W/m^2

c | > 0 for increase in theta (ocean warming)

c--

c hflux :: Net upward surface heat flux in W/m^2

c | (including shortwave)

c | hflux = latent + sensible + lwflux + swflux

c | > 0 for decrease in theta (ocean cooling)

c | Typical range: -250 < hflux < 600

c | Southwest C-grid tracer point

c | Input field

c--

c sflux :: Net upward freshwater flux in m/s

c | sflux = evap - precip - runoff

c | > 0 for increase in salt (ocean salinity)

c | Typical range: -1e-7 < sflux < 1e-7

c | Southwest C-grid tracer point

c | Input field

c--

c swflux :: Net upward shortwave radiation in W/m^2

c | swflux = - (swdown - ice and snow absorption - reflected)

c | > 0 for decrease in theta (ocean cooling)

c | Typical range: -350 < swflux < 0

c | Southwest C-grid tracer point

c | Input field

c--

c uwind :: Surface (10-m) zonal wind velocity in m/s

c | > 0 for increase in uVel, which is west to

c | east for cartesian and spherical polar grids

c | Typical range: -10 < uwind < 10

c | Southwest C-grid U point

c | Input or input/output field

c--

c vwind :: Surface (10-m) meridional wind velocity in m/s

c | > 0 for increase in vVel, which is south to

c | north for cartesian and spherical polar grids

c | Typical range: -10 < vwind < 10

c | Southwest C-grid V point

c | Input or input/output field

c--

c wspeed :: Surface (10-m) wind speed in m/s

c | >= 0 sqrt(u^2+v^2)

c | Typical range: 0 < wspeed < 10

c | Input or input/output field

c--

c atemp :: Surface (2-m) air temperature in deg K

c | Typical range: 200 < atemp < 300

c | Southwest C-grid tracer point

c | Input or input/output field

c--

c aqh :: Surface (2m) specific humidity in kg/kg

c | Typical range: 0 < aqh < 0.02

c | Southwest C-grid tracer point

c | Input or input/output field

c--

c lwflux :: Net upward longwave radiation in W/m^2

c | lwflux = - (lwdown - ice and snow absorption - emitted)

c | > 0 for decrease in theta (ocean cooling)

c | Typical range: -20 < lwflux < 170

c | Southwest C-grid tracer point

c | Input field

c--

c evap :: Evaporation in m/s

c | > 0 for increase in salt (ocean salinity)

c | Typical range: 0 < evap < 2.5e-7

c | Southwest C-grid tracer point

c | Input, input/output, or output field

338 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

c--

c precip :: Precipitation in m/s

c | > 0 for decrease in salt (ocean salinity)

c | Typical range: 0 < precip < 5e-7

c | Southwest C-grid tracer point

c | Input or input/output field

c--

c snowprecip :: snow in m/s

c | > 0 for decrease in salt (ocean salinity)

c | Typical range: 0 < precip < 5e-7

c | Input or input/output field

c--

c runoff :: River and glacier runoff in m/s

c | > 0 for decrease in salt (ocean salinity)

c | Typical range: 0 < runoff < ????

c | Southwest C-grid tracer point

c | Input or input/output field

c | !!! WATCH OUT: Default exf_inscal_runoff !!!

c | !!! in exf_readparms.F is not 1.0 !!!

c--

c swdown :: Downward shortwave radiation in W/m^2

c | > 0 for increase in theta (ocean warming)

c | Typical range: 0 < swdown < 450

c | Southwest C-grid tracer point

c | Input/output field

c--

c lwdown :: Downward longwave radiation in W/m^2

c | > 0 for increase in theta (ocean warming)

c | Typical range: 50 < lwdown < 450

c | Southwest C-grid tracer point

c | Input/output field

c--

c apressure :: Atmospheric pressure field in N/m^2

c | > 0 for ????

c | Typical range: ???? < apressure < ????

c | Southwest C-grid tracer point

c | Input field

c--

6.4.7.6 Key subroutines

Top-level routine: exf getforcing.F

C !CALLING SEQUENCE:

c ...

c exf_getforcing (TOP LEVEL ROUTINE)

c |

c |-- exf_getclim (get climatological fields used e.g. for relax.)

c | |--- exf_set_climsst (relax. to 2-D SST field)

c | |--- exf_set_climsss (relax. to 2-D SSS field)

c | o

c |

c |-- exf_getffields <- this one does almost everything

c | | 1. reads in fields, either flux or atmos. state,

c | | depending on CPP options (for each variable two fields

c | | consecutive in time are read in and interpolated onto

c | | current time step).

c | | 2. If forcing is atmos. state and control is atmos. state,

c | | then the control variable anomalies are read here via ctrl_get_gen

c | | (atemp, aqh, precip, swflux, swdown, uwind, vwind).

c | | If forcing and control are fluxes, then

c | | controls are added later.

c | o

c |

c |-- exf_radiation

c | | Compute net or downwelling radiative fluxes via

c | | Stefan-Boltzmann law in case only one is known.

c | o

6.4. OCEAN PACKAGES 339

c |-- exf_wind

c | | Computes wind speed and stresses, if required.

c | o

c |

c |-- exf_bulkformulae

c | | Compute air-sea buoyancy fluxes from

c | | atmospheric state following Large and Pond, JPO, 1981/82

c | o

c |

c |-- < hflux is sum of sensible, latent, longwave rad. >

c |-- < sflux is sum of evap. minus precip. minus runoff >

c |

c |-- exf_getsurfacefluxes

c | If forcing and control is flux, then the

c | control vector anomalies are read here via ctrl_get_gen

c | (hflux, sflux, ustress, vstress)

c |

c |-- < update tile edges here >

c |

c |-- exf_check_range

c | | Check whether read fields are within assumed range

c | | (may capture mismatches in units)

c | o

c |

c |-- < add shortwave to hflux for diagnostics >

c |

c |-- exf_diagnostics_fill

c | | Do EXF-related diagnostics output here.

c | o

c |

c |-- exf_mapfields

c | | Forcing fields from exf package are mapped onto

c | | mitgcm forcing arrays.

c | | Mapping enables a runtime rescaling of fields

c | o

C o

Radiation calculation: exf radiation.F

Wind speed and stress calculation: exf wind.F

Bulk formula: exf bulkformulae.F

Generic I/O: exf set gen.F

Interpolation: exf interp.F

Header routines

6.4.7.7 EXF diagnostics

Diagnostics output is available via the diagnostics package (see Section 7.1). Available output fields are
summarized in Table 6.12.

6.4.7.8 Experiments and tutorials that use exf

• Global Ocean experiment, in global with exf verification directory

• Labrador Sea experiment, in lab sea verification directory

6.4.7.9 References

340 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

---------+----+----+----------------+-----------------

<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

---------+----+----+----------------+-----------------

EXFhs | 1 | SM | W/m^2 | Sensible heat flux into ocean, >0 increases theta

EXFhl | 1 | SM | W/m^2 | Latent heat flux into ocean, >0 increases theta

EXFlwnet| 1 | SM | W/m^2 | Net upward longwave radiation, >0 decreases theta

EXFswnet| 1 | SM | W/m^2 | Net upward shortwave radiation, >0 decreases theta

EXFlwdn | 1 | SM | W/m^2 | Downward longwave radiation, >0 increases theta

EXFswdn | 1 | SM | W/m^2 | Downward shortwave radiation, >0 increases theta

EXFqnet | 1 | SM | W/m^2 | Net upward heat flux (turb+rad), >0 decreases theta

EXFtaux | 1 | SU | N/m^2 | zonal surface wind stress, >0 increases uVel

EXFtauy | 1 | SV | N/m^2 | meridional surface wind stress, >0 increases vVel

EXFuwind| 1 | SM | m/s | zonal 10-m wind speed, >0 increases uVel

EXFvwind| 1 | SM | m/s | meridional 10-m wind speed, >0 increases uVel

EXFwspee| 1 | SM | m/s | 10-m wind speed modulus (>= 0)

EXFatemp| 1 | SM | degK | surface (2-m) air temperature

EXFaqh | 1 | SM | kg/kg | surface (2-m) specific humidity

EXFevap | 1 | SM | m/s | evaporation, > 0 increases salinity

EXFpreci| 1 | SM | m/s | evaporation, > 0 decreases salinity

EXFsnow | 1 | SM | m/s | snow precipitation, > 0 decreases salinity

EXFempmr| 1 | SM | m/s | net upward freshwater flux, > 0 increases salinity

EXFpress| 1 | SM | N/m^2 | atmospheric pressure field

Table 6.12:

6.4.8 CAL: The calendar package

Authors: Christian Eckert and Patrick Heimbach

This calendar tool was originally intended to enable the use of absolute dates (Gregorian Calendar
dates) in MITgcm. There is, however, a fair number of routines that can be used independently of
the main MITgcm executable. After some minor modifications the whole package can be used either
as a stand-alone calendar or in connection with any dynamical model that needs calendar dates. Some
straightforward extensions are still pending e.g. the availability of the Julian Calendar, to be able to
resolve fractions of a second, and to have a time- step that is longer than one day.

6.4.8.1 Basic assumptions for the calendar tool

It is assumed that the SMALLEST TIME INTERVAL to be resolved is ONE SECOND.

Further assumptions are that there is an INTEGER NUMBER OF MODEL STEPS EACH DAY,
and that AT LEAST ONE STEP EACH DAY is made.

Not each individual routine depends on these assumptions; there are only a few places where they
enter.

6.4.8.2 Format of calendar dates

In this calendar tool a complete date specification is defined as the following integer array:

c integer date(4)

c

c (yyyymmdd, hhmmss, leap_year, dayofweek)

c

c date(1) = yyyymmdd <-- Year-Month-Day

c date(2) = hhmmss <-- Hours-Minutes-Seconds

c date(3) = leap_year <-- Leap Year/No Leap Year

c date(4) = dayofweek <-- Day of the Week

c

c leap_year is either equal to 1 (normal year)

c or equal to 2 (leap year)

c

c dayofweek has a range of 1 to 7.

6.4. OCEAN PACKAGES 341

In case the Gregorian Calendar is used, the first day of the week is Friday, since day of the Gregorian
Calendar was Friday, 15 Oct. 1582. As a date array this date would be specified as

c refdate(1) = 15821015

c refdate(2) = 0

c refdate(3) = 1

c refdate(4) = 1

6.4.8.3 Calendar dates and time intervals

Subtracting calendar dates yields time intervals. Time intervals have the following format:

c integer datediff(4)

c

c datediff(1) = # Days

c datediff(2) = hhmmss

c datediff(3) = 0

c datediff(4) = -1

Such time intervals can be added to or can be subtracted from calendar dates. Time intervals can be
added to and be subtracted from each other.

6.4.8.4 Using the calendar together with MITgcm

Each routine has as an argument the thread number that it is belonging to, even if this number is not
used in the routine itself.

In order to include the calendar tool into the MITgcm setup the MITgcm subroutine ”initialise.F”
or the routine ”initilise fixed.F”, depending on the MITgcm release, has to be modified in the following
way:

c #ifdef ALLOW_CALENDAR

c C-- Initialise the calendar package.

c #ifdef USE_CAL_NENDITER

c CALL cal_Init(

c I startTime,

c I endTime,

c I deltaTclock,

c I nIter0,

c I nEndIter,

c I nTimeSteps,

c I myThid

c &)

c #else

c CALL cal_Init(

c I startTime,

c I endTime,

c I deltaTclock,

c I nIter0,

c I nTimeSteps,

c I myThid

c &)

c #endif

c _BARRIER

c #endif

It is useful to have the CPP flag ALLOW CALENDAR in order to switch from the usual MITgcm
setup to the one that includes the calendar tool. The CPP flag USE CAL NENDITER has been intro-
duced in order to enable the use of the calendar for MITgcm releases earlier than checkpoint 25 which
do not have the global variable *nEndIter*.

342 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.4.8.5 The individual calendars

Simple model calendar:
This calendar can be used by defining

c TheCalendar=’model’

in the calendar’s data file ”data.cal”.
In this case a year is assumed to have 360 days. The model year is divided into 12 months with 30

days each.
Gregorian Calendar:
This calendar can be used by defining

c TheCalendar=’gregorian’

in the calendar’s data file ”data.cal”.

6.4.8.6 Short routine description

c o cal_Init - Initialise the calendar. This is the interface

c to MITgcm.

c

c o cal_Set - Sets the calendar according to the user

c specifications.

c

c o cal_GetDate - Given the model’s current timestep or the

c model’s current time return the corresponding

c calendar date.

c

c o cal_FullDate - Complete a date specification (leap year and

c day of the week).

c

c o cal_IsLeap - Determine whether a given year is a leap year.

c

c o cal_TimePassed - Determine the time passed between two dates.

c

c o cal_AddTime - Add a time interval either to a time interval

c or to a date.

c

c o cal_TimeInterval - Given a time interval return the corresponding

c date array.

c

c o cal_SubDates - Determine the time interval between two dates

c or between two time intervals.

c

c o cal_ConvDate - Decompose a date array or a time interval

c array into its components.

c

c o cal_CopyDate - Copy a date array or a time interval array to

c another array.

c

c o cal_CompDates - Compare two calendar dates or time intervals.

c

c o cal_ToSeconds - Given a time interval array return the number

c of seconds.

c

c o cal_WeekDay - Return the weekday as a string given the

c calendar date.

c

c o cal_NumInts - Return the number of time intervals between two

c given dates.

c

c o cal_StepsPerDay - Given an iteration number or the current

c integration time return the number of time

c steps to integrate in the current calendar day.

c

c o cal_DaysPerMonth - Given an iteration number or the current

c integration time return the number of days

6.4. OCEAN PACKAGES 343

c to integrate in this calendar month.

c

c o cal_MonthsPerYear - Given an iteration number or the current

c integration time return the number of months

c to integrate in the current calendar year.

c

c o cal_StepsForDay - Given the integration day return the number

c of steps to be integrated, the first step,

c and the last step in the day specified. The

c first and the last step refer to the total

c number of steps (1, ... , cal_IntSteps).

c

c o cal_DaysForMonth - Given the integration month return the number

c of days to be integrated, the first day,

c and the last day in the month specified. The

c first and the last day refer to the total

c number of steps (1, ... , cal_IntDays).

c

c o cal_MonthsForYear - Given the integration year return the number

c of months to be integrated, the first month,

c and the last month in the year specified. The

c first and the last step refer to the total

c number of steps (1, ... , cal_IntMonths).

c

c o cal_Intsteps - Return the number of calendar years that are

c affected by the current integration.

c

c o cal_IntDays - Return the number of calendar days that are

c affected by the current integration.

c

c o cal_IntMonths - Return the number of calendar months that are

c affected by the current integration.

c

c o cal_IntYears - Return the number of calendar years that are

c affected by the current integration.

c

c o cal_nStepDay - Return the number of time steps that can be

c performed during one calendar day.

c

c o cal_CheckDate - Do some simple checks on a date array or on a

c time interval array.

c

c o cal_PrintError - Print error messages according to the flags

c raised by the calendar routines.

c

c o cal_PrintDate - Print a date array in some format suitable for

c MITgcm’s protocol output.

c

c o cal_TimeStamp - Given the time and the iteration number return

c the date and print all the above numbers.

c

c o cal_Summary - List all the setttings of the calendar tool.

6.4.8.7 Experiments and tutorials that use cal

• Global ocean experiment in global with exf verification directory.

• Labrador Sea experiment in lab sea verification directory.

344 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.5 Atmosphere Packages

6.5.1 Atmospheric Intermediate Physics: AIM

Note: The folowing document below describes the aim v23 package that is based on the version v23 of
the SPEEDY code (Molteni [2003]).

6.5.1.1 Key subroutines, parameters and files

6.5.1.2 AIM Diagnostics

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

DIABT | 5 |SM ML |K/s |Pot. Temp. Tendency (Mass-Weighted) from Diabatic Processes

DIABQ | 5 |SM ML |g/kg/s |Spec.Humid. Tendency (Mass-Weighted) from Diabatic Processes

RADSW | 5 |SM ML |K/s |Temperature Tendency due to Shortwave Radiation (TT_RSW)

RADLW | 5 |SM ML |K/s |Temperature Tendency due to Longwave Radiation (TT_RLW)

DTCONV | 5 |SM MR |K/s |Temperature Tendency due to Convection (TT_CNV)

TURBT | 5 |SM ML |K/s |Temperature Tendency due to Turbulence in PBL (TT_PBL)

DTLS | 5 |SM ML |K/s |Temperature Tendency due to Large-scale condens. (TT_LSC)

DQCONV | 5 |SM MR |g/kg/s |Spec. Humidity Tendency due to Convection (QT_CNV)

TURBQ | 5 |SM ML |g/kg/s |Spec. Humidity Tendency due to Turbulence in PBL (QT_PBL)

DQLS | 5 |SM ML |g/kg/s |Spec. Humidity Tendency due to Large-Scale Condens. (QT_LSC)

TSR | 1 |SM P U1 |W/m^2 |Top-of-atm. net Shortwave Radiation (+=dw)

OLR | 1 |SM P U1 |W/m^2 |Outgoing Longwave Radiation (+=up)

RADSWG | 1 |SM P L1 |W/m^2 |Net Shortwave Radiation at the Ground (+=dw)

RADLWG | 1 |SM L1 |W/m^2 |Net Longwave Radiation at the Ground (+=up)

HFLUX | 1 |SM L1 |W/m^2 |Sensible Heat Flux (+=up)

EVAP | 1 |SM L1 |g/m^2/s |Surface Evaporation (g/m2/s)

PRECON | 1 |SM P L1 |g/m^2/s |Convective Precipitation (g/m2/s)

PRECLS | 1 |SM M1 |g/m^2/s |Large Scale Precipitation (g/m2/s)

CLDFRC | 1 |SM P M1 |0-1 |Total Cloud Fraction (0-1)

CLDPRS | 1 |SM PC167M1 |0-1 |Cloud Top Pressure (normalized)

CLDMAS | 5 |SM P LL |kg/m^2/s |Cloud-base Mass Flux (kg/m^2/s)

DRAG | 5 |SM P LL |kg/m^2/s |Surface Drag Coefficient (kg/m^2/s)

WINDS | 1 |SM P L1 |m/s |Surface Wind Speed (m/s)

TS | 1 |SM L1 |K |near Surface Air Temperature (K)

QS | 1 |SM P L1 |g/kg |near Surface Specific Humidity (g/kg)

ENPREC | 1 |SM M1 |W/m^2 |Energy flux associated with precip. (snow, rain Temp)

ALBVISDF| 1 |SM P L1 |0-1 |Surface Albedo (Visible band) (0-1)

DWNLWG | 1 |SM P L1 |W/m^2 |Downward Component of Longwave Flux at the Ground (+=dw)

SWCLR | 5 |SM ML |K/s |Clear Sky Temp. Tendency due to Shortwave Radiation

LWCLR | 5 |SM ML |K/s |Clear Sky Temp. Tendency due to Longwave Radiation

TSRCLR | 1 |SM P U1 |W/m^2 |Clear Sky Top-of-atm. net Shortwave Radiation (+=dw)

OLRCLR | 1 |SM P U1 |W/m^2 |Clear Sky Outgoing Longwave Radiation (+=up)

SWGCLR | 1 |SM P L1 |W/m^2 |Clear Sky Net Shortwave Radiation at the Ground (+=dw)

LWGCLR | 1 |SM L1 |W/m^2 |Clear Sky Net Longwave Radiation at the Ground (+=up)

UFLUX | 1 |UM 184L1 |N/m^2 |Zonal Wind Surface Stress (N/m^2)

VFLUX | 1 |VM 183L1 |N/m^2 |Meridional Wind Surface Stress (N/m^2)

DTSIMPL | 1 |SM P L1 |K |Surf. Temp Change after 1 implicit time step

6.5.1.3 Experiments and tutorials that use aim

• Global atmosphere experiment in aim.5l cs verification directory.

6.5. ATMOSPHERE PACKAGES 345

6.5.2 Land package

6.5.2.1 Introduction

This package provides a simple land model based on Rong Zhang [e-mail:roz@gfdl.noaa.gov] 2 layers
model (see documentation below).

It is primarily implemented for AIM (v23) atmospheric physics but could be adapted to work with
a different atmospheric physics. Two subroutines (aim aim2land.F aim land2aim.F in pkg/aim v23) are
used as interface with AIM physics.

Number of layers is a parameter (land nLev in LAND SIZE.h) and can be changed.

Note on Land Model
date: June 1999

author: Rong Zhang

6.5.2.2 Equations and Key Parameters

This is a simple 2-layer land model. The top layer depth z1 = 0.1m, the second layer depth z2 = 4m.
Let Tg1, Tg2 be the temperature of each layer, W1,W2 be the soil moisture of each layer. The field

capacity f1, f2 are the maximum water amount in each layer, so Wi is the ratio of available water to field
capacity. fi = γzi, γ = 0.24 is the field capapcity per meter soil, so f1 = 0.024m, f2 = 0.96m.

The land temperature is determined by total surface downward heat flux F,

z1C1
dTg1

dt
= F − λ

Tg1 − Tg2

(z1 + z2)/2
(6.32)

z2C2
dTg2

dt
= λ

Tg1 − Tg2

(z1 + z2)/2
(6.33)

here C1, C2 are the heat capacity of each layer , λ is the thermal conductivity, λ = 0.42Wm−1K−1.

C1 = CwW1γ + Cs (6.34)

C2 = CwW2γ + Cs (6.35)

Cw, Cs are the heat capacity of water and dry soil respectively. Cw = 4.2 × 106Jm−3K−1, Cs =
1.13 × 106Jm−3K−1.

The soil moisture is determined by precipitation P (m/s),surface evaporation E(m/s) and runoff
R(m/s).

dW1

dt
=
P − E −R

f1
+
W2 −W1

τ
(6.36)

τ = 2 days is the time constant for diffusion of moisture between layers.

dW2

dt
=
f1
f2

W1 −W2

τ
(6.37)

In the code, R = 0 gives better result, W1,W2 are set to be within [0, 1]. If W1 is greater than 1,
then let δW1 = W1 − 1,W1 = 1 and W2 = W2 + pδW1

f1

f2
, i.e. the runoff of top layer is put into second

layer. p = 0.5 is the fraction of top layer runoff that is put into second layer.
The time step is 1 hour, it takes several years to reach equalibrium offline.

346 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.5.2.3 Land diagnostics

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

GrdSurfT| 1 |SM Lg |degC |Surface Temperature over land

GrdTemp | 2 |SM MG |degC |Ground Temperature at each level

GrdEnth | 2 |SM MG |J/m3 |Ground Enthalpy at each level

GrdWater| 2 |SM P MG |0-1 |Ground Water (vs Field Capacity) Fraction at each level

LdSnowH | 1 |SM P Lg |m |Snow Thickness over land

LdSnwAge| 1 |SM P Lg |s |Snow Age over land

RUNOFF | 1 |SM L1 |m/s |Run-Off per surface unit

EnRunOff| 1 |SM L1 |W/m^2 |Energy flux associated with run-Off

landHFlx| 1 |SM Lg |W/m^2 |net surface downward Heat flux over land

landPmE | 1 |SM Lg |kg/m^2/s |Precipitation minus Evaporation over land

ldEnFxPr| 1 |SM Lg |W/m^2 |Energy flux (over land) associated with Precip (snow,rain)

6.5.2.4 References

Hansen J. et al. Efficient three-dimensional global models for climate studies: models I and II. Monthly
Weather Review, vol.111, no.4, pp. 609-62, 1983

6.5.2.5 Experiments and tutorials that use land

• Global atmosphere experiment in aim.5l cs verification directory.

6.5. ATMOSPHERE PACKAGES 347

6.5.3 Fizhi: High-end Atmospheric Physics

6.5.3.1 Introduction

The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art physical pa-
rameterizations for atmospheric radiation, cumulus convection, atmospheric boundary layer turbulence,
and land surface processes. The collection of atmospheric physics parameterizations were originally
used together as part of the GEOS-3 (Goddard Earth Observing System-3) GCM developed at the
NASA/Goddard Global Modelling and Assimilation Office (GMAO).

6.5.3.2 Equations

Moist Convective Processes:

Sub-grid and Large-scale Convection Sub-grid scale cumulus convection is parameterized using the
Relaxed Arakawa Schubert (RAS) scheme of Moorthi and Suarez [1992], which is a linearized Arakawa
Schubert type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is
identified by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale
properties.

The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are the
dry static energy, s = cpT + gz, and the moist static energy, h = cpT + gz + Lq. The conceptual model
behind RAS depicts each subensemble as a rising plume cloud, entraining mass from the environment
during ascent, and detraining all cloud air at the level of neutral buoyancy. RAS assumes that the
normalized cloud mass flux, η, normalized by the cloud base mass flux, is a linear function of height,
expressed as:

∂η(z)

∂z
= λ or

∂η(P κ)

∂P κ
= −cp

g
θλ

where we have used the hydrostatic equation written in the form:

∂z

∂P κ
= −cp

g
θ

The entrainment parameter, λ, characterizes a particular subensemble based on its detrainment level,
and is obtained by assuming that the level of detrainment is the level of neutral buoyancy, ie., the level
at which the moist static energy of the cloud, hc, is equal to the saturation moist static energy of the
environment, h∗. Following Moorthi and Suarez [1992], λ may be written as

λ =
hB − h∗D

cp

g

∫ PB

PD
θ(h∗D − h)dP κ

,

where the subscript B refers to cloud base, and the subscript D refers to the detrainment level.
The convective instability is measured in terms of the cloud work function A, defined as the rate of

change of cumulus kinetic energy. The cloud work function is related to the buoyancy, or the difference
between the moist static energy in the cloud and in the environment:

A =

∫ PB

PD

η

1 + γ

[
hc − h∗

P κ

]
dP κ

where γ is L
cp

∂q∗

∂T obtained from the Claussius Clapeyron equation, and the subscript c refers to the

value inside the cloud.
To determine the cloud base mass flux, the rate of change of A in time due to dissipation by the clouds

is assumed to approximately balance the rate of change of A due to the generation by the large scale.
This is the quasi-equilibrium assumption, and results in an expression for mB:

mB =
− dA

dt

∣∣
ls

K

where K is the cloud kernel, defined as the rate of change of the cloud work function per unit cloud
base mass flux, and is currently obtained by analytically differentiating the expression for A in time. The

348 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

rate of change of A due to the generation by the large scale can be written as the difference between
the current A(t + ∆t) and its equillibrated value after the previous convective time step A(t), divided
by the time step. A(t) is approximated as some critical Acrit, computed by Lord (1982) from insitu
observations.

The predicted convective mass fluxes are used to solve grid-scale temperature and moisture budget
equations to determine the impact of convection on the large scale fields of temperature (through latent
heating and compensating subsidence) and moisture (through precipitation and detrainment):

∂θ

∂t

∣∣∣∣
c

= α
mB

cpP κ
η
∂s

∂p

and
∂q

∂t

∣∣∣∣
c

= α
mB

L
η(
∂h

∂p
− ∂s

∂p
)

where θ = T
P κ , P = (p/p0), and α is the relaxation parameter.

As an approximation to a full interaction between the different allowable subensembles, many clouds
are simulated frequently, each modifying the large scale environment some fraction α of the total adjust-
ment. The parameterization thereby “relaxes” the large scale environment towards equillibrium.

In addition to the RAS cumulus convection scheme, the fizhi package employs a Kessler-type scheme for
the re-evaporation of falling rain (Sud and Molod [1988]), which correspondingly adjusts the temperature
assuming h is conserved. RAS in its current formulation assumes that all cloud water is deposited into
the detrainment level as rain. All of the rain is available for re-evaporation, which begins in the level
below detrainment. The scheme accounts for some microphysics such as the rainfall intensity, the drop
size distribution, as well as the temperature, pressure and relative humidity of the surrounding air. The
fraction of the moisture deficit in any model layer into which the rain may re-evaporate is controlled
by a free parameter, which allows for a relatively efficient re-evaporation of liquid precipitate and larger
rainout for frozen precipitation.

Due to the increased vertical resolution near the surface, the lowest model layers are averaged to
provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is invoked (every ten simulated minutes),
a number of randomly chosen subensembles are checked for the possibility of convection, from just above
cloud base to 10 mb.

Supersaturation or large-scale precipitation is initiated in the fizhi package whenever the relative
humidity in any grid-box exceeds a critical value, currently 100 %. The large-scale precipitation re-
evaporates during descent to partially saturate lower layers in a process identical to the re-evaporation
of convective rain.

Cloud Formation Convective and large-scale cloud fractons which are used for cloud-radiative interac-
tions are determined diagnostically as part of the cumulus and large-scale parameterizations. Convective
cloud fractions produced by RAS are proportional to the detrained liquid water amount given by

FRAS = min

[
lRAS

lc
, 1.0

]

where lc is an assigned critical value equal to 1.25 g/kg. A memory is associated with convective
clouds defined by:

Fn
RAS = min

[
FRAS + (1 − ∆tRAS

τ
)Fn−1

RAS , 1.0

]

where FRAS is the instantanious cloud fraction and Fn−1
RAS is the cloud fraction from the previous RAS

timestep. The memory coefficient is computed using a RAS cloud timescale, τ , equal to 1 hour. RAS
cloud fractions are cleared when they fall below 5 %.

Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative humidity:

FLS = min

[(
RH −RHc

1 −RHc

)2

, 1.0

]

where

6.5. ATMOSPHERE PACKAGES 349

RHc = 1 − s(1 − s)(2 −
√

3 + 2
√

3 s)r

s = p/psurf

r =

(
1.0 −RHmin

α

)

RHmin = 0.75

α = 0.573285.

These cloud fractions are suppressed, however, in regions where the convective sub-cloud layer is
conditionally unstable. The functional form of RHc is shown in Figure (6.9).

Figure 6.9: Critical Relative Humidity for Clouds.

The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:

FCLD = max [FRAS , FLS] .

Finally, cloud fractions are time-averaged between calls to the radiation packages.
Radiation:
The parameterization of radiative heating in the fizhi package includes effects from both shortwave

and longwave processes. Radiative fluxes are calculated at each model edge-level in both up and down
directions. The heating rates/cooling rates are then obtained from the vertical divergence of the net
radiative fluxes.

The net flux is

F = F ↑ − F ↓

350 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

where F is the net flux, F ↑ is the upward flux and F ↓ is the downward flux.
The heating rate due to the divergence of the radiative flux is given by

∂ρcpT

∂t
= −∂F

∂z

or
∂T

∂t
=

g

cpπ

∂F

∂σ

where g is the accelation due to gravity and cp is the heat capacity of air at constant pressure.
The time tendency for Longwave Radiation is updated every 3 hours. The time tendency for Short-

wave Radiation is updated once every three hours assuming a normalized incident solar radiation, and
subsequently modified at every model time step by the true incident radiation. The solar constant value
used in the package is equal to 1365 W/m2 and a CO2 mixing ratio of 330 ppm. For the ozone mixing
ratio, monthly mean zonally averaged climatological values specified as a function of latitude and height
(Rosenfield et al. [1987]) are linearly interpolated to the current time.

Shortwave Radiation The shortwave radiation package used in the package computes solar radiative
heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen, clouds, and aerosols and
due to the scattering by clouds, aerosols, and gases. The shortwave radiative processes are described by
Chou [1990, 1992]. This shortwave package uses the Delta-Eddington approximation to compute the bulk
scattering properties of a single layer following King and Harshvardhan (JAS, 1986). The transmittance
and reflectance of diffuse radiation follow the procedures of Sagan and Pollock (JGR, 1967) and Lacis
and Hansen [1974].

Highly accurate heating rate calculations are obtained through the use of an optimal grouping strategy
of spectral bands. By grouping the UV and visible regions as indicated in Table 6.13, the Rayleigh
scattering and the ozone absorption of solar radiation can be accurately computed in the ultraviolet
region and the photosynthetically active radiation (PAR) region. The computation of solar flux in the
infrared region is performed with a broadband parameterization using the spectrum regions shown in
Table 6.14. The solar radiation algorithm used in the fizhi package can be applied not only for climate
studies but also for studies on the photolysis in the upper atmosphere and the photosynthesis in the
biosphere.

UV and Visible Spectral Regions

Region Band Wavelength (micron)

UV-C 1. .175 - .225
2. .225 - .245

.260 - .280
3. .245 - .260

UV-B 4. .280 - .295
5. .295 - .310
6. .310 - .320

UV-A 7. .320 - .400
PAR 8. .400 - .700

Table 6.13: UV and Visible Spectral Regions used in shortwave radiation package.

Within the shortwave radiation package, both ice and liquid cloud particles are allowed to co-exist
in any of the model layers. Two sets of cloud parameters are used, one for ice paticles and the other
for liquid particles. Cloud parameters are defined as the cloud optical thickness and the effective cloud
particle size. In the fizhi package, the effective radius for water droplets is given as 10 microns, while 65
microns is used for ice particles. The absorption due to aerosols is currently set to zero.

To simplify calculations in a cloudy atmosphere, clouds are grouped into low (p > 700 mb), middle
(700 mb ≥ p > 400 mb), and high (p < 400 mb) cloud regions. Within each of the three regions, clouds
are assumed maximally overlapped, and the cloud cover of the group is the maximum cloud cover of all
the layers in the group. The optical thickness of a given layer is then scaled for both the direct (as a

6.5. ATMOSPHERE PACKAGES 351

Infrared Spectral Regions

Band Wavenumber(cm−1) Wavelength (micron)

1 1000-4400 2.27-10.0
2 4400-8200 1.22-2.27
3 8200-14300 0.70-1.22

Table 6.14: Infrared Spectral Regions used in shortwave radiation package.

function of the solar zenith angle) and diffuse beam radiation so that the grouped layer reflectance is the
same as the original reflectance. The solar flux is computed for each of eight cloud realizations possible
within this low/middle/high classification, and appropriately averaged to produce the net solar flux.

Longwave Radiation The longwave radiation package used in the fizhi package is thoroughly described
by Chou and M.J.Suarez [1994]. As described in that document, IR fluxes are computed due to absorption
by water vapor, carbon dioxide, and ozone. The spectral bands together with their absorbers and
parameterization methods, configured for the fizhi package, are shown in Table 6.15.

IR Spectral Bands

Band Spectral Range (cm−1) Absorber Method

1 0-340 H2O line T
2 340-540 H2O line T
3a 540-620 H2O line K
3b 620-720 H2O continuum S
3b 720-800 CO2 T
4 800-980 H2O line K

H2O continuum S
H2O line K

5 980-1100 H2O continuum S
O3 T

6 1100-1380 H2O line K
H2O continuum S

7 1380-1900 H2O line T
8 1900-3000 H2O line K

K: k-distribution method with linear pressure scaling
T: Table look-up with temperature and pressure scaling
S: One-parameter temperature scaling

Table 6.15: IR Spectral Bands, Absorbers, and Parameterization Method (from Chou and M.J.Suarez
[1994])

The longwave radiation package accurately computes cooling rates for the middle and lower atmo-
sphere from 0.01 mb to the surface. Errors are < 0.4 C day−1 in cooling rates and < 1% in fluxes. From
Chou and Suarez, it is estimated that the total effect of neglecting all minor absorption bands and the
effects of minor infrared absorbers such as nitrous oxide (N2O), methane (CH4), and the chlorofluorocar-
bons (CFCs), is an underestimate of ≈ 5 W/m2 in the downward flux at the surface and an overestimate
of ≈ 3 W/m2 in the upward flux at the top of the atmosphere.

Similar to the procedure used in the shortwave radiation package, clouds are grouped into three regions
catagorized as low/middle/high. The net clear line-of-site probability (P) between any two levels, p1 and
p2 (p2 > p1), assuming randomly overlapped cloud groups, is simply the product of the probabilities
within each group:

Pnet = Plow × Pmid × Phi.

352 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability
within a group is given by:

Pgroup = 1 − Fmax,

where Fmax is the maximum cloud fraction encountered between p1 and p2 within that group. For
groups and/or levels outside the range of p1 and p2, a clear line-of-site probability equal to 1 is assigned.

Cloud-Radiation Interaction The cloud fractions and diagnosed cloud liquid water produced by
moist processes within the fizhi package are used in the radiation packages to produce cloud-radiative
forcing. The cloud optical thickness associated with large-scale cloudiness is made proportional to the di-
agnosed large-scale liquid water, ℓ, detrained due to super-saturation. Two values are used corresponding
to cloud ice particles and water droplets. The range of optical thickness for these clouds is given as

0.0002 ≤ τice(mb
−1) ≤ 0.002 for 0 ≤ ℓ ≤ 2 mg/kg,

0.02 ≤ τh2o(mb
−1) ≤ 0.2 for 0 ≤ ℓ ≤ 10 mg/kg.

The partitioning, α, between ice particles and water droplets is achieved through a linear scaling in
temperature:

0 ≤ α ≤ 1 for 233.15 ≤ T ≤ 253.15.

The resulting optical depth associated with large-scale cloudiness is given as

τLS = ατh2o + (1 − α)τice.

The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as

τRAS = 0.16 mb−1.

The total optical depth in a given model layer is computed as a weighted average between the large-
scale and sub-grid scale optical depths, normalized by the total cloud fraction in the layer:

τ =

(
FRAS τRAS + FLS τLS

FRAS + FLS

)
∆p,

where FRAS and FLS are the time-averaged cloud fractions associated with RAS and large-scale
processes described in Section 6.5.3.2. The optical thickness for the longwave radiative feedback is
assumed to be 75 % of these values.

The entire Moist Convective Processes Module is called with a frequency of 10 minutes. The cloud
fraction values are time-averaged over the period between Radiation calls (every 3 hours). Therefore, in
a time-averaged sense, both convective and large-scale cloudiness can exist in a given grid-box.

Turbulence :
Turbulence is parameterized in the fizhi package to account for its contribution to the vertical exchange

of heat, moisture, and momentum. The turbulence scheme is invoked every 30 minutes, and employs
a backward-implicit iterative time scheme with an internal time step of 5 minutes. The tendencies of
atmospheric state variables due to turbulent diffusion are calculated using the diffusion equations:

∂u

∂t turb
=

∂

∂z
(−u′w′) =

∂

∂z
(Km

∂u

∂z
)

∂v

∂t turb
=

∂

∂z
(−v′w′) =

∂

∂z
(Km

∂v

∂z
)

∂T

∂t
= P κ∂θ

∂t turb
= P κ ∂

∂z
(−w′θ′) = P κ ∂

∂z
(Kh

∂θv

∂z
)

∂q

∂t turb
=

∂

∂z
(−w′q′) =

∂

∂z
(Kh

∂q

∂z
)

6.5. ATMOSPHERE PACKAGES 353

Within the atmosphere, the time evolution of second turbulent moments is explicitly modeled by
representing the third moments in terms of the first and second moments. This approach is known as a
second-order closure modeling. To simplify and streamline the computation of the second moments, the
level 2.5 assumption of Mellor and Yamada (1974) and Yamada [1977] is employed, in which only the
turbulent kinetic energy (TKE),

1

2
q2 = u′2 + v′2 + w′2,

is solved prognostically and the other second moments are solved diagnostically. The prognostic equa-
tion for TKE allows the scheme to simulate some of the transient and diffusive effects in the turbulence.
The TKE budget equation is solved numerically using an implicit backward computation of the terms
linear in q2 and is written:

d

dt
(
1

2
q2) − ∂

∂z
(
5

3
λ1q

∂

∂z
(
1

2
q2)) = −u′w′ ∂U

∂z
− v′w′

∂V

∂z
+

g

Θ0
w′θv

′ − q3

Λ1

where q is the turbulent velocity, u′, v′, w′ and θ′ are the fluctuating parts of the velocity components
and potential temperature, U and V are the mean velocity components, Θ0

−1 is the coefficient of thermal
expansion, and λ1 and Λ1 are constant multiples of the master length scale, ℓ, which is designed to be a
characteristic measure of the vertical structure of the turbulent layers.

The first term on the left-hand side represents the time rate of change of TKE, and the second term
is a representation of the triple correlation, or turbulent transport term. The first three terms on the
right-hand side represent the sources of TKE due to shear and bouyancy, and the last term on the right
hand side is the dissipation of TKE.

In the level 2.5 approach, the vertical fluxes of the scalars θv and q and the wind components u and v
are expressed in terms of the diffusion coefficients Kh and Km, respectively. In the statisically realizable
level 2.5 turbulence scheme of Helfand and Labraga [1988], these diffusion coefficients are expressed as

Kh =

{
q ℓ SH(GM , GH) for decaying turbulence
q2

qe
ℓ SH(GMe

, GHe
) for growing turbulence

and

Km =

{
q ℓ SM (GM , GH) for decaying turbulence
q2

qe
ℓ SM (GMe

, GHe
) for growing turbulence

where the subscript e refers to the value under conditions of local equillibrium (obtained from the Level
2.0 Model), ℓ is the master length scale related to the vertical structure of the atmosphere, and SM and
SH are functions of GH and GM , the dimensionless buoyancy and wind shear parameters, respectively.
Both GH and GM , and their equilibrium values GHe

and GMe
, are functions of the Richardson number:

RI =

g
θv

∂θv

∂z

(∂u
∂z)2 + (∂v

∂z)2
=

cp
∂θv

∂z
∂P κ

∂z

(∂u
∂z)2 + (∂v

∂z)2
.

Negative values indicate unstable buoyancy and shear, small positive values (< 0.2) indicate domi-
nantly unstable shear, and large positive values indicate dominantly stable stratification.

Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer, which
corresponds to the lowest GCM level (see — missing table —), are calculated using stability-dependant
functions based on Monin-Obukhov theory:

Km(surface) = Cu × u∗ = CDWs

and

Kh(surface) = Ct × u∗ = CHWs

where u∗ = CuWs is the surface friction velocity, CD is termed the surface drag coefficient, CH the heat
transfer coefficient, and Ws is the magnitude of the surface layer wind.

354 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Cu is the dimensionless exchange coefficient for momentum from the surface layer similarity functions:

Cu =
u∗
Ws

=
k

ψm

where k is the Von Karman constant and ψm is the surface layer non-dimensional wind shear given by

ψm =

∫ ζ

ζ0

φm

ζ
dζ.

Here ζ is the non-dimensional stability parameter, and φm is the similarity function of ζ which expresses
the stability dependance of the momentum gradient. The functional form of φm is specified differently
for stable and unstable layers.

Ct is the dimensionless exchange coefficient for heat and moisture from the surface layer similarity
functions:

Ct = − (w′θ′)

u∗∆θ
= − (w′q′)

u∗∆q
=

k

(ψh + ψg)

where ψh is the surface layer non-dimensional temperature gradient given by

ψh =

∫ ζ

ζ0

φh

ζ
dζ.

Here φh is the similarity function of ζ, which expresses the stability dependance of the temperature and
moisture gradients, and is specified differently for stable and unstable layers according to Helfand and
Schubert [1995].

ψg is the non-dimensional temperature or moisture gradient in the viscous sublayer, which is the
mosstly laminar region between the surface and the tops of the roughness elements, in which temperature
and moisture gradients can be quite large. Based on Yaglom and Kader [1974]:

ψg =
0.55(Pr2/3 − 0.2)

ν1/2
(h0u∗ − h0ref

u∗ref
)1/2

where Pr is the Prandtl number for air, ν is the molecular viscosity, z0 is the surface roughness length,
and the subscript ref refers to a reference value. h0 = 30z0 with a maximum value over land of 0.01

The surface roughness length over oceans is is a function of the surface-stress velocity,

z0 = c1u
3
∗ + c2u

2
∗ + c3u∗ + c4 +

c5
u∗

where the constants are chosen to interpolate between the reciprocal relation of Kondo [1975] for weak
winds, and the piecewise linear relation of Large and Pond [1981] for moderate to large winds. Roughness
lengths over land are specified from the climatology of Dorman and Sellers [1989].

For an unstable surface layer, the stability functions, chosen to interpolate between the condition of
small values of β and the convective limit, are the KEYPS function (Panofsky [1973]) for momentum,
and its generalization for heat and moisture:

φm
4 − 18ζφm

3 = 1 ; φh
2 − 18ζφh

3 = 1 .

The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind speed
approaches zero.

For a stable surface layer, the stability functions are the observationally based functions of Clarke
[1970], slightly modified for the momemtum flux:

φm =
1 + 5ζ1

1 + 0.00794ζ1(1 + 5ζ1)
; φh =

1 + 5ζ1
1 + 0.00794ζ(1 + 5ζ1)

.

The moisture flux also depends on a specified evapotranspiration coefficient, set to unity over oceans and
dependant on the climatological ground wetness over land.

Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically using
an implicit backward operator.

6.5. ATMOSPHERE PACKAGES 355

Atmospheric Boundary Layer The depth of the atmospheric boundary layer (ABL) is diagnosed
by the parameterization as the level at which the turbulent kinetic energy is reduced to a tenth of its
maximum near surface value. The vertical structure of the ABL is explicitly resolved by the lowest few
(3-8) model layers.

Surface Energy Budget The ground temperature equation is solved as part of the turbulence package
using a backward implicit time differencing scheme:

Cg
∂Tg

∂t
= Rsw −Rlw +Qice −H − LE

where Rsw is the net surface downward shortwave radiative flux and Rlw is the net surface upward
longwave radiative flux.

H is the upward sensible heat flux, given by:

H = P κρcpCHWs(θsurface − θNLAY) where : CH = CuCt

where ρ = the atmospheric density at the surface, cp is the specific heat of air at constant pressure, and
θ represents the potential temperature of the surface and of the lowest σ-level, respectively.

The upward latent heat flux, LE, is given by

LE = ρβLCHWs(qsurface − qNLAY) where : CH = CuCt

where β is the fraction of the potential evapotranspiration actually evaporated, L is the latent heat of
evaporation, and qsurface and qNLAY are the specific humidity of the surface and of the lowest σ-level,
respectively.

The heat conduction through sea ice, Qice, is given by

Qice =
Cti

Hi
(Ti − Tg)

where Cti is the thermal conductivity of ice, Hi is the ice thickness, assumed to be 3 m where sea ice is
present, Ti is 273 degrees Kelvin, and Tg is the surface temperature of the ice.

Cg is the total heat capacity of the ground, obtained by solving a heat diffusion equation for the
penetration of the diurnal cycle into the ground (Blackadar [1977]), and is given by:

Cg =

√
λCs

2ω
=

√
(0.386 + 0.536W + 0.15W 2)2 × 10−3

86400

2π
.

Here, the thermal conductivity, λ, is equal to 2 × 10−3 ly
sec

cm
K , the angular velocity of the earth, ω, is

written as 86400 sec/day divided by 2π radians/day, and the expression for Cs, the heat capacity per
unit volume at the surface, is a function of the ground wetness, W .

Land Surface Processes:

Surface Type The fizhi package surface Types are designated using the Koster-Suarez (Koster and
Suarez [1991, 1992]) Land Surface Model (LSM) mosaic philosophy which allows multiple “tiles”, or
multiple surface types, in any one grid cell. The Koster-Suarez LSM surface type classifications are
shown in Table 6.16. The surface types and the percent of the grid cell occupied by any surface type
were derived from the surface classification of Defries and Townshend [1994], and information about
the location of permanent ice was obtained from the classifications of Dorman and Sellers [1989]. The
surface type map for a 1◦ grid is shown in Figure 6.10. The determination of the land or sea category of
surface type was made from NCAR’s 10 minute by 10 minute Navy topography dataset, which includes
information about the percentage of water-cover at any point. The data were averaged to the model’s
grid resolutions, and any grid-box whose averaged water percentage was ≥ 60% was defined as a water
point. The Land-Water designation was further modified subjectively to ensure sufficient representation
from small but isolated land and water regions.

Surface Roughness The surface roughness length over oceans is computed iteratively with the wind
stress by the surface layer parameterization (Helfand and Schubert [1995]). It employs an interpolation
between the functions of Large and Pond [1981] for high winds and of Kondo [1975] for weak winds.

356 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Surface Type Designation

Type Vegetation Designation

1 Broadleaf Evergreen Trees
2 Broadleaf Deciduous Trees
3 Needleleaf Trees
4 Ground Cover
5 Broadleaf Shrubs
6 Dwarf Trees (Tundra)
7 Bare Soil
8 Desert (Bright)
9 Glacier
10 Desert (Dark)
100 Ocean

Table 6.16: Surface type designations.

Figure 6.10: Surface Type Combinations.

6.5. ATMOSPHERE PACKAGES 357

Albedo The surface albedo computation, described in Koster and Suarez [1991], employs the “two
stream” approximation used in Sellers’ (1987) Simple Biosphere (SiB) Model which distinguishes between
the direct and diffuse albedos in the visible and in the near infra-red spectral ranges. The albedos are
functions of the observed leaf area index (a description of the relative orientation of the leaves to the
sun), the greenness fraction, the vegetation type, and the solar zenith angle. Modifications are made to
account for the presence of snow, and its depth relative to the height of the vegetation elements.

Gravity Wave Drag The fizhi package employs the gravity wave drag scheme of Zhou et al. [1995]).
This scheme is a modified version of Vernekar et al. (1992), which was based on Alpert et al. (1988) and
Helfand et al. (1987). In this version, the gravity wave stress at the surface is based on that derived by
Pierrehumbert (1986) and is given by:

|~τsfc| =
ρU3

Nℓ∗

(
F 2

r

1 + F 2
r

)
, (6.38)

where Fr = Nh/U is the Froude number, N is the Brunt - Väisälä frequency, U is the surface
wind speed, h is the standard deviation of the sub-grid scale orography, and ℓ∗ is the wavelength of the
monochromatic gravity wave in the direction of the low-level wind. A modification introduced by Zhou
et al. allows for the momentum flux to escape through the top of the model, although this effect is small
for the current 70-level model. The subgrid scale standard deviation is defined by h, and is not allowed
to exceed 400 m.

The effects of using this scheme within a GCM are shown in Takacs and Suarez [1996]. Experiments
using the gravity wave drag parameterization yielded significant and beneficial impacts on both the time-
mean flow and the transient statistics of the a GCM climatology, and have eliminated most of the worst
dynamically driven biases in the a GCM simulation. An examination of the angular momentum budget
during climate runs indicates that the resulting gravity wave torque is similar to the data-driven torque
produced by a data assimilation which was performed without gravity wave drag. It was shown that the
inclusion of gravity wave drag results in large changes in both the mean flow and in eddy fluxes. The
result is a more accurate simulation of surface stress (through a reduction in the surface wind strength),
of mountain torque (through a redistribution of mean sea-level pressure), and of momentum convergence
(through a reduction in the flux of westerly momentum by transient flow eddies).

Boundary Conditions and other Input Data:

Required fields which are not explicitly predicted or diagnosed during model execution must either
be prescribed internally or obtained from external data sets. In the fizhi package these fields include: sea
surface temperature, sea ice estent, surface geopotential variance, vegetation index, and the radiation-
related background levels of: ozone, carbon dioxide, and stratospheric moisture.

Boundary condition data sets are available at the model’s resolutions for either climatological or yearly
varying conditions. Any frequency of boundary condition data can be used in the fizhi package; however,
the current selection of data is summarized in Table 6.17. The time mean values are interpolated during
each model timestep to the current time.

Fizhi Input Datasets

Variable Frequency Years

Sea Ice Extent monthly 1979-current, climatology
Sea Ice Extent weekly 1982-current, climatology
Sea Surface Temperature monthly 1979-current, climatology
Sea Surface Temperature weekly 1982-current, climatology
Zonally Averaged Upper-Level Moisture monthly climatology
Zonally Averaged Ozone Concentration monthly climatology

Table 6.17: Boundary conditions and other input data used in the fizhi package. Also noted are the
current years and frequencies available.

358 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Topography and Topography Variance Surface geopotential heights are provided from an averaging
of the Navy 10 minute by 10 minute dataset supplied by the National Center for Atmospheric Research
(NCAR) to the model’s grid resolution. The original topography is first rotated to the proper grid-
orientation which is being run, and then averages the data to the model resolution.

The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute
data to the model’s resolution and re-interpolating back to the 10 minute by 10 minute resolution. The
sub-grid scale variance is constructed based on this smoothed dataset.

Upper Level Moisture The fizhi package uses climatological water vapor data above 100 mb from the
Stratospheric Aerosol and Gas Experiment (SAGE) as input into the model’s radiation packages. The
SAGE data is archived as monthly zonal means at 5◦ latitudinal resolution. The data is interpolated to
the model’s grid location and current time, and blended with the GCM’s moisture data. Below 300 mb,
the model’s moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb, a
linear interpolation (in pressure) is performed using the data from SAGE and the GCM.

6.5.3.3 Fizhi Diagnostics

Fizhi Diagnostic Menu:

NAME UNITS LEVELS DESCRIPTION

UFLUX Newton/m2 1 Surface U-Wind Stress on the atmosphere
VFLUX Newton/m2 1 Surface V-Wind Stress on the atmosphere
HFLUX Watts/m2 1 Surface Flux of Sensible Heat
EFLUX Watts/m2 1 Surface Flux of Latent Heat
QICE Watts/m2 1 Heat Conduction through Sea-Ice
RADLWG Watts/m2 1 Net upward LW flux at the ground
RADSWG Watts/m2 1 Net downward SW flux at the ground
RI dimensionless Nrphys Richardson Number
CT dimensionless 1 Surface Drag coefficient for T and Q
CU dimensionless 1 Surface Drag coefficient for U and V
ET m2/sec Nrphys Diffusivity coefficient for T and Q
EU m2/sec Nrphys Diffusivity coefficient for U and V
TURBU m/sec/day Nrphys U-Momentum Changes due to Turbulence
TURBV m/sec/day Nrphys V-Momentum Changes due to Turbulence
TURBT deg/day Nrphys Temperature Changes due to Turbulence
TURBQ g/kg/day Nrphys Specific Humidity Changes due to Turbulence
MOISTT deg/day Nrphys Temperature Changes due to Moist Processes
MOISTQ g/kg/day Nrphys Specific Humidity Changes due to Moist Processes
RADLW deg/day Nrphys Net Longwave heating rate for each level
RADSW deg/day Nrphys Net Shortwave heating rate for each level
PREACC mm/day 1 Total Precipitation
PRECON mm/day 1 Convective Precipitation
TUFLUX Newton/m2 Nrphys Turbulent Flux of U-Momentum
TVFLUX Newton/m2 Nrphys Turbulent Flux of V-Momentum
TTFLUX Watts/m2 Nrphys Turbulent Flux of Sensible Heat

6.5. ATMOSPHERE PACKAGES 359

NAME UNITS LEVELS DESCRIPTION

TQFLUX Watts/m2 Nrphys Turbulent Flux of Latent Heat
CN dimensionless 1 Neutral Drag Coefficient
WINDS m/sec 1 Surface Wind Speed
DTSRF deg 1 Air/Surface virtual temperature difference
TG deg 1 Ground temperature
TS deg 1 Surface air temperature (Adiabatic from lowest

model layer)
DTG deg 1 Ground temperature adjustment
QG g/kg 1 Ground specific humidity
QS g/kg 1 Saturation surface specific humidity
TGRLW deg 1 Instantaneous ground temperature used as input

to the Longwave radiation subroutine
ST4 Watts/m2 1 Upward Longwave flux at the ground (σT 4)
OLR Watts/m2 1 Net upward Longwave flux at the top of the model
OLRCLR Watts/m2 1 Net upward clearsky Longwave flux at the top of

the model
LWGCLR Watts/m2 1 Net upward clearsky Longwave flux at the ground
LWCLR deg/day Nrphys Net clearsky Longwave heating rate for each level
TLW deg Nrphys Instantaneous temperature used as input to the

Longwave radiation subroutine
SHLW g/g Nrphys Instantaneous specific humidity used as input to

the Longwave radiation subroutine
OZLW g/g Nrphys Instantaneous ozone used as input to the Long-

wave radiation subroutine
CLMOLW 0 − 1 Nrphys Maximum overlap cloud fraction used in the Long-

wave radiation subroutine
CLDTOT 0 − 1 Nrphys Total cloud fraction used in the Longwave and

Shortwave radiation subroutines
LWGDOWN Watts/m2 1 Downwelling Longwave radiation at the ground
GWDT deg/day Nrphys Temperature tendency due to Gravity Wave Drag
RADSWT Watts/m2 1 Incident Shortwave radiation at the top of the at-

mosphere
TAUCLD per100mb Nrphys Counted Cloud Optical Depth (non-dimensional)

per 100 mb
TAUCLDC Number Nrphys Cloud Optical Depth Counter

360 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

NAME UNITS LEVELS DESCRIPTION

CLDLOW 0 − 1 Nrphys Low-Level (1000-700 hPa) Cloud Fraction (0-1)
EVAP mm/day 1 Surface evaporation
DPDT hPa/day 1 Surface Pressure tendency
UAVE m/sec Nrphys Average U-Wind
VAVE m/sec Nrphys Average V-Wind
TAVE deg Nrphys Average Temperature
QAVE g/kg Nrphys Average Specific Humidity
OMEGA hPa/day Nrphys Vertical Velocity
DUDT m/sec/day Nrphys Total U-Wind tendency
DVDT m/sec/day Nrphys Total V-Wind tendency
DTDT deg/day Nrphys Total Temperature tendency
DQDT g/kg/day Nrphys Total Specific Humidity tendency
VORT 10−4/sec Nrphys Relative Vorticity
DTLS deg/day Nrphys Temperature tendency due to Stratiform Cloud

Formation
DQLS g/kg/day Nrphys Specific Humidity tendency due to Stratiform

Cloud Formation
USTAR m/sec 1 Surface USTAR wind
Z0 m 1 Surface roughness
FRQTRB 0 − 1 Nrphys-1 Frequency of Turbulence
PBL mb 1 Planetary Boundary Layer depth
SWCLR deg/day Nrphys Net clearsky Shortwave heating rate for each level
OSR Watts/m2 1 Net downward Shortwave flux at the top of the

model
OSRCLR Watts/m2 1 Net downward clearsky Shortwave flux at the top

of the model
CLDMAS kg/m2 Nrphys Convective cloud mass flux
UAVE m/sec Nrphys Time-averaged u−Wind

6.5. ATMOSPHERE PACKAGES 361

NAME UNITS LEVELS DESCRIPTION

VAVE m/sec Nrphys Time-averaged v −Wind
TAVE deg Nrphys Time-averaged Temperature
QAVE g/g Nrphys Time-averaged Specific Humidity
RFT deg/day Nrphys Temperature tendency due Rayleigh Friction
PS mb 1 Surface Pressure
QQAVE (m/sec)2 Nrphys Time-averaged TurbulentKineticEnergy
SWGCLR Watts/m2 1 Net downward clearsky Shortwave flux at the

ground
PAVE mb 1 Time-averaged Surface Pressure
DIABU m/sec/day Nrphys Total Diabatic forcing on u−Wind
DIABV m/sec/day Nrphys Total Diabatic forcing on v −Wind
DIABT deg/day Nrphys Total Diabatic forcing on Temperature
DIABQ g/kg/day Nrphys Total Diabatic forcing on Specific Humidity
RFU m/sec/day Nrphys U-Wind tendency due to Rayleigh Friction
RFV m/sec/day Nrphys V-Wind tendency due to Rayleigh Friction
GWDU m/sec/day Nrphys U-Wind tendency due to Gravity Wave Drag
GWDU m/sec/day Nrphys V-Wind tendency due to Gravity Wave Drag
GWDUS N/m2 1 U-Wind Gravity Wave Drag Stress at Surface
GWDVS N/m2 1 V-Wind Gravity Wave Drag Stress at Surface
GWDUT N/m2 1 U-Wind Gravity Wave Drag Stress at Top
GWDVT N/m2 1 V-Wind Gravity Wave Drag Stress at Top
LZRAD mg/kg Nrphys Estimated Cloud Liquid Water used in Radiation

362 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

NAME UNITS LEVELS DESCRIPTION

SLP mb 1 Time-averaged Sea-level Pressure
CLDFRC 0 − 1 1 Total Cloud Fraction
TPW gm/cm2 1 Precipitable water
U2M m/sec 1 U-Wind at 2 meters
V2M m/sec 1 V-Wind at 2 meters
T2M deg 1 Temperature at 2 meters
Q2M g/kg 1 Specific Humidity at 2 meters
U10M m/sec 1 U-Wind at 10 meters
V10M m/sec 1 V-Wind at 10 meters
T10M deg 1 Temperature at 10 meters
Q10M g/kg 1 Specific Humidity at 10 meters
DTRAIN kg/m2 Nrphys Detrainment Cloud Mass Flux
QFILL g/kg/day Nrphys Filling of negative specific humidity

6.5. ATMOSPHERE PACKAGES 363

NAME UNITS LEVELS DESCRIPTION

DTCONV deg/sec Nr Temp Change due to Convection
DQCONV g/kg/sec Nr Specific Humidity Change due to Convection
RELHUM percent Nr Relative Humidity
PRECLS g/m2/sec 1 Large Scale Precipitation
ENPREC J/g 1 Energy of Precipitation (snow, rain Temp)

364 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Fizhi Diagnostic Description:
In this section we list and describe the diagnostic quantities available within the GCM. The diag-

nostics are listed in the order that they appear in the Diagnostic Menu, Section 6.5.3.3. In all cases,
each diagnostic as currently archived on the output datasets is time-averaged over its diagnostic output
frequency:

DIAGNOSTIC =
1

TTOT

t=TTOT∑

t=1

diag(t)

where TTOT = NQDIAG

∆t , NQDIAG is the output frequency of the diagnostic, and ∆t is the timestep
over which the diagnostic is updated.

UFLUX Surface Zonal Wind Stress on the Atmosphere (Newton/m2)
The zonal wind stress is the turbulent flux of zonal momentum from the surface.

UFLUX = −ρCDWsu where : CD = C2
u

where ρ = the atmospheric density at the surface, CD is the surface drag coefficient, Cu is the dimen-
sionless surface exchange coefficient for momentum (see diagnostic number 10), Ws is the magnitude of
the surface layer wind, and u is the zonal wind in the lowest model layer.

VFLUX Surface Meridional Wind Stress on the Atmosphere (Newton/m2)
The meridional wind stress is the turbulent flux of meridional momentum from the surface.

VFLUX = −ρCDWsv where : CD = C2
u

where ρ = the atmospheric density at the surface, CD is the surface drag coefficient, Cu is the dimen-
sionless surface exchange coefficient for momentum (see diagnostic number 10), Ws is the magnitude of
the surface layer wind, and v is the meridional wind in the lowest model layer.

HFLUX Surface Flux of Sensible Heat (Watts/m2)
The turbulent flux of sensible heat from the surface to the atmosphere is a function of the gradient

of virtual potential temperature and the eddy exchange coefficient:

HFLUX = P κρcpCHWs(θsurface − θNrphys) where : CH = CuCt

where ρ = the atmospheric density at the surface, cp is the specific heat of air, CH is the dimensionless
surface heat transfer coefficient, Ws is the magnitude of the surface layer wind, Cu is the dimensionless
surface exchange coefficient for momentum (see diagnostic number 10), Ct is the dimensionless surface
exchange coefficient for heat and moisture (see diagnostic number 9), and θ is the potential temperature
at the surface and at the bottom model level.

EFLUX Surface Flux of Latent Heat (Watts/m2)
The turbulent flux of latent heat from the surface to the atmosphere is a function of the gradient of

moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:

EFLUX = ρβLCHWs(qsurface − qNrphys) where : CH = CuCt

where ρ = the atmospheric density at the surface, β is the fraction of the potential evapotranspiration
actually evaporated, L is the latent heat of evaporation, CH is the dimensionless surface heat transfer
coefficient, Ws is the magnitude of the surface layer wind, Cu is the dimensionless surface exchange co-
efficient for momentum (see diagnostic number 10), Ct is the dimensionless surface exchange coefficient
for heat and moisture (see diagnostic number 9), and qsurface and qNrphys are the specific humidity at
the surface and at the bottom model level, respectively.

QICE Heat Conduction Through Sea Ice (Watts/m2)
Over sea ice there is an additional source of energy at the surface due to the heat conduction from the

relatively warm ocean through the sea ice. The heat conduction through sea ice represents an additional
energy source term for the ground temperature equation.

6.5. ATMOSPHERE PACKAGES 365

QICE =
Cti

Hi
(Ti − Tg)

where Cti is the thermal conductivity of ice, Hi is the ice thickness, assumed to be 3 m where sea ice
is present, Ti is 273 degrees Kelvin, and Tg is the temperature of the sea ice.

NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.

RADLWG Net upward Longwave Flux at the surface (Watts/m2)

RADLWG = FNet
LW,Nrphys+1

= F ↑LW,Nrphys+1 − F ↓LW,Nrphys+1

where Nrphys+1 indicates the lowest model edge-level, or p = psurf . F ↑LW is the upward Longwave flux

and F ↓LW is the downward Longwave flux.

RADSWG Net downard shortwave Flux at the surface (Watts/m2)

RADSWG = FNet
SW,Nrphys+1

= F ↓SW,Nrphys+1 − F ↑SW,Nrphys+1

where Nrphys+1 indicates the lowest model edge-level, or p = psurf . F ↓SW is the downward Shortwave

flux and F ↑SW is the upward Shortwave flux.

RI Richardson Number (dimensionless)
The non-dimensional stability indicator is the ratio of the buoyancy to the shear:

RI =

g
θv

∂θv

∂z

(∂u
∂z)2 + (∂v

∂z)2
=

cp
∂θv

∂z
∂P κ

∂z

(∂u
∂z)2 + (∂v

∂z)2

where we used the hydrostatic equation:
∂Φ

∂P κ
= cpθv

Negative values indicate unstable buoyancy AND shear, small positive values (< 0.4) indicate domi-
nantly unstable shear, and large positive values indicate dominantly stable stratification.

CT Surface Exchange Coefficient for Temperature and Moisture (dimensionless)
The surface exchange coefficient is obtained from the similarity functions for the stability dependant flux
profile relationships:

CT = − (w′θ′)

u∗∆θ
= − (w′q′)

u∗∆q
=

k

(ψh + ψg)

where ψh is the surface layer non-dimensional temperature change and ψg is the viscous sublayer non-
dimensional temperature or moisture change:

ψh =

∫ ζ

ζ0

φh

ζ
dζ and ψg =

0.55(Pr2/3 − 0.2)

ν1/2
(h0u∗ − h0ref

u∗ref
)1/2

and: h0 = 30z0 with a maximum value over land of 0.01
φh is the similarity function of ζ, which expresses the stability dependance of the temperature and mois-
ture gradients, specified differently for stable and unstable layers according to Helfand and Schubert
[1995]. k is the Von Karman constant, ζ is the non-dimensional stability parameter, Pr is the Prandtl
number for air, ν is the molecular viscosity, z0 is the surface roughness length, u∗ is the surface stress

366 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

velocity (see diagnostic number 67), and the subscript ref refers to a reference value.

CU Surface Exchange Coefficient for Momentum (dimensionless)
The surface exchange coefficient is obtained from the similarity functions for the stability dependant flux
profile relationships:

CU =
u∗
Ws

=
k

ψm

where ψm is the surface layer non-dimensional wind shear:

ψm =

∫ ζ

ζ0

φm

ζ
dζ

φm is the similarity function of ζ, which expresses the stability dependance of the temperature and
moisture gradients, specified differently for stable and unstable layers according to Helfand and Schubert
[1995]. k is the Von Karman constant, ζ is the non-dimensional stability parameter, u∗ is the surface
stress velocity (see diagnostic number 67), and Ws is the magnitude of the surface layer wind.

ET Diffusivity Coefficient for Temperature and Moisture (m2/sec)
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or moisture flux for
the atmosphere above the surface layer can be expressed as a turbulent diffusion coefficient Kh times
the negative of the gradient of potential temperature or moisture. In the Helfand and Labraga [1988]
adaptation of this closure, Kh takes the form:

ET = Kh = − (w′θ′v)
∂θv

∂z

=

{
q ℓ SH(GM , GH) for decaying turbulence
q2

qe
ℓ SH(GMe

, GHe
) for growing turbulence

where q is the turbulent velocity, or
√

2 ∗ turbulent kinetic energy, qe is the turbulence velocity derived
from the more simple level 2.0 model, which describes equilibrium turbulence, ℓ is the master length scale
related to the layer depth, SH is a function of GH and GM , the dimensionless buoyancy and wind shear
parameters, respectively, or a function of GHe

and GMe
, the equilibrium dimensionless buoyancy and

wind shear parameters. Both GH and GM , and their equilibrium values GHe
and GMe

, are functions of
the Richardson number.
For the detailed equations and derivations of the modified level 2.5 closure scheme, see Helfand and
Labraga [1988].
In the surface layer, ET is the exchange coefficient for heat and moisture, in units of m/sec, given by:

ETNrphys = Ct ∗ u∗ = CHWs

where Ct is the dimensionless exchange coefficient for heat and moisture from the surface layer similarity
functions (see diagnostic number 9), u∗ is the surface friction velocity (see diagnostic number 67), CH is
the heat transfer coefficient, and Ws is the magnitude of the surface layer wind.

EU Diffusivity Coefficient for Momentum (m2/sec)
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat momentum flux for
the atmosphere above the surface layer can be expressed as a turbulent diffusion coefficient Km times
the negative of the gradient of the u-wind. In the Helfand and Labraga [1988] adaptation of this closure,
Km takes the form:

EU = Km = − (u′w′)
∂U
∂z

=

{
q ℓ SM (GM , GH) for decaying turbulence
q2

qe
ℓ SM (GMe

, GHe
) for growing turbulence

where q is the turbulent velocity, or
√

2 ∗ turbulent kinetic energy, qe is the turbulence velocity derived
from the more simple level 2.0 model, which describes equilibrium turbulence, ℓ is the master length scale
related to the layer depth, SM is a function of GH and GM , the dimensionless buoyancy and wind shear
parameters, respectively, or a function of GHe

and GMe
, the equilibrium dimensionless buoyancy and

wind shear parameters. Both GH and GM , and their equilibrium values GHe
and GMe

, are functions of
the Richardson number.

6.5. ATMOSPHERE PACKAGES 367

For the detailed equations and derivations of the modified level 2.5 closure scheme, see Helfand and
Labraga [1988].
In the surface layer, EU is the exchange coefficient for momentum, in units of m/sec, given by:

EUNrphys = Cu ∗ u∗ = CDWs

where Cu is the dimensionless exchange coefficient for momentum from the surface layer similarity func-
tions (see diagnostic number 10), u∗ is the surface friction velocity (see diagnostic number 67), CD is the
surface drag coefficient, and Ws is the magnitude of the surface layer wind.

TURBU Zonal U-Momentum changes due to Turbulence (m/sec/day)
The tendency of U-Momentum due to turbulence is written:

TURBU =
∂u

∂t turb
=

∂

∂z
(−u′w′) =

∂

∂z
(Km

∂u

∂z
)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of u-momentum in terms of Km,
and the equation has the form of a diffusion equation.
TURBV Meridional V-Momentum changes due to Turbulence (m/sec/day)
The tendency of V-Momentum due to turbulence is written:

TURBV =
∂v

∂t turb
=

∂

∂z
(−v′w′) =

∂

∂z
(Km

∂v

∂z
)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of v-momentum in terms of Km,
and the equation has the form of a diffusion equation.

TURBT Temperature changes due to Turbulence (deg/day)
The tendency of temperature due to turbulence is written:

TURBT =
∂T

∂t
= P κ ∂θ

∂t turb
= P κ ∂

∂z
(−w′θ′) = P κ ∂

∂z
(Kh

∂θv

∂z
)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of temperature in terms of Kh, and
the equation has the form of a diffusion equation.

TURBQ Specific Humidity changes due to Turbulence (g/kg/day)
The tendency of specific humidity due to turbulence is written:

TURBQ =
∂q

∂t turb
=

∂

∂z
(−w′q′) =

∂

∂z
(Kh

∂q

∂z
)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of temperature in terms of Kh, and
the equation has the form of a diffusion equation.

MOISTT Temperature Changes Due to Moist Processes (deg/day)

MOISTT =
∂T

∂t

∣∣∣∣
c

+
∂T

∂t

∣∣∣∣
ls

where:
∂T

∂t

∣∣∣∣
c

= R
∑

i

(
α
mB

cp
Γs

)

i

and
∂T

∂t

∣∣∣∣
ls

=
L

cp
(q∗ − q)

and

Γs = gη
∂s

∂p

The subscript c refers to convective processes, while the subscript ls refers to large scale precipitation
processes, or supersaturation rain. The summation refers to contributions from each cloud type called
by RAS. The dry static energy is given as s, the convective cloud base mass flux is given as mB, and
the cloud entrainment is given as η, which are explicitly defined in Section 6.5.3.2, the description of the
convective parameterization. The fractional adjustment, or relaxation parameter, for each cloud type is

368 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

given as α, while R is the rain re-evaporation adjustment.

MOISTQ Specific Humidity Changes Due to Moist Processes (g/kg/day)

MOISTQ =
∂q

∂t

∣∣∣∣
c

+
∂q

∂t

∣∣∣∣
ls

where:
∂q

∂t

∣∣∣∣
c

= R
∑

i

(
α
mB

L
(Γh − Γs)

)
i

and
∂q

∂t

∣∣∣∣
ls

= (q∗ − q)

and

Γs = gη
∂s

∂p
and Γh = gη

∂h

∂p

The subscript c refers to convective processes, while the subscript ls refers to large scale precipitation
processes, or supersaturation rain. The summation refers to contributions from each cloud type called
by RAS. The dry static energy is given as s, the moist static energy is given as h, the convective cloud
base mass flux is given as mB, and the cloud entrainment is given as η, which are explicitly defined in
Section 6.5.3.2, the description of the convective parameterization. The fractional adjustment, or relax-
ation parameter, for each cloud type is given as α, while R is the rain re-evaporation adjustment.

RADLW Heating Rate due to Longwave Radiation (deg/day)
The net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative
fluxes. Both the clear-sky and cloudy-sky longwave fluxes are computed within the longwave routine.
The subroutine calculates the clear-sky flux, F clearsky

LW , first. For a given cloud fraction, the clear line-
of-sight probability C(p, p′) is computed from the current level pressure p to the model top pressure,
p′ = ptop, and the model surface pressure, p′ = psurf , for the upward and downward radiative fluxes. (see
Section 6.5.3.2). The cloudy-sky flux is then obtained as:

FLW = C(p, p′) · F clearsky
LW ,

Finally, the net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative
fluxes:

∂ρcpT

∂t
= − ∂

∂z
FNET

LW ,

or

RADLW =
g

cpπ

∂

∂σ
FNET

LW .

where g is the accelation due to gravity, cp is the heat capacity of air at constant pressure, and

FNET
LW = F ↑LW − F ↓LW

RADSW Heating Rate due to Shortwave Radiation (deg/day)
The net Shortwave heating rate is calculated as the vertical divergence of the net solar radiative fluxes.
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. For the clear-sky case, the
shortwave fluxes and heating rates are computed with both CLMO (maximum overlap cloud fraction)
and CLRO (random overlap cloud fraction) set to zero (see Section 6.5.3.2). The shortwave routine is
then called a second time, for the cloudy-sky case, with the true time-averaged cloud fractions CLMO
and CLRO being used. In all cases, a normalized incident shortwave flux is used as input at the top of
the atmosphere.
The heating rate due to Shortwave Radiation under cloudy skies is defined as:

∂ρcpT

∂t
= − ∂

∂z
F (cloudy)NET

SW · RADSWT,

or

RADSW =
g

cpπ

∂

∂σ
F (cloudy)NET

SW · RADSWT.

6.5. ATMOSPHERE PACKAGES 369

where g is the accelation due to gravity, cp is the heat capacity of air at constant pressure, RADSWT is
the true incident shortwave radiation at the top of the atmosphere (See Diagnostic #48), and

F (cloudy)Net
SW = F (cloudy)↑SW − F (cloudy)↓SW

PREACC Total (Large-scale + Convective) Accumulated Precipition (mm/day)
For a change in specific humidity due to moist processes, ∆qmoist, the vertical integral or total precipitable
amount is given by:

PREACC =

∫ top

surf

ρ∆qmoistdz = −
∫ top

surf

∆qmoist
dp

g
=

1

g

∫ 1

0

∆qmoistdp

A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes time
step, scaled to mm/day.

PRECON Convective Precipition (mm/day)
For a change in specific humidity due to sub-grid scale cumulus convective processes, ∆qcum, the vertical
integral or total precipitable amount is given by:

PRECON =

∫ top

surf

ρ∆qcumdz = −
∫ top

surf

∆qcum
dp

g
=

1

g

∫ 1

0

∆qcumdp

A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes time
step, scaled to mm/day.

TUFLUX Turbulent Flux of U-Momentum (Newton/m2)
The turbulent flux of u-momentum is calculated for diagnostic purposes only from the eddy coefficient
for momentum:

TUFLUX = ρ(u′w′) = ρ(−Km
∂U

∂z
)

where ρ is the air density, and Km is the eddy coefficient.

TVFLUX Turbulent Flux of V-Momentum (Newton/m2)
The turbulent flux of v-momentum is calculated for diagnostic purposes only from the eddy coefficient
for momentum:

TVFLUX = ρ(v′w′) = ρ(−Km
∂V

∂z
)

where ρ is the air density, and Km is the eddy coefficient.

TTFLUX Turbulent Flux of Sensible Heat (Watts/m2)
The turbulent flux of sensible heat is calculated for diagnostic purposes only from the eddy coefficient
for heat and moisture:

TTFLUX = cpρP
κ(w′θ′) = cpρP

κ(−Kh
∂θv

∂z
)

where ρ is the air density, and Kh is the eddy coefficient.

TQFLUX Turbulent Flux of Latent Heat (Watts/m2)
The turbulent flux of latent heat is calculated for diagnostic purposes only from the eddy coefficient
for heat and moisture:

TQFLUX = Lρ(w′q′) = Lρ(−Kh
∂q

∂z
)

370 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

where ρ is the air density, and Kh is the eddy coefficient.

CN Neutral Drag Coefficient (dimensionless)
The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:

CN =
k

ln(h
z0

)

where k is the Von Karman constant, h is the height of the surface layer, and z0 is the surface roughness.
NOTE: CN is not available through model version 5.3, but is available in subsequent versions.

WINDS Surface Wind Speed (meter/sec)
The surface wind speed is calculated for the last internal turbulence time step:

WINDS =
√
u2

Nrphys + v2
Nrphys

where the subscript Nrphys refers to the lowest model level.

DTSRF Air/Surface Virtual Temperature Difference (deg K)
The air/surface virtual temperature difference measures the stability of the surface layer:

DTSRF = (θvNrphys+1 − θvNrphys)P
κ
surf

where

θvNrphys+1 =
Tg

P κ
surf

(1 + .609qNrphys+1) and qNrphys+1 = qNrphys + β(q∗(Tg, Ps) − qNrphys)

β is the surface potential evapotranspiration coefficient (β = 1 over oceans), q∗(Tg, Ps) is the saturation
specific humidity at the ground temperature and surface pressure, level Nrphys refers to the lowest model
level and level Nrphys+ 1 refers to the surface.

TG Ground Temperature (deg K)
The ground temperature equation is solved as part of the turbulence package using a backward implicit
time differencing scheme:

TG is obtained from : Cg
∂Tg

∂t
= Rsw −Rlw +Qice −H − LE

where Rsw is the net surface downward shortwave radiative flux, Rlw is the net surface upward longwave
radiative flux, Qice is the heat conduction through sea ice, H is the upward sensible heat flux, LE is the
upward latent heat flux, and Cg is the total heat capacity of the ground. Cg is obtained by solving a
heat diffusion equation for the penetration of the diurnal cycle into the ground (Blackadar [1977]), and
is given by:

Cg =

√
λCs

2ω
=

√
(0.386 + 0.536W + 0.15W 2)2x10−3

86400.

2π
.

Here, the thermal conductivity, λ, is equal to 2x10−3 ly
sec

cm
K , the angular velocity of the earth, ω, is

written as 86400 sec/day divided by 2π radians/day, and the expression for Cs, the heat capacity per
unit volume at the surface, is a function of the ground wetness, W .

TS Surface Temperature (deg K)
The surface temperature estimate is made by assuming that the model’s lowest layer is well-mixed, and
therefore that θ is constant in that layer. The surface temperature is therefore:

TS = θNrphysP
κ
surf

6.5. ATMOSPHERE PACKAGES 371

DTG Surface Temperature Adjustment (deg K)
The change in surface temperature from one turbulence time step to the next, solved using the Ground
Temperature Equation (see diagnostic number 30) is calculated:

DTG = Tg
n − Tg

n−1

where superscript n refers to the new, updated time level, and the superscript n− 1 refers to the value
at the previous turbulence time level.

QG Ground Specific Humidity (g/kg)
The ground specific humidity is obtained by interpolating between the specific humidity at the lowest
model level and the specific humidity of a saturated ground. The interpolation is performed using the
potential evapotranspiration function:

QG = qNrphys+1 = qNrphys + β(q∗(Tg, Ps) − qNrphys)

where β is the surface potential evapotranspiration coefficient (β = 1 over oceans), and q∗(Tg, Ps) is the
saturation specific humidity at the ground temperature and surface pressure.

QS Saturation Surface Specific Humidity (g/kg)
The surface saturation specific humidity is the saturation specific humidity at the ground temprature
and surface pressure:

QS = q∗(Tg, Ps)

TGRLW Instantaneous ground temperature used as input to the Longwave radiation subroutine (deg)

TGRLW = Tg(λ, φ, n)

where Tg is the model ground temperature at the current time step n.

ST4 Upward Longwave flux at the surface (Watts/m2)

ST4 = σT 4

where σ is the Stefan-Boltzmann constant and T is the temperature.

OLR Net upward Longwave flux at p = ptop (Watts/m2)

OLR = FNET
LW,top

where top indicates the top of the first model layer. In the GCM, ptop = 0.0 mb.

OLRCLR Net upward clearsky Longwave flux at p = ptop (Watts/m2)

OLRCLR = F (clearsky)NET
LW,top

where top indicates the top of the first model layer. In the GCM, ptop = 0.0 mb.

LWGCLR Net upward clearsky Longwave flux at the surface (Watts/m2)

LWGCLR = F (clearsky)Net
LW,Nrphys+1

= F (clearsky)↑LW,Nrphys+1 − F (clearsky)↓LW,Nrphys+1

where Nrphys+1 indicates the lowest model edge-level, or p = psurf . F (clearsky)↑LW is the upward

clearsky Longwave flux and the F (clearsky)↓LW is the downward clearsky Longwave flux.

LWCLR Heating Rate due to Clearsky Longwave Radiation (deg/day)

372 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

The net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative
fluxes. Both the clear-sky and cloudy-sky longwave fluxes are computed within the longwave routine.
The subroutine calculates the clear-sky flux, F clearsky

LW , first. For a given cloud fraction, the clear line-
of-sight probability C(p, p′) is computed from the current level pressure p to the model top pressure,
p′ = ptop, and the model surface pressure, p′ = psurf , for the upward and downward radiative fluxes. (see
Section 6.5.3.2). The cloudy-sky flux is then obtained as:

FLW = C(p, p′) · F clearsky
LW ,

Thus, LWCLR is defined as the net longwave heating rate due to the vertical divergence of the clear-sky
longwave radiative flux:

∂ρcpT

∂t clearsky
= − ∂

∂z
F (clearsky)NET

LW ,

or

LWCLR =
g

cpπ

∂

∂σ
F (clearsky)NET

LW .

where g is the accelation due to gravity, cp is the heat capacity of air at constant pressure, and

F (clearsky)Net
LW = F (clearsky)↑LW − F (clearsky)↓LW

TLW Instantaneous temperature used as input to the Longwave radiation subroutine (deg)

TLW = T (λ, φ, level, n)

where T is the model temperature at the current time step n.

SHLW Instantaneous specific humidity used as input to the Longwave radiation subroutine (kg/kg)

SHLW = q(λ, φ, level, n)

where q is the model specific humidity at the current time step n.

OZLW Instantaneous ozone used as input to the Longwave radiation subroutine (kg/kg)

OZLW = OZ(λ, φ, level, n)

where OZ is the interpolated ozone data set from the climatological monthly mean zonally averaged ozone
data set.

CLMOLW Maximum Overlap cloud fraction used in LW Radiation (0 − 1)
CLMOLW is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These
are convective clouds whose radiative characteristics are assumed to be correlated in the vertical. For a
complete description of cloud/radiative interactions, see Section 6.5.3.2.

CLMOLW = CLMORAS,LW (λ, φ, level)

CLDTOT Total cloud fraction used in LW and SW Radiation (0 − 1)
CLDTOT is the time-averaged total cloud fraction that has been filled by the Relaxed Arakawa/Schubert

and Large-scale Convection schemes and will be used in the Longwave and Shortwave Radiation packages.
For a complete description of cloud/radiative interactions, see Section 6.5.3.2.

CLDTOT = FRAS + FLS

where FRAS is the time-averaged cloud fraction due to sub-grid scale convection, and FLS is the time-
averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.

6.5. ATMOSPHERE PACKAGES 373

CLMOSW Maximum Overlap cloud fraction used in SW Radiation (0 − 1)

CLMOSW is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These
are convective clouds whose radiative characteristics are assumed to be correlated in the vertical. For a
complete description of cloud/radiative interactions, see Section 6.5.3.2.

CLMOSW = CLMORAS,SW (λ, φ, level)

CLROSW Random Overlap cloud fraction used in SW Radiation (0 − 1)

CLROSW is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave Radiation
algorithm. These are convective and large-scale clouds whose radiative characteristics are not assumed
to be correlated in the vertical. For a complete description of cloud/radiative interactions, see Section
6.5.3.2.

CLROSW = CLRORAS,LargeScale,SW (λ, φ, level)

RADSWT Incident Shortwave radiation at the top of the atmosphere (Watts/m2)

RADSWT =
S0

R2
a

· cosφz

where S0, is the extra-terrestial solar contant, Ra is the earth-sun distance in Astronomical Units, and
cosφz is the cosine of the zenith angle. It should be noted that RADSWT, as well as OSR and OS-
RCLR, are calculated at the top of the atmosphere (p=0 mb). However, the OLR and OLRCLR
diagnostics are currently calculated at p = ptop (0.0 mb for the GCM).

EVAP Surface Evaporation (mm/day)

The surface evaporation is a function of the gradient of moisture, the potential evapotranspiration fraction
and the eddy exchange coefficient:

EVAP = ρβKh(qsurface − qNrphys)

where ρ = the atmospheric density at the surface, β is the fraction of the potential evapotranspiration
actually evaporated (β = 1 over oceans), Kh is the turbulent eddy exchange coefficient for heat and
moisture at the surface in m/sec and qsurface and qNrphys are the specific humidity at the surface (see
diagnostic number 34) and at the bottom model level, respectively.

DUDT Total Zonal U-Wind Tendency (m/sec/day)

DUDT is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic, and Analysis
forcing.

DUDT =
∂u

∂t Dynamics
+
∂u

∂tMoist
+
∂u

∂t Turbulence
+
∂u

∂t Analysis

DVDT Total Zonal V-Wind Tendency (m/sec/day)

DVDT is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic, and Anal-
ysis forcing.

DVDT =
∂v

∂tDynamics
+
∂v

∂tMoist
+
∂v

∂t Turbulence
+
∂v

∂t Analysis

DTDT Total Temperature Tendency (deg/day)

374 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

DTDT is the total time-tendency of Temperature due to Hydrodynamic, Diabatic, and Analysis forcing.

DTDT =
∂T

∂t Dynamics
+
∂T

∂t MoistProcesses
+
∂T

∂t ShortwaveRadiation

+
∂T

∂t LongwaveRadiation
+
∂T

∂t Turbulence
+
∂T

∂t Analysis

DQDT Total Specific Humidity Tendency (g/kg/day)
DQDT is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic, and Analysis
forcing.

DQDT =
∂q

∂tDynamics
+
∂q

∂tMoistProcesses
+
∂q

∂t Turbulence
+
∂q

∂t Analysis

USTAR Surface-Stress Velocity (m/sec)
The surface stress velocity, or the friction velocity, is the wind speed at the surface layer top impeded by
the surface drag:

USTAR = CuWs where : Cu =
k

ψm

Cu is the non-dimensional surface drag coefficient (see diagnostic number 10), and Ws is the surface wind
speed (see diagnostic number 28).
Z0 Surface Roughness Length (m)

Over the land surface, the surface roughness length is interpolated to the local time from the monthly
mean data of Dorman and Sellers [1989]. Over the ocean, the roughness length is a function of the
surface-stress velocity, u∗.

Z0 = c1u
3
∗ + c2u

2
∗ + c3u∗ + c4 + c5u∗

where the constants are chosen to interpolate between the reciprocal relation of Kondo [1975] for weak
winds, and the piecewise linear relation of Large and Pond [1981] for moderate to large winds.

FRQTRB Frequency of Turbulence (0 − 1)
The fraction of time when turbulence is present is defined as the fraction of time when the turbulent
kinetic energy exceeds some minimum value, defined here to be 0.005 m2/sec2. When this criterion is
met, a counter is incremented. The fraction over the averaging interval is reported.

PBL Planetary Boundary Layer Depth (mb)
The depth of the PBL is defined by the turbulence parameterization to be the depth at which the
turbulent kinetic energy reduces to ten percent of its surface value.

PBL = PPBL − Psurface

where PPBL is the pressure in mb at which the turbulent kinetic energy reaches one tenth of its surface
value, and Ps is the surface pressure.

SWCLR Clear sky Heating Rate due to Shortwave Radiation (deg/day)
The net Shortwave heating rate is calculated as the vertical divergence of the net solar radiative fluxes.
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. For the clear-sky case, the
shortwave fluxes and heating rates are computed with both CLMO (maximum overlap cloud fraction)
and CLRO (random overlap cloud fraction) set to zero (see Section 6.5.3.2). The shortwave routine is
then called a second time, for the cloudy-sky case, with the true time-averaged cloud fractions CLMO
and CLRO being used. In all cases, a normalized incident shortwave flux is used as input at the top of
the atmosphere.
The heating rate due to Shortwave Radiation under clear skies is defined as:

∂ρcpT

∂t
= − ∂

∂z
F (clear)NET

SW · RADSWT,

6.5. ATMOSPHERE PACKAGES 375

or

SWCLR =
g

cp

∂

∂p
F (clear)NET

SW · RADSWT.

where g is the accelation due to gravity, cp is the heat capacity of air at constant pressure, RADSWT is
the true incident shortwave radiation at the top of the atmosphere (See Diagnostic #48), and

F (clear)Net
SW = F (clear)↑SW − F (clear)↓SW

OSR Net upward Shortwave flux at the top of the model (Watts/m2)

OSR = FNET
SW,top

where top indicates the top of the first model layer used in the shortwave radiation routine. In the GCM,
pSWtop

= 0 mb.

OSRCLR Net upward clearsky Shortwave flux at the top of the model (Watts/m2)

OSRCLR = F (clearsky)NET
SW,top

where top indicates the top of the first model layer used in the shortwave radiation routine. In the GCM,
pSWtop

= 0 mb.

CLDMAS Convective Cloud Mass Flux (kg/m2)
The amount of cloud mass moved per RAS timestep from all convective clouds is written:

CLDMAS = ηmB

where η is the entrainment, normalized by the cloud base mass flux, and mB is the cloud base mass flux.
mB and η are defined explicitly in Section 6.5.3.2, the description of the convective parameterization.

UAVE Time-Averaged Zonal U-Wind (m/sec)
The diagnostic UAVE is simply the time-averaged Zonal U-Wind over the NUAVE output frequency.
This is contrasted to the instantaneous Zonal U-Wind which is archived on the Prognostic Output data
stream.

UAVE = u(λ, φ, level, t)

Note, UAVE is computed and stored on the staggered C-grid.

VAVE Time-Averaged Meridional V-Wind (m/sec)
The diagnostic VAVE is simply the time-averaged Meridional V-Wind over the NVAVE output fre-
quency. This is contrasted to the instantaneous Meridional V-Wind which is archived on the Prognostic
Output data stream.

VAVE = v(λ, φ, level, t)

Note, VAVE is computed and stored on the staggered C-grid.

TAVE Time-Averaged Temperature (Kelvin)
The diagnostic TAVE is simply the time-averaged Temperature over the NTAVE output frequency.
This is contrasted to the instantaneous Temperature which is archived on the Prognostic Output data
stream.

TAVE = T (λ, φ, level, t)

QAVE Time-Averaged Specific Humidity (g/kg)

376 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

The diagnostic QAVE is simply the time-averaged Specific Humidity over the NQAVE output frequency.
This is contrasted to the instantaneous Specific Humidity which is archived on the Prognostic Output
data stream.

QAVE = q(λ, φ, level, t)

PAVE Time-Averaged Surface Pressure - PTOP (mb)
The diagnostic PAVE is simply the time-averaged Surface Pressure - PTOP over the NPAVE output
frequency. This is contrasted to the instantaneous Surface Pressure - PTOP which is archived on the
Prognostic Output data stream.

PAVE = π(λ, φ, level, t)

= ps(λ, φ, level, t) − pT

QQAVE Time-Averaged Turbulent Kinetic Energy (m/sec)2

The diagnostic QQAVE is simply the time-averaged prognostic Turbulent Kinetic Energy produced by
the GCM Turbulence parameterization over the NQQAVE output frequency. This is contrasted to the
instantaneous Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.

QQAVE = qq(λ, φ, level, t)

Note, QQAVE is computed and stored at the “mass-point” locations on the staggered C-grid.

SWGCLR Net downward clearsky Shortwave flux at the surface (Watts/m2)

SWGCLR = F (clearsky)Net
SW,Nrphys+1

= F (clearsky)↓SW,Nrphys+1 − F (clearsky)↑SW,Nrphys+1

where Nrphys+1 indicates the lowest model edge-level, or p = psurf . F (clearsky)SW ↓ is the downward

clearsky Shortwave flux and F (clearsky)↑SW is the upward clearsky Shortwave flux.

DIABU Total Diabatic Zonal U-Wind Tendency (m/sec/day)
DIABU is the total time-tendency of the Zonal U-Wind due to Diabatic processes and the Analysis
forcing.

DIABU =
∂u

∂tMoist
+
∂u

∂t Turbulence
+
∂u

∂t Analysis

DIABV Total Diabatic Meridional V-Wind Tendency (m/sec/day)
DIABV is the total time-tendency of the Meridional V-Wind due to Diabatic processes and the Analysis
forcing.

DIABV =
∂v

∂tMoist
+
∂v

∂t Turbulence
+
∂v

∂t Analysis

DIABT Total Diabatic Temperature Tendency (deg/day)
DIABT is the total time-tendency of Temperature due to Diabatic processes and the Analysis forcing.

DIABT =
∂T

∂t MoistProcesses
+
∂T

∂t ShortwaveRadiation

+
∂T

∂t LongwaveRadiation
+
∂T

∂t Turbulence
+
∂T

∂t Analysis

6.5. ATMOSPHERE PACKAGES 377

If we define the time-tendency of Temperature due to Diabatic processes as

∂T

∂t Diabatic
=

∂T

∂t MoistProcesses
+
∂T

∂t ShortwaveRadiation

+
∂T

∂t LongwaveRadiation
+
∂T

∂t Turbulence

then, since there are no surface pressure changes due to Diabatic processes, we may write

∂T

∂t Diabatic
=
pκ

π

∂πθ

∂t Diabatic

where θ = T/pκ. Thus, DIABT may be written as

DIABT =
pκ

π

(
∂πθ

∂t Diabatic
+
∂πθ

∂t Analysis

)

DIABQ Total Diabatic Specific Humidity Tendency (g/kg/day)
DIABQ is the total time-tendency of Specific Humidity due to Diabatic processes and the Analysis
forcing.

DIABQ =
∂q

∂tMoistProcesses
+
∂q

∂t Turbulence
+
∂q

∂tAnalysis

If we define the time-tendency of Specific Humidity due to Diabatic processes as

∂q

∂tDiabatic
=
∂q

∂tMoistProcesses
+
∂q

∂t Turbulence

then, since there are no surface pressure changes due to Diabatic processes, we may write

∂q

∂tDiabatic
=

1

π

∂πq

∂t Diabatic

Thus, DIABQ may be written as

DIABQ =
1

π

(
∂πq

∂t Diabatic
+
∂πq

∂t Analysis

)

VINTUQ Vertically Integrated Moisture Flux (m/sec · g/kg)
The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating uq over the
depth of the atmosphere at each model timestep, and dividing by the total mass of the column.

VINTUQ =

∫ top

surf uqρdz∫ top

surf ρdz

Using ρδz = − δp
g = − 1

g δp, we have

VINTUQ =

∫ 1

0

uqdp

VINTVQ Vertically Integrated Moisture Flux (m/sec · g/kg)
The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating vq over
the depth of the atmosphere at each model timestep, and dividing by the total mass of the column.

VINTVQ =

∫ top

surf vqρdz∫ top

surf
ρdz

378 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Using ρδz = − δp
g = − 1

g δp, we have

VINTVQ =

∫ 1

0

vqdp

VINTUT Vertically Integrated Heat Flux (m/sec · deg)
The vertically integrated heat flux due to the zonal u-wind is obtained by integrating uT over the depth
of the atmosphere at each model timestep, and dividing by the total mass of the column.

VINTUT =

∫ top

surf uTρdz∫ top

surf ρdz

Or,

VINTUT =

∫ 1

0

uTdp

VINTVT Vertically Integrated Heat Flux (m/sec · deg)
The vertically integrated heat flux due to the meridional v-wind is obtained by integrating vT over the
depth of the atmosphere at each model timestep, and dividing by the total mass of the column.

VINTVT =

∫ top

surf
vTρdz

∫ top

surf
ρdz

Using ρδz = − δp
g , we have

VINTVT =

∫ 1

0

vTdp

CLDFRC Total 2-Dimensional Cloud Fracton (0 − 1)
If we define the time-averaged random and maximum overlapped cloudiness as CLRO and CLMO

respectively, then the probability of clear sky associated with random overlapped clouds at any level is
(1-CLRO) while the probability of clear sky associated with maximum overlapped clouds at any level is
(1-CLMO). The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus the total cloud fraction
at each level may be obtained by 1-(1-CLRO)*(1-CLMO).

At any given level, we may define the clear line-of-site probability by appropriately accounting for the
maximum and random overlap cloudiness. The clear line-of-site probability is defined to be equal to the
product of the clear line-of-site probabilities associated with random and maximum overlap cloudiness.
The clear line-of-site probability C(p, p′) associated with maximum overlap clouds, from the current
pressure p to the model top pressure, p′ = ptop, or the model surface pressure, p′ = psurf , is simply 1.0
minus the largest maximum overlap cloud value along the line-of-site, ie.

1 −MAXp′

p (CLMOp)

Thus, even in the time-averaged sense it is assumed that the maximum overlap clouds are correlated
in the vertical. The clear line-of-site probability associated with random overlap clouds is defined to be
the product of the clear sky probabilities at each level along the line-of-site, ie.

p′∏

p

(1 − CLROp)

The total cloud fraction at a given level associated with a line- of-site calculation is given by

1 −
(
1 −MAXp′

p [CLMOp]
) p′∏

p

(1 − CLROp)

6.5. ATMOSPHERE PACKAGES 379

The 2-dimensional net cloud fraction as seen from the top of the atmosphere is given by

CLDFRC = 1 −
(
1 −MAXNrphys

l=l1
[CLMOl]

)Nrphys∏

l=l1

(1 − CLROl)

For a complete description of cloud/radiative interactions, see Section 6.5.3.2.
QINT Total Precipitable Water (gm/cm2)
The Total Precipitable Water is defined as the vertical integral of the specific humidity, given by:

QINT =

∫ top

surf

ρqdz

=
π

g

∫ 1

0

qdp

where we have used the hydrostatic relation ρδz = − δp
g .

U2M Zonal U-Wind at 2 Meter Depth (m/sec)
The u-wind at the 2-meter depth is determined from the similarity theory:

U2M =
u∗
k
ψm2m

usl

Ws
=
ψm2m

ψmsl

usl

where ψm(2m) is the non-dimensional wind shear at two meters, and the subscript sl refers to the height
of the top of the surface layer. If the roughness height is above two meters, U2M is undefined.

V2M Meridional V-Wind at 2 Meter Depth (m/sec)
The v-wind at the 2-meter depth is a determined from the similarity theory:

V2M =
u∗
k
ψm2m

vsl

Ws
=
ψm2m

ψmsl

vsl

where ψm(2m) is the non-dimensional wind shear at two meters, and the subscript sl refers to the height
of the top of the surface layer. If the roughness height is above two meters, V2M is undefined.

T2M Temperature at 2 Meter Depth (deg K)
The temperature at the 2-meter depth is a determined from the similarity theory:

T2M = P κ(
θ∗
k

(ψh2m
+ ψg) + θsurf) = P κ(θsurf +

ψh2m
+ ψg

ψhsl
+ ψg

(θsl − θsurf))

where:

θ∗ = − (w′θ′)

u∗

where ψh(2m) is the non-dimensional temperature gradient at two meters, ψg is the non-dimensional
temperature gradient in the viscous sublayer, and the subscript sl refers to the height of the top of the
surface layer. If the roughness height is above two meters, T2M is undefined.

Q2M Specific Humidity at 2 Meter Depth (g/kg)
The specific humidity at the 2-meter depth is determined from the similarity theory:

Q2M = P κ (

q∗
k(ψh2m

+ ψg) + qsurf) = P κ(qsurf +
ψh2m

+ ψg

ψhsl
+ ψg

(qsl − qsurf))

where:

q∗ = − (w′q′)

u∗

where ψh(2m) is the non-dimensional temperature gradient at two meters, ψg is the non-dimensional
temperature gradient in the viscous sublayer, and the subscript sl refers to the height of the top of the

380 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

surface layer. If the roughness height is above two meters, Q2M is undefined.

U10M Zonal U-Wind at 10 Meter Depth (m/sec)
The u-wind at the 10-meter depth is an interpolation between the surface wind and the model lowest
level wind using the ratio of the non-dimensional wind shear at the two levels:

U10M =
u∗
k
ψm10m

usl

Ws
=
ψm10m

ψmsl

usl

where ψm(10m) is the non-dimensional wind shear at ten meters, and the subscript sl refers to the height
of the top of the surface layer.

V10M Meridional V-Wind at 10 Meter Depth (m/sec)
The v-wind at the 10-meter depth is an interpolation between the surface wind and the model lowest
level wind using the ratio of the non-dimensional wind shear at the two levels:

V10M =
u∗
k
ψm10m

vsl

Ws
=
ψm10m

ψmsl

vsl

where ψm(10m) is the non-dimensional wind shear at ten meters, and the subscript sl refers to the height
of the top of the surface layer.

T10M Temperature at 10 Meter Depth (deg K)
The temperature at the 10-meter depth is an interpolation between the surface potential temperature
and the model lowest level potential temperature using the ratio of the non-dimensional temperature
gradient at the two levels:

T10M = P κ(
θ∗
k

(ψh10m
+ ψg) + θsurf) = P κ(θsurf +

ψh10m
+ ψg

ψhsl
+ ψg

(θsl − θsurf))

where:

θ∗ = − (w′θ′)

u∗

where ψh(10m) is the non-dimensional temperature gradient at two meters, ψg is the non-dimensional
temperature gradient in the viscous sublayer, and the subscript sl refers to the height of the top of the
surface layer.

Q10M Specific Humidity at 10 Meter Depth (g/kg)
The specific humidity at the 10-meter depth is an interpolation between the surface specific humidity
and the model lowest level specific humidity using the ratio of the non-dimensional temperature gradient
at the two levels:

Q10M = P κ(
q∗
k

(ψh10m
+ ψg) + qsurf) = P κ(qsurf +

ψh10m
+ ψg

ψhsl
+ ψg

(qsl − qsurf))

where:

q∗ = − (w′q′)

u∗

where ψh(10m) is the non-dimensional temperature gradient at two meters, ψg is the non-dimensional
temperature gradient in the viscous sublayer, and the subscript sl refers to the height of the top of the
surface layer.

DTRAIN Cloud Detrainment Mass Flux (kg/m2)
The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:

DTRAIN = ηrD
mB

where rD is the detrainment level, mB is the cloud base mass flux, and η is the entrainment, defined in
Section 6.5.3.2.

6.5. ATMOSPHERE PACKAGES 381

QFILL Filling of negative Specific Humidity (g/kg/day)
Due to computational errors associated with the numerical scheme used for the advection of moisture,
negative values of specific humidity may be generated. The specific humidity is checked for negative
values after every dynamics timestep. If negative values have been produced, a filling algorithm is
invoked which redistributes moisture from below. Diagnostic QFILL is equal to the net filling needed to
eliminate negative specific humidity, scaled to a per-day rate:

QFILL = qn+1
final − qn+1

initial

where
qn+1 = (πq)n+1/πn+1

6.5.3.4 Key subroutines, parameters and files

6.5.3.5 Dos and donts

6.5.3.6 Fizhi Reference

6.5.3.7 Experiments and tutorials that use fizhi

• Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification
directory.

• Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory.

382 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.6 Sea Ice Packages

6.6.1 THSICE: The Thermodynamic Sea Ice Package

Important note: This document has been written by Stephanie Dutkiewicz and describes an earlier
implementation of the sea-ice package. This needs to be updated to reflect the recent changes (JMC).
This thermodynamic ice model is based on the 3-layer model by Winton (2000). and the energy-conserving
LANL CICE model (Bitz and Lipscomb, 1999). The model considers two equally thick ice layers; the
upper layer has a variable specific heat resulting from brine pockets, the lower layer has a fixed heat
capacity. A zero heat capacity snow layer lies above the ice. Heat fluxes at the top and bottom surfaces
are used to calculate the change in ice and snow layer thickness. Grid cells of the ocean model are either
fully covered in ice or are open water. There is a provision to parametrize ice fraction (and leads) in this
package. Modifications are discussed in small font following the subroutine descriptions.

6.6.1.1 Key parameters and Routines

The ice model is called from thermodynamics.F, subroutine ice forcing.F is called in place of exter-
nal forcing surf.F.

subroutine ICE FORCING
In ice forcing.F, we calculate the freezing potential of the ocean model surface layer of water:

frzmlt = (Tf − SST)
cswρsw∆z

∆t

where csw is seawater heat capacity, ρsw is the seawater density, ∆z is the ocean model upper layer
thickness and ∆t is the model (tracer) timestep. The freezing temperature, Tf = µS is a function of the
salinity.

1) Provided there is no ice present and frzmlt is less than 0, the surface tendencies of wind, heat and
freshwater are calculated as usual (ie. as in external forcing surf.F).

2) If there is ice present in the grid cell we call the main ice model routine ice therm.F (see below).
Output from this routine gives net heat and freshwater flux affecting the top of the ocean.

Subroutine ice forcing.F uses these values to find the sea surface tendencies in grid cells. When there
is ice present, the surface stress tendencies are set to zero; the ice model is purely thermodynamic and
the effect of ice motion on the sea-surface is not examined.

Relaxation of surface T and S is only allowed equatorward of relaxlat (see DATA.ICE below), and
no relaxation is allowed under the ice at any latitude.
(Note that there is provision for allowing grid cells to have both open water and seaice; if compact is between 0 and 1)

subroutine ICE FREEZE
This routine is called from thermodynamics.F after the new temperature calculation, calc gt.F, but

before calc gs.F. In ice freeze.F, any ocean upper layer grid cell with no ice cover, but with temperature
below freezing, Tf = µS has ice initialized. We calculate frzmlt from all the grid cells in the water
column that have a temperature less than freezing. In this routine, any water below the surface that is
below freezing is set to Tf . A call to ice start.F is made if frzmlt > 0, and salinity tendancy is updated
for brine release.
(There is a provision for fractional ice: In the case where the grid cell has less ice coverage than icemaskmax we allow ice start.F to be called).

subroutine ICE START
The energy available from freezing the sea surface is brought into this routine as esurp. The enthalpy
of the 2 layers of any new ice is calculated as:

q1 = −ci ∗ Tf + Li

q2 = −cfTmlt + ci(Tmlt − Tf) + Li(1 − Tmlt

Tf
)

6.6. SEA ICE PACKAGES 383

where cf is specific heat of liquid fresh water, ci is the specific heat of fresh ice, Li is latent heat of
freezing, ρi is density of ice and Tmlt is melting temperature of ice with salinity of 1. The height of a new
layer of ice is

hinew =
esurp∆t

qi0av

where qi0av = − ρi

2 (q1 + q2).
The surface skin temperature Ts and ice temperatures T1, T2 and the sea surface temperature are set

at Tf .
(There is provision for fractional ice: new ice is formed over open water; the first freezing in the cell must have a height of himin0; this determines the
ice fraction compact. If there is already ice in the grid cell, the new ice must have the same height and the new ice fraction is

if = (1 − îf)
hinew

hi

where îf is ice fraction from previous timestep and hi is current ice height. Snow is redistributed over the new ice fraction. The ice fraction is not

allowed to become larger than iceMaskmax and if the ice height is above hihig then freezing energy comes from the full grid cell, ice growth does not

occur under orginal ice due to freezing water.

subroutine ICE THERM
The main subroutine of this package is ice therm.F where the ice temperatures are calculated and the
changes in ice and snow thicknesses are determined. Output provides the net heat and fresh water fluxes
that force the top layer of the ocean model.

If the current ice height is less than himin then the ice layer is set to zero and the ocean model
upper layer temperature is allowed to drop lower than its freezing temperature; and atmospheric fluxes
are allowed to effect the grid cell. If the ice height is greater than himin we proceed with the ice model
calculation.

We follow the procedure of Winton (1999) – see equations 3 to 21 – to calculate the surface and
internal ice temperatures. The surface temperature is found from the balance of the flux at the surface
Fs, the shortwave heat flux absorbed by the ice, fswint, and the upward conduction of heat through the
snow and/or ice, Fu. We linearize Fs about the surface temperature, T̂s, at the previous timestep (where
ˆindicates the value at the previous timestep):

Fs(Ts) = Fs(T̂s) +
∂Fs(T̂s)

∂Ts
(Ts − T̂s)

where,
Fs = Fsensible + Flatent + F down

longwave + Fup
longwave + (1 − α)Fshortwave

and
dFs

dT
=
dFsensible

dT
+
dFlatent

dT
+
dFup

longwave

dT
.

Fs and dFs

dT are currently calculated from the BULKF package described separately, but could also be
provided by an atmospheric model. The surface albedo is calculated from the ice height and/or surface
temperature (see below, srf albedo.F) and the shortwave flux absorbed in the ice is

fswint = (1 − eκihi)(1 − α)Fshortwave

where κi is bulk extinction coefficient.
The conductive flux to the surface is

Fu = K1/2(T1 − Ts)

where K1/2 is the effective conductive coupling of the snow-ice layer between the surface and the mid-

point of the upper layer of ice K1/2 = 4KiKs

Kshi+4Kihs
. Ki and Ks are constant thermal conductivities of

seaice and snow.
From the above equations we can develop a system of equations to find the skin surface temperature,

Ts and the two ice layer temperatures (see Winton, 1999, for details). We solve these equations iteratively
until the change in Ts is small. When the surface temperature is greater then the melting temperature

384 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

of the surface, the temperatures are recalculated setting Ts to 0. The enthalpy of the ice layers are
calculated in order to keep track of the energy in the ice model. Enthalpy is defined, here, as the energy
required to melt a unit mass of seaice with temperature T . For the upper layer (1) with brine pockets
and the lower fresh layer (2):

q1 = −cfTf + ci(Tf − T) + Li(1 − Tf

T
)

q2 = −ciT + Li

where cf is specific heat of liquid fresh water, ci is the specific heat of fresh ice, and Li is latent heat of
melting fresh ice.

From the new ice temperatures, we can calculate the energy flux at the surface available for melting
(if Ts=0) and the energy at the ocean-ice interface for either melting or freezing.

Etop = (Fs −K1/2(Ts − T1))∆t

Ebot = (
4Ki(T2 − Tf)

hi
− Fb)∆t

where Fb is the heat flux at the ice bottom due to the sea surface temperature variations from freezing.
If Tsst is above freezing, Fb = cswρswγ(Tsst − Tf)u∗, γ is the heat transfer coefficient and u∗ = QQ is
frictional velocity between ice and water. If Tsst is below freezing, Fb = (Tf − Tsst)cfρf∆z/∆t and set
Tsst to Tf . We also include the energy from lower layers that drop below freezing, and set those layers
to Tf .

If Etop > 0 we melt snow from the surface, if all the snow is melted and there is energy left, we melt
the ice. If the ice is all gone and there is still energy left, we apply the left over energy to heating the
ocean model upper layer (See Winton, 1999, equations 27-29). Similarly if Ebot > 0 we melt ice from the
bottom. If all the ice is melted, the snow is melted (with energy from the ocean model upper layer if
necessary). If Ebot < 0 we grow ice at the bottom

∆hi =
−Ebot

(qbotρi)

where qbot = −ciTf +Li is the enthalpy of the new ice, The enthalpy of the second ice layer, q2 needs to
be modified:

q2 =
ĥi/2q̂2 + ∆hiqbot

ĥi/2 + ∆hi

If there is a ice layer and the overlying air temperature is below 0oC then any precipitation, P joins
the snow layer:

∆hs = −P ρf

ρs
∆t,

ρf and ρs are the fresh water and snow densities. Any evaporation, similarly, removes snow or ice from
the surface. We also calculate the snow age here, in case it is needed for the surface albedo calculation
(see srf albedo.F below).

For practical reasons we limit the ice growth to hilim and snow is limited to hslim. We converts any
ice and/or snow above these limits back to water, maintaining the salt balance. Note however, that heat
is not conserved in this conversion; sea surface temperatures below the ice are not recalculated.

If the snow/ice interface is below the waterline, snow is converted to ice (see Winton, 1999, equations
35 and 36). The subroutine new layers winton.F, described below, repartitions the ice into equal thickness
layers while conserving energy.

The subroutine ice therm.F now calculates the heat and fresh water fluxes affecting the ocean model
surface layer. The heat flux:

qnet = fswocn − Fb −
esurp

∆t

is composed of the shortwave flux that has passed through the ice layer and is absorbed by the water,
fswocn= QQ, the ocean flux to the ice Fb, and the surplus energy left over from the melting, esurp.
The fresh water flux is determined from the amount of fresh water and salt in the ice/snow system before
and after the timestep.

6.6. SEA ICE PACKAGES 385

(There is a provision for fractional ice: If ice height is above hihig then all energy from freezing at sea surface is used only in the open water aparts of

the cell (ie. Fb will only have the conduction term). The melt energy is partitioned by frac energy between melting ice height and ice extent. However,

once ice height drops below himon0 then all energy melts ice extent.

subroutine SFC ALBEDO
The routine ice therm.F calls this routine to determine the surface albedo. There are two calculations
provided here:
1) from LANL CICE model

α = fsαs + (1 − fs)(αimin
+ (αimax

− αimin
)(1 − e−hi/hα))

where fs is 1 if there is snow, 0 if not; the snow albedo, αs has two values depending on whether Ts < 0
or not; αimin

and αimax
are ice albedos for thin melting ice, and thick bare ice respectively, and hα is a

scale height.
2) From GISS model (Hansen et al 1983)

α = αie
−hs/ha + αs(1 − e−hs/ha)

where αi is a constant albedo for bare ice, ha is a scale height and αs is a variable snow albedo.

αs = α1 + α2e
−λaas

where α1 is a constant, α2 depends on Ts, as is the snow age, and λa is a scale frequency. The snow age
is calculated in ice therm.F and is given in equation 41 in Hansen et al (1983).

subroutine NEW LAYERS WINTON
The subroutine new layers winton.F repartitions the ice into equal thickness layers while conserving
energy. We pass to this subroutine, the ice layer enthalpies after melting/growth and the new height of
the ice layers. The ending layer height should be half the sum of the new ice heights from ice therm.F.
The enthalpies of the ice layers are adjusted accordingly to maintain total energy in the ice model. If
layer 2 height is greater than layer 1 height then layer 2 gives ice to layer 1 and:

q1 = f1q̂1 + (1 − f1)q̂2

where f1 is the fraction of the new to old upper layer heights. T1 will therefore also have changed.
Similarly for when ice layer height 2 is less than layer 1 height, except here we need to to be careful that
the new T2 does not fall below the melting temperature.

Initializing subroutines
ice init.F: Set ice variables to zero, or reads in pickup information from pickup.ic (which was written
out in checkpoint.F)
ice readparms.F: Reads data.ice

Diagnostic subroutines
ice ave.F: Keeps track of means of the ice variables
ice diags.F: Finds averages and writes out diagnostics

Common Blocks
ICE.h: Ice Varibles, also relaxlat and startIceModel
ICE DIAGS.h: matrices for diagnostics: averages of fields from ice diags.F
BULKF ICE CONSTANTS.h (in BULKF package): all the parameters need by the ice model

386 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Input file DATA.ICE
Here we need to set StartIceModel: which is 1 if the model starts from no ice; and 0 if there is a
pickup file with the ice matrices (pickup.ic) which is read in ice init.F and written out in checkpoint.F.
The parameter relaxlat defines the latitude poleward of which there is no relaxing of surface T or S to
observations. This avoids the relaxation forcing the ice model at these high latitudes.
(Note: hicemin is set to 0 here. If the provision for allowing grid cells to have both open water and seaice is ever implemented, this would be greater

than 0)

6.6.1.2 Important Notes

1) heat fluxes have different signs in the ocean and ice models.
2) StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).

6.6.1.3 THSICE Diagnostics

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

SI_Fract| 1 |SM P M1 |0-1 |Sea-Ice fraction [0-1]

SI_Thick| 1 |SM PC197M1 |m |Sea-Ice thickness (area weighted average)

SI_SnowH| 1 |SM PC197M1 |m |Snow thickness over Sea-Ice (area weighted)

SI_Tsrf | 1 |SM C197M1 |degC |Surface Temperature over Sea-Ice (area weighted)

SI_Tice1| 1 |SM C197M1 |degC |Sea-Ice Temperature, 1srt layer (area weighted)

SI_Tice2| 1 |SM C197M1 |degC |Sea-Ice Temperature, 2nd layer (area weighted)

SI_Qice1| 1 |SM C198M1 |J/kg |Sea-Ice enthalpy, 1srt layer (mass weighted)

SI_Qice2| 1 |SM C198M1 |J/kg |Sea-Ice enthalpy, 2nd layer (mass weighted)

SIalbedo| 1 |SM PC197M1 |0-1 |Sea-Ice Albedo [0-1] (area weighted average)

SIsnwAge| 1 |SM P M1 |s |snow age over Sea-Ice

SIsnwPrc| 1 |SM C197M1 |kg/m^2/s |snow precip. (+=dw) over Sea-Ice (area weighted)

SIflxAtm| 1 |SM M1 |W/m^2 |net heat flux from the Atmosphere (+=dw)

SIfrwAtm| 1 |SM M1 |kg/m^2/s |fresh-water flux to the Atmosphere (+=up)

SIflx2oc| 1 |SM M1 |W/m^2 |heat flux out of the ocean (+=up)

SIfrw2oc| 1 |SM M1 |m/s |fresh-water flux out of the ocean (+=up)

SIsaltFx| 1 |SM M1 |psu.kg/m^2 |salt flux out of the ocean (+=up)

SItOcMxL| 1 |SM M1 |degC |ocean mixed layer temperature

SIsOcMxL| 1 |SM P M1 |psu |ocean mixed layer salinity

References
Bitz, C.M. and W.H. Lipscombe, 1999: An Energy-Conserving Thermodynamic Model of Sea Ice. Journal
of Geophysical Research, 104, 15,669 – 15,677.

Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L.Travis, 1983: Efficient
Three-Dimensional Global Models for Climate Studies: Models I and II. Monthly Weather Review, 111,
609 – 662.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice Model Documentation and
Software User’s Manual. LACC-98-16v.2.
(note: this documentation is no longer available as CICE has progressed to a very different version 3)

Winton, M, 2000: A reformulated Three-layer Sea Ice Model. Journal of Atmospheric and Ocean Tech-
nology, 17, 525 – 531.

6.6.1.4 Experiments and tutorials that use thsice

• Global atmosphere experiment in aim.5l cs verification directory, input from input.thsice directory.

• Global ocean experiment in global ocean.cs32x15 verification directory, input from input.thsice
directory.

6.6. SEA ICE PACKAGES 387

6.6.2 SEAICE Package

Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin, Patrick Heimbach, Chris
Hill and Jinlun Zhang

6.6.2.1 Introduction

Package “seaice” provides a dynamic and thermodynamic interactive sea-ice model.
CPP options enable or disable different aspects of the package (Section 6.6.2.2). Run-Time options,

flags, filenames and field-related dates/times are set in data.seaice (Section 6.6.2.3). A description of
key subroutines is given in Section 6.6.2.5. Input fields, units and sign conventions are summarized in
Section 6.6.2.3, and available diagnostics output is listed in Section 6.6.2.6.

6.6.2.2 SEAICE configuration, compiling & running

Compile-time options
As with all MITgcm packages, SEAICE can be turned on or off at compile time

• using the packages.conf file by adding seaice to it,

• or using genmake2 adding -enable=seaice or -disable=seaice switches

• required packages and CPP options :
SEAICE requires the external forcing package exf to be enabled; no additional CPP options are
required.

(see Section 3.4).
Parts of the SEAICE code can be enabled or disabled at compile time via CPP preprocessor flags.

These options are set in SEAICE OPTIONS.h. Table 6.6.2.2 summarizes the most important ones. For
more options see the default pkg/seaice/SEAICE OPTIONS.h.

CPP option Description

SEAICE DEBUG Enhance STDOUT for debugging
SEAICE ALLOW DYNAMICS sea-ice dynamics code
SEAICE CGRID LSR solver on C-grid (rather than original B-grid)
SEAICE ALLOW EVP enable use of EVP rheology solver
SEAICE ALLOW JFNK enable use of JFNK rheology solver
SEAICE EXTERNAL FLUXES use EXF-computed fluxes as starting point
SEAICE ZETA SMOOTHREG use differentialable regularization for viscosities
SEAICE VARIABLE FREEZING POINT enable linear dependence of the freezing point on salinity (by default unde-

fined)
ALLOW SEAICE FLOODING enable snow to ice conversion for submerged sea-ice
SEAICE VARIABLE SALINITY enable sea-ice with variable salinity (by default undefined)
SEAICE SITRACER enable sea-ice tracer package (by default undefined)
SEAICE BICE STRESS B-grid only for backward compatiblity: turn on ice-stress on ocean
EXPLICIT SSH SLOPE B-grid only for backward compatiblity: use ETAN for tilt computations rather

than geostrophic velocities

Table 6.18: Some of the most relevant CPP preprocessor flags in the seaice-package.

6.6.2.3 Run-time parameters

Run-time parameters (see Table 6.19) are set in files data.pkg (read in packages readparms.F), and
data.seaice (read in seaice readparms.F).

Enabling the package
A package is switched on/off at run-time by setting (e.g. for SEAICE) useSEAICE = .TRUE. in data.pkg.

General flags and parameters
Table 6.19 lists most run-time parameters.

388 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Table 6.19: Run-time parameters and default values

Name Default value Description Reference

SEAICEwriteState T write sea ice state to file
SEAICEuseDYNAMICS T use dynamics
SEAICEuseJFNK F use the JFNK-solver
SEAICEuseTEM F use truncated ellipse method
SEAICEuseStrImpCpl F use strength implicit coupling in LSR/JFNK
SEAICEuseMetricTerms T use metric terms in dynamics
SEAICEuseEVPpickup T use EVP pickups
SEAICEuseFluxForm F use flux form for 2nd central difference advec-

tion scheme
SEAICErestoreUnderIce F enable restoring to climatology under ice
useHB87stressCoupling F turn on ice-ocean stress coupling following Hibler

and Bryan [1987]
usePW79thermodynamics T flag to turn off zero-layer-thermodynamics for

testing
SEAICEadvHeff/Area/Snow/Salt T flag to turn off advection of scalar state vari-

ables
SEAICEuseFlooding T use flood-freeze algorithm
SEAICE no slip F switch between free-slip and no-slip boundary

conditions
SEAICE deltaTtherm dTracerLev(1) thermodynamic timestep
SEAICE deltaTdyn dTracerLev(1) dynamic timestep
SEAICE deltaTevp 0 EVP sub-cycling time step, values > 0 turn on

EVP
SEAICEuseEVPstar F use modified EVP* instead of EVP
SEAICEuseEVPrev F use yet another variation on EVP*
SEAICEnEVPstarSteps UNSET number of modified EVP* iteration
SEAICE evpAlpha UNSET EVP* parameter
SEAICE evpBeta UNSET EVP* parameter
SEAICEaEVPcoeff UNSET aEVP parameter
SEAICEaEVPcStar 4 aEVP parameter [Kimmritz et al., 2016]
SEAICEaEVPalphaMin 5 aEVP parameter [Kimmritz et al., 2016]

SEAICE elasticParm 1
3

EVP paramter E0
SEAICE evpTauRelax ∆tEV P E0 relaxation time scale T for EVP waves
SEAICEnewtonIterMax 10 maximum number of JFNK-Newton iterations
SEAICEkrylovIterMax 10 maximum number of JFNK-Krylov iterations
SEAICE JFNK lsIter (off) start line search after “lsIter” Newton iterations
JFNKgamma nonlin 1.0E-05 non-linear tolerance parameter for JFNK solver
JFNKgamma lin min/max 0.10/0.99 tolerance parameters for linear JFNK solver
JFNKres tFac UNSET tolerance parameter for FGMRES residual
SEAICE JFNKepsilon 1.0E-06 step size for the FD-Jacobian-times-vector
SEAICE dumpFreq dumpFreq dump frequency
SEAICE taveFreq taveFreq time-averaging frequency
SEAICE dump mdsio T write snap-shot using MDSIO
SEAICE tave mdsio T write TimeAverage using MDSIO
SEAICE dump mnc F write snap-shot using MNC
SEAICE tave mnc F write TimeAverage using MNC
SEAICE initialHEFF 0.00000E+00 initial sea-ice thickness
SEAICE drag 2.00000E-03 air-ice drag coefficient
OCEAN drag 1.00000E-03 air-ocean drag coefficient
SEAICE waterDrag 5.50000E+00 water-ice drag
SEAICE dryIceAlb 7.50000E-01 winter albedo
SEAICE wetIceAlb 6.60000E-01 summer albedo
SEAICE drySnowAlb 8.40000E-01 dry snow albedo
SEAICE wetSnowAlb 7.00000E-01 wet snow albedo
SEAICE waterAlbedo 1.00000E-01 water albedo
SEAICE strength 2.75000E+04 sea-ice strength P∗

SEAICE cStar 20.0000E+00 sea-ice strength paramter C∗

SEAICE rhoAir 1.3 (or exf value) density of air (kg/m3)
SEAICE cpAir 1004 (or exf value) specific heat of air (J/kg/K)
SEAICE lhEvap 2,500,000 (or exf value) latent heat of evaporation
SEAICE lhFusion 334,000 (or exf value) latent heat of fusion
SEAICE lhSublim 2,834,000 latent heat of sublimation
SEAICE dalton 1.75E-03 sensible heat transfer coefficient
SEAICE iceConduct 2.16560E+00 sea-ice conductivity
SEAICE snowConduct 3.10000E-01 snow conductivity
SEAICE emissivity 5.50000E-08 Stefan-Boltzman
SEAICE snowThick 1.50000E-01 cutoff snow thickness
SEAICE shortwave 3.00000E-01 penetration shortwave radiation
SEAICE freeze -1.96000E+00 freezing temp. of sea water
SEAICE saltFrac 0.0 salinity newly formed ice (fraction of ocean sur-

face salinity)
SEAICE frazilFrac 0.0 Fraction of surface level negative heat content

anomalies (relative to the local freezing point)
SEAICEstressFactor 1.00000E+00 scaling factor for ice-ocean stress
Heff/Area/HsnowFile/Hsalt UNSET initial fields for variables

HEFF/AREA/HSNOW/HSALT
LSR ERROR 1.00000E-04 sets accuracy of LSR solver
DIFF1 0.0 parameter used in advect.F
HO 5.00000E-01 demarcation ice thickness (AKA lead closing

paramter h0)
MAX HEFF 1.00000E+01 maximum ice thickness
MIN ATEMP -5.00000E+01 minimum air temperature
MIN LWDOWN 6.00000E+01 minimum downward longwave
MAX TICE 3.00000E+01 maximum ice temperature
MIN TICE -5.00000E+01 minimum ice temperature
IMAX TICE 10 iterations for ice heat budget
SEAICE EPS 1.00000E-10 reduce derivative singularities
SEAICE area reg 1.00000E-5 minimum concentration to regularize ice thick-

ness
SEAICE hice reg 0.05 m minimum ice thickness for regularization
SEAICE multDim 1 number of ice categories for thermodynamics
SEAICE useMultDimSnow F use SEAICE multDim snow categories

Input fields and units

HeffFile: Initial sea ice thickness averaged over grid cell in meters; initializes variable HEFF;

AreaFile: Initial fractional sea ice cover, range [0, 1]; initializes variable AREA;

6.6. SEA ICE PACKAGES 389

HsnowFile: Initial snow thickness on sea ice averaged over grid cell in meters; initializes variable HSNOW;

HsaltFile: Initial salinity of sea ice averaged over grid cell in g/m2; initializes variable HSALT;

6.6.2.4 Description

[TO BE CONTINUED/MODIFIED]

The MITgcm sea ice model (MITgcm/sim) is based on a variant of the viscous-plastic (VP) dynamic-
thermodynamic sea ice model [Zhang and Hibler, 1997] first introduced by Hibler [1979, 1980]. In order
to adapt this model to the requirements of coupled ice-ocean state estimation, many important aspects
of the original code have been modified and improved [Losch et al., 2010]:

• the code has been rewritten for an Arakawa C-grid, both B- and C-grid variants are available; the
C-grid code allows for no-slip and free-slip lateral boundary conditions;

• three different solution methods for solving the nonlinear momentum equations have been adopted:
LSOR [Zhang and Hibler, 1997], EVP [Hunke and Dukowicz, 1997], JFNK [Lemieux et al., 2010;
Losch et al., 2014];

• ice-ocean stress can be formulated as in Hibler and Bryan [1987] or as in Campin et al. [2008];

• ice variables are advected by sophisticated, conservative advection schemes with flux limiting;

• growth and melt parameterizations have been refined and extended in order to allow for more stable
automatic differentiation of the code.

The sea ice model is tightly coupled to the ocean compontent of the MITgcm. Heat, fresh water fluxes
and surface stresses are computed from the atmospheric state and – by default – modified by the ice
model at every time step.

The ice dynamics models that are most widely used for large-scale climate studies are the viscous-
plastic (VP) model [Hibler, 1979], the cavitating fluid (CF) model [Flato and Hibler, 1992], and the elastic-
viscous-plastic (EVP) model [Hunke and Dukowicz, 1997]. Compared to the VP model, the CF model
does not allow ice shear in calculating ice motion, stress, and deformation. EVP models approximate
VP by adding an elastic term to the equations for easier adaptation to parallel computers. Because of
its higher accuracy in plastic solution and relatively simpler formulation, compared to the EVP model,
we decided to use the VP model as the default dynamic component of our ice model. To do this we
extended the line successive over relaxation (LSOR) method of Zhang and Hibler [1997] for use in a
parallel configuration. An EVP model and a free-drift implemtation can be selected with runtime flags.

Compatibility with ice-thermodynamics package thsice

Note, that by default the seaice-package includes the orginial so-called zero-layer thermodynamics fol-
lowing Hibler [1980] with a snow cover as in Zhang et al. [1998]. The zero-layer thermodynamic model
assumes that ice does not store heat and, therefore, tends to exaggerate the seasonal variability in ice
thickness. This exaggeration can be significantly reduced by using Semtner’s [1976] three-layer thermody-
namic model that permits heat storage in ice. Recently, the three-layer thermodynamic model has been
reformulated by Winton [2000]. The reformulation improves model physics by representing the brine
content of the upper ice with a variable heat capacity. It also improves model numerics and consumes
less computer time and memory.

The Winton sea-ice thermodynamics have been ported to the MIT GCM; they currently reside un-
der pkg/thsice. The package thsice is described in section 6.6.1; it is fully compatible with the
packages seaice and exf. When turned on together with seaice, the zero-layer thermodynamics are
replaced by the Winton thermodynamics. In order to use the seaice-package with the thermody-
namics of thsice, compile both packages and turn both package on in data.pkg; see an example in
global ocean.cs32x15/input.icedyn. Note, that once thsice is turned on, the variables and diagnos-
tics associated to the default thermodynamics are meaningless, and the diagnostics of thsice have to be
used instead.

390 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Surface forcing
The sea ice model requires the following input fields: 10-m winds, 2-m air temperature and specific
humidity, downward longwave and shortwave radiations, precipitation, evaporation, and river and glacier
runoff. The sea ice model also requires surface temperature from the ocean model and the top level
horizontal velocity. Output fields are surface wind stress, evaporation minus precipitation minus runoff,
net surface heat flux, and net shortwave flux. The sea-ice model is global: in ice-free regions bulk formulae
are used to estimate oceanic forcing from the atmospheric fields.

Dynamics
The momentum equation of the sea-ice model is

m
D~u

Dt
= −mf~k× ~u + ~τair + ~τocean −m∇φ(0) + ~F, (6.39)

where m = mi +ms is the ice and snow mass per unit area; ~u = u~i+ v~j is the ice velocity vector;~i,~j, and
~k are unit vectors in the x, y, and z directions, respectively; f is the Coriolis parameter; ~τair and ~τocean

are the wind-ice and ocean-ice stresses, respectively; g is the gravity accelation; ∇φ(0) is the gradient (or
tilt) of the sea surface height; φ(0) = gη + pa/ρ0 +mg/ρ0 is the sea surface height potential in response
to ocean dynamics (gη), to atmospheric pressure loading (pa/ρ0, where ρ0 is a reference density) and a

term due to snow and ice loading [Campin et al., 2008]; and ~F = ∇ · σ is the divergence of the internal
ice stress tensor σij . Advection of sea-ice momentum is neglected. The wind and ice-ocean stress terms
are given by

~τair =ρairCair|~Uair − ~u|Rair(~Uair − ~u),

~τocean =ρoceanCocean|~Uocean − ~u|Rocean(~Uocean − ~u),

where ~Uair/ocean are the surface winds of the atmosphere and surface currents of the ocean, respectively;
Cair/ocean are air and ocean drag coefficients; ρair/ocean are reference densities; and Rair/ocean are rotation
matrices that act on the wind/current vectors.

Viscous-Plastic (VP) Rheology
For an isotropic system the stress tensor σij (i, j = 1, 2) can be related to the ice strain rate and strength
by a nonlinear viscous-plastic (VP) constitutive law [Hibler, 1979; Zhang and Hibler, 1997]:

σij = 2η(ǫ̇ij , P)ǫ̇ij + [ζ(ǫ̇ij , P) − η(ǫ̇ij , P)] ǫ̇kkδij −
P

2
δij . (6.40)

The ice strain rate is given by

ǫ̇ij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

The maximum ice pressure Pmax, a measure of ice strength, depends on both thickness h and compactness
(concentration) c:

Pmax = P ∗c h exp{−C∗ · (1 − c)}, (6.41)

with the constants P ∗ (run-time parameter SEAICE strength) and C∗ = 20. The nonlinear bulk and
shear viscosities η and ζ are functions of ice strain rate invariants and ice strength such that the principal
components of the stress lie on an elliptical yield curve with the ratio of major to minor axis e equal to
2; they are given by:

ζ =min

(
Pmax

2 max(∆,∆min)
, ζmax

)

η =
ζ

e2

with the abbreviation

∆ =
[(
ǫ̇211 + ǫ̇222

)
(1 + e−2) + 4e−2ǫ̇212 + 2ǫ̇11ǫ̇22(1 − e−2)

] 1
2 .

6.6. SEA ICE PACKAGES 391

The bulk viscosities are bounded above by imposing both a minimum ∆min (for numerical reasons, run-
time parameter SEAICE EPS with a default value of 10−10 s−1) and a maximum ζmax = Pmax/∆

∗, where
∆∗ = (5 × 1012/2 × 104) s−1. (There is also the option of bounding ζ from below by setting run-time
parameter SEAICE zetaMin > 0, but this is generally not recommended). For stress tensor computation
the replacement pressure P = 2 ∆ζ [Hibler and Ip, 1995] is used so that the stress state always lies on
the elliptic yield curve by definition.

Defining the CPP-flag SEAICE ZETA SMOOTHREG in SEAICE OPTIONS.h before compiling replaces the
method for bounding ζ by a smooth (differentiable) expression:

ζ = ζmax tanh

(
P

2 min(∆,∆min) ζmax

)

=
P

2∆∗
tanh

(
∆∗

min(∆,∆min)

) (6.42)

where ∆min = 10−20 s−1 is chosen to avoid divisions by zero.

LSR and JFNK solver

In the matrix notation, the discretized momentum equations can be written as

A(~x)~x = ~b(~x). (6.43)

The solution vector ~x consists of the two velocity components u and v that contain the velocity variables
at all grid points and at one time level. The standard (and default) method for solving Eq. (6.43) in
the sea ice component of the MITgcm, as in many sea ice models, is an iterative Picard solver: in the
k-th iteration a linearized form A(~xk−1)~xk = ~b(~xk−1) is solved (in the case of the MITgcm it is a
Line Successive (over) Relaxation (LSR) algorithm [Zhang and Hibler, 1997]). Picard solvers converge
slowly, but generally the iteration is terminated after only a few non-linear steps [Zhang and Hibler, 1997;
Lemieux and Tremblay, 2009] and the calculation continues with the next time level. This method is the
default method in the MITgcm. The number of non-linear iteration steps or pseudo-time steps can be
controlled by the runtime parameter NPSEUDOTIMESTEPS (default is 2).

In order to overcome the poor convergence of the Picard-solver, Lemieux et al. [2010] introduced a
Jacobian-free Newton-Krylov solver for the sea ice momentum equations. This solver is also implemented
in the MITgcm [Losch et al., 2014]. The Newton method transforms minimizing the residual ~F(~x) =

A(~x)~x−~b(~x) to finding the roots of a multivariate Taylor expansion of the residual ~F around the previous
(k − 1) estimate ~xk−1:

~F(~xk−1 + δ~xk) = ~F(~xk−1) + ~F′(~xk−1) δ~xk (6.44)

with the Jacobian J ≡ ~F′. The root ~F(~xk−1 + δ~xk) = 0 is found by solving

J(~xk−1) δ~xk = −~F(~xk−1) (6.45)

for δ~xk. The next (k-th) estimate is given by ~xk = ~xk−1 + a δ~xk. In order to avoid overshoots the

factor a is iteratively reduced in a line search (a = 1, 1
2 ,

1
4 ,

1
8 , . . .) until ‖~F(~xk)‖ < ‖~F(~xk−1)‖, where

‖ · ‖ =
∫
· dx2 is the L2-norm. In practice, the line search is stopped at a = 1

8 . The line search starts
after SEAICE JFNK lsIter non-linear Newton iterations (off by default).

Forming the Jacobian J explicitly is often avoided as “too error prone and time consuming” [Knoll
and Keyes, 2004]. Instead, Krylov methods only require the action of J on an arbitrary vector ~w and
hence allow a matrix free algorithm for solving Eq. (6.45) [Knoll and Keyes, 2004]. The action of J can
be approximated by a first-order Taylor series expansion:

J(~xk−1) ~w ≈
~F(~xk−1 + ǫ~w) − ~F(~xk−1)

ǫ
(6.46)

or computed exactly with the help of automatic differentiation (AD) tools. SEAICE JFNKepsilon sets the
step size ǫ.

We use the Flexible Generalized Minimum RESidual method [FGMRES, Saad, 1993] with right-
hand side preconditioning to solve Eq. (6.45) iteratively starting from a first guess of δ~xk

0 = 0. For the

392 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

preconditioning matrix P we choose a simplified form of the system matrix A(~xk−1) [Lemieux et al.,
2010] where ~xk−1 is the estimate of the previous Newton step k − 1. The transformed equation (6.45)
becomes

J(~xk−1)P−1δ~z = −~F(~xk−1), with δ~z = Pδ~xk. (6.47)

The Krylov method iteratively improves the approximate solution to (6.47) in subspace (~r0, JP−1~r0,

(JP−1)2~r0, . . . , (JP−1)m~r0) with increasing m; ~r0 = −~F(~xk−1) − J(~xk−1) δ~xk
0 is the initial residual of

(6.45); ~r0 = −~F(~xk−1) with the first guess δ~xk
0 = 0. We allow a Krylov-subspace of dimension m = 50

and we do not use restarts. The preconditioning operation involves applying P−1 to the basis vectors
~v0, ~v1, ~v2, . . . , ~vm of the Krylov subspace. This operation is approximated by solving the linear system
P ~w = ~vi. Because P ≈ A(~xk−1), we can use the LSR-algorithm [Zhang and Hibler, 1997] already
implemented in the Picard solver. Each preconditioning operation uses a fixed number of 10 LSR-
iterations avoiding any termination criterion. More details and results can be found in Lemieux et al.
[2010]; Losch et al. [2014].

To use the JFNK-solver set SEAICEuseJFNK = .TRUE. in the namelist file data.seaice; SEAICE ALLOW JFNK

needs to be defined in SEAICE OPTIONS.h and we recommend using a smooth regularization of ζ by defin-
ing SEAICE ZETA SMOOTHREG (see above) for better convergence. The non-linear Newton iteration is
terminated when the L2-norm of the residual is reduced by γnl (runtime parameter JFNKgamma nonlin =

1.e-4 will already lead to expensive simulations) with respect to the initial norm: ‖~F(~xk)‖ < γnl‖~F(~x0)‖.
Within a non-linear iteration, the linear FGMRES solver is terminated when the residual is smaller than
γk‖~F(~xk−1)‖ where γk is determined by

γk =

{
γ0 for ‖~F(~xk−1)‖ ≥ r,

max
(
γmin,

‖~F(~xk−1)‖

‖~F(~xk−2)‖

)
for ‖~F(~xk−1)‖ < r,

(6.48)

so that the linear tolerance parameter γk decreases with the non-linear Newton step as the non-linear
solution is approached. This inexact Newton method is generally more robust and computationally
more efficient than exact methods [e.g., Knoll and Keyes, 2004]. Typical parameter choices are γ0 =

JFNKgamma lin max = 0.99, γmin = JFNKgamma lin min = 0.1, and r = JFNKres tFac × ‖~F(~x0)‖ with
JFNKres tFac = 1

2 . We recommend a maximum number of non-linear iterations SEAICEnewtonIterMax=
100 and a maximum number of Krylov iterations SEAICEkrylovIterMax = 50, because the Krylov
subspace has a fixed dimension of 50.

Setting SEAICEuseStrImpCpl = .TRUE., turns on “strength implicit coupling” [Hutchings et al.,
2004] in the LSR-solver and in the LSR-preconditioner for the JFNK-solver. In this mode, the different
contributions of the stress divergence terms are re-ordered in order to increase the diagonal dominance
of the system matrix. Unfortunately, the convergence rate of the LSR solver is increased only slightly,
while the JFNK-convergence appears to be unaffected.

Elastic-Viscous-Plastic (EVP) Dynamics
Hunke and Dukowicz [1997]’s introduced an elastic contribution to the strain rate in order to regularize
Eq. 6.40 in such a way that the resulting elastic-viscous-plastic (EVP) and VP models are identical at
steady state,

1

E

∂σij

∂t
+

1

2η
σij +

η − ζ

4ζη
σkkδij +

P

4ζ
δij = ǫ̇ij . (6.49)

The EVP-model uses an explicit time stepping scheme with a short timestep. According to the recom-
mendation of Hunke and Dukowicz [1997], the EVP-model should be stepped forward in time 120 times
(SEAICE deltaTevp = SEAICIE deltaTdyn/120) within the physical ocean model time step (although
this parameter is under debate), to allow for elastic waves to disappear. Because the scheme does not
require a matrix inversion it is fast in spite of the small internal timestep and simple to implement
on parallel computers [Hunke and Dukowicz, 1997]. For completeness, we repeat the equations for the
components of the stress tensor σ1 = σ11 + σ22, σ2 = σ11 − σ22, and σ12. Introducing the divergence
DD = ǫ̇11 + ǫ̇22, and the horizontal tension and shearing strain rates, DT = ǫ̇11 − ǫ̇22 and DS = 2ǫ̇12,

6.6. SEA ICE PACKAGES 393

respectively, and using the above abbreviations, the equations 6.49 can be written as:

∂σ1

∂t
+
σ1

2T
+

P

2T
=

P

2T∆
DD (6.50)

∂σ2

∂t
+
σ2e

2

2T
=

P

2T∆
DT (6.51)

∂σ12

∂t
+
σ12e

2

2T
=

P

4T∆
DS (6.52)

Here, the elastic parameter E is redefined in terms of a damping timescale T for elastic waves

E =
ζ

T
.

T = E0∆t with the tunable parameter E0 < 1 and the external (long) timestep ∆t. E0 = 1
3 is the default

value in the code and close to what Hunke and Dukowicz [1997] and Hunke [2001] recommend.
To use the EVP solver, make sure that both SEAICE CGRID and SEAICE ALLOW EVP are defined in

SEAICE OPTIONS.h (default). The solver is turned on by setting the sub-cycling time step SEAICE deltaTevp

to a value larger than zero. The choice of this time step is under debate. Hunke and Dukowicz [1997]
recommend order(120) time steps for the EVP solver within one model time step ∆t (deltaTmom).
One can also choose order(120) time steps within the forcing time scale, but then we recommend
adjusting the damping time scale T accordingly, by setting either SEAICE elasticParm (E0), so that
E0∆t = forcing time scale, or directly SEAICE evpTauRelax (T) to the forcing time scale.

More stable variants of Elastic-Viscous-Plastic Dynamics: EVP* , mEVP, and aEVP
The genuine EVP schemes appears to give noisy solutions [Hunke, 2001; Lemieux et al., 2012; Bouillon
et al., 2013]. This has lead to a modified EVP or EVP* [Lemieux et al., 2012; Bouillon et al., 2013;
Kimmritz et al., 2015]; here, we refer to these variants by modified EVP (mEVP) and adaptive EVP
(aEVP) [Kimmritz et al., 2016]. The main idea is to modify the “natural” time-discretization of the
momentum equations:

m
D~u

Dt
≈ m

up+1 − un

∆t
+ β∗

up+1 − up

∆tEVP
(6.53)

where n is the previous time step index, and p is the previous sub-cycling index. The extra “intertial”
term m (up+1 − un)/∆t) allows the definition of a residual |up+1 − up| that, as up+1 → un+1, converges
to 0. In this way EVP can be re-interpreted as a pure iterative solver where the sub-cycling has no
association with time-relation (through ∆tEVP) [Bouillon et al., 2013; Kimmritz et al., 2015]. Using the
terminology of Kimmritz et al. [2015], the evolution equations of stress σij and momentum ~u can be
written as:

σp+1
ij = σp

ij +
1

α

(
σij(~u

p) − σp
ij

)
, (6.54)

~up+1 = ~up +
1

β

(∆t

m
∇ · σp+1 +

∆t

m
~Rp + ~un − ~up

)
. (6.55)

~R contains all terms in the momentum equations except for the rheology terms and the time derivative;
α and β are free parameters (SEAICE evpAlpha, SEAICE evpBeta) that replace the time stepping pa-
rameters SEAICE deltaTevp (∆TEVP), SEAICE elasticParm (E0), or SEAICE evpTauRelax (T). α and
β determine the speed of convergence and the stability. Usually, it makes sense to use α = β, and
SEAICEnEVPstarSteps≫ (α, β) [Kimmritz et al., 2015]. Currently, there is no termination criterion and
the number of mEVP iterations is fixed to SEAICEnEVPstarSteps.

In order to use mEVP in the MITgcm, set SEAICEuseEVPstar = .TRUE., in data.seaice. If
SEAICEuseEVPrev =.TRUE., the actual form of equations (6.54) and (6.55) is used with fewer implicit
terms and the factor of e2 dropped in the stress equations (6.51) and (6.52). Although this modifies the
original EVP-equations, it turns out to improve convergence [Bouillon et al., 2013].

Another variant is the aEVP scheme [Kimmritz et al., 2016], where the value of α is set dynamically
based on the stability criterion

α = β = max

(
c̃π

√
c
ζ

Ac

∆t

max(m, 10−4 kg)
, αmin

)
(6.56)

394 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

with the grid cell area Ac and the ice and snow mass m. This choice sacrifices speed of convergence
for stability with the result that aEVP converges quickly to VP where α can be small and more slowly
in areas where the equations are stiff. In practice, aEVP leads to an overall better convergence than
mEVP [Kimmritz et al., 2016]. To use aEVP in the MITgcm set SEAICEaEVPcoeff = c̃; this also sets
the default values of SEAICEaEVPcStar (c = 4) and SEAICEaEVPalphaMin (αmin = 5). Good conver-
gence has been obtained with setting these values [Kimmritz et al., 2016]: SEAICEaEVPcoeff = 0.5,

SEAICEnEVPstarSteps = 500, SEAICEuseEVPstar = .TRUE., SEAICEuseEVPrev = .TRUE.

Note, that probably because of the C-grid staggering of velocities and stresses, mEVP may not
converge as successfully as in Kimmritz et al. [2015], and that convergence at very high resolution (order
5 km) has not been studied yet.

Truncated ellipse method (TEM) for yield curve
In the so-called truncated ellipse method the shear viscosity η is capped to suppress any tensile stress
[Hibler and Schulson, 1997; Geiger et al., 1998]:

η = min

(
ζ

e2
,

P
2 − ζ(ǫ̇11 + ǫ̇22)√

max(∆2
min, (ǫ̇11 − ǫ̇22)2 + 4ǫ̇212)

)
. (6.57)

To enable this method, set #define SEAICE ALLOW TEM in SEAICE OPTIONS.h and turn it on with SEAICEuseTEM

in data.seaice.

Ice-Ocean stress
Moving sea ice exerts a stress on the ocean which is the opposite of the stress ~τocean in Eq. 6.39. This
stess is applied directly to the surface layer of the ocean model. An alternative ocean stress formulation
is given by Hibler and Bryan [1987]. Rather than applying ~τocean directly, the stress is derived from
integrating over the ice thickness to the bottom of the oceanic surface layer. In the resulting equation for
the combined ocean-ice momentum, the interfacial stress cancels and the total stress appears as the sum
of windstress and divergence of internal ice stresses: δ(z)(~τair +~F)/ρ0, [see also Eq. 2 of Hibler and Bryan,
1987]. The disadvantage of this formulation is that now the velocity in the surface layer of the ocean
that is used to advect tracers, is really an average over the ocean surface velocity and the ice velocity
leading to an inconsistency as the ice temperature and salinity are different from the oceanic variables.
To turn on the stress formulation of Hibler and Bryan [1987], set useHB87StressCoupling=.TRUE. in
data.seaice.

Finite-volume discretization of the stress tensor divergence
On an Arakawa C grid, ice thickness and concentration and thus ice strength P and bulk and shear
viscosities ζ and η are naturally defined a C-points in the center of the grid cell. Discretization requires
only averaging of ζ and η to vorticity or Z-points (or ζ-points, but here we use Z in order avoid confusion

with the bulk viscosity) at the bottom left corner of the cell to give ζ
Z

and ηZ . In the following, the
superscripts indicate location at Z or C points, distance across the cell (F), along the cell edge (G),
between u-points (U), v-points (V), and C-points (C). The control volumes of the u- and v-equations
in the grid cell at indices (i, j) are Aw

i,j and As
i,j , respectively. With these definitions (which follow the

model code documentation except that ζ-points have been renamed to Z-points), the strain rates are

6.6. SEA ICE PACKAGES 395

discretized as:

ǫ̇11 = ∂1u1 + k2u2 (6.58)

=> (ǫ11)
C
i,j =

ui+1,j − ui,j

∆xF
i,j

+ kC
2,i,j

vi,j+1 + vi,j

2

ǫ̇22 = ∂2u2 + k1u1 (6.59)

=> (ǫ22)
C
i,j =

vi,j+1 − vi,j

∆yF
i,j

+ kC
1,i,j

ui+1,j + ui,j

2

ǫ̇12 = ǫ̇21 =
1

2

(
∂1u2 + ∂2u1 − k1u2 − k2u1

)
(6.60)

=> (ǫ12)
Z
i,j =

1

2

(
vi,j − vi−1,j

∆xV
i,j

+
ui,j − ui,j−1

∆yU
i,j

− kZ
1,i,j

vi,j + vi−1,j

2
− kZ

2,i,j

ui,j + ui,j−1

2

)
,

so that the diagonal terms of the strain rate tensor are naturally defined at C-points and the symmetric
off-diagonal term at Z-points. No-slip boundary conditions (ui,j−1 + ui,j = 0 and vi−1,j + vi,j = 0
across boundaries) are implemented via “ghost-points”; for free slip boundary conditions (ǫ12)

Z = 0 on
boundaries.

For a spherical polar grid, the coefficients of the metric terms are k1 = 0 and k2 = − tanφ/a, with
the spherical radius a and the latitude φ; ∆x1 = ∆x = a cosφ∆λ, and ∆x2 = ∆y = a∆φ. For a general
orthogonal curvilinear grid, k1 and k2 can be approximated by finite differences of the cell widths:

kC
1,i,j =

1

∆yF
i,j

∆yG
i+1,j − ∆yG

i,j

∆xF
i,j

(6.61)

kC
2,i,j =

1

∆xF
i,j

∆xG
i,j+1 − ∆xG

i,j

∆yF
i,j

(6.62)

kZ
1,i,j =

1

∆yU
i,j

∆yC
i,j − ∆yC

i−1,j

∆xV
i,j

(6.63)

kZ
2,i,j =

1

∆xV
i,j

∆xC
i,j − ∆xC

i,j−1

∆yU
i,j

(6.64)

The stress tensor is given by the constitutive viscous-plastic relation σαβ = 2ηǫ̇αβ+[(ζ−η)ǫ̇γγ−P/2]δαβ

[Hibler, 1979]. The stress tensor divergence (∇σ)α = ∂βσβα, is discretized in finite volumes [see also Losch
et al., 2010]. This conveniently avoids dealing with further metric terms, as these are “hidden” in the
differential cell widths. For the u-equation (α = 1) we have:

(∇σ)1 :
1

Aw
i,j

∫

cell

(∂1σ11 + ∂2σ21) dx1 dx2 (6.65)

=
1

Aw
i,j

{∫ x2+∆x2

x2

σ11dx2

∣∣∣∣
x1+∆x1

x1

+

∫ x1+∆x1

x1

σ21dx1

∣∣∣∣
x2+∆x2

x2

}

≈ 1

Aw
i,j

{
∆x2σ11

∣∣∣∣
x1+∆x1

x1

+∆x1σ21

∣∣∣∣
x2+∆x2

x2

}

=
1

Aw
i,j

{
(∆x2σ11)

C
i,j − (∆x2σ11)

C
i−1,j

+ (∆x1σ21)
Z
i,j+1 − (∆x1σ21)

Z
i,j

}

396 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

with

(∆x2σ11)
C
i,j = ∆yF

i,j(ζ + η)C
i,j

ui+1,j − ui,j

∆xF
i,j

(6.66)

+ ∆yF
i,j(ζ + η)C

i,jk
C
2,i,j

vi,j+1 + vi,j

2

+ ∆yF
i,j(ζ − η)C

i,j

vi,j+1 − vi,j

∆yF
i,j

+ ∆yF
i,j(ζ − η)C

i,jk
C
1,i,j

ui+1,j + ui,j

2

− ∆yF
i,j

P

2

(∆x1σ21)
Z
i,j = ∆xV

i,jη
Z
i,j

ui,j − ui,j−1

∆yU
i,j

(6.67)

+ ∆xV
i,jη

Z
i,j

vi,j − vi−1,j

∆xV
i,j

− ∆xV
i,jη

Z
i,jk

Z
2,i,j

ui,j + ui,j−1

2

− ∆xV
i,jη

Z
i,jk

Z
1,i,j

vi,j + vi−1,j

2

Similarly, we have for the v-equation (α = 2):

(∇σ)2 :
1

As
i,j

∫

cell

(∂1σ12 + ∂2σ22) dx1 dx2 (6.68)

=
1

As
i,j

{∫ x2+∆x2

x2

σ12dx2

∣∣∣∣
x1+∆x1

x1

+

∫ x1+∆x1

x1

σ22dx1

∣∣∣∣
x2+∆x2

x2

}

≈ 1

As
i,j

{
∆x2σ12

∣∣∣∣
x1+∆x1

x1

+∆x1σ22

∣∣∣∣
x2+∆x2

x2

}

=
1

As
i,j

{
(∆x2σ12)

Z
i+1,j − (∆x2σ12)

Z
i,j

+ (∆x1σ22)
C
i,j − (∆x1σ22)

C
i,j−1

}

with

(∆x1σ12)
Z
i,j = ∆yU

i,jη
Z
i,j

ui,j − ui,j−1

∆yU
i,j

(6.69)

+ ∆yU
i,jη

Z
i,j

vi,j − vi−1,j

∆xV
i,j

− ∆yU
i,jη

Z
i,jk

Z
2,i,j

ui,j + ui,j−1

2

− ∆yU
i,jη

Z
i,jk

Z
1,i,j

vi,j + vi−1,j

2

(∆x2σ22)
C
i,j = ∆xF

i,j(ζ − η)C
i,j

ui+1,j − ui,j

∆xF
i,j

+ ∆xF
i,j(ζ − η)C

i,jk
C
2,i,j

vi,j+1 + vi,j

2

+ ∆xF
i,j(ζ + η)C

i,j

vi,j+1 − vi,j

∆yF
i,j

+ ∆xF
i,j(ζ + η)C

i,jk
C
1,i,j

ui+1,j + ui,j

2

− ∆xF
i,j

P

2

6.6. SEA ICE PACKAGES 397

Again, no slip boundary conditions are realized via ghost points and ui,j−1+ui,j = 0 and vi−1,j +vi,j =
0 across boundaries. For free slip boundary conditions the lateral stress is set to zeros. In analogy to
(ǫ12)

Z = 0 on boundaries, we set σZ
21 = 0, or equivalently ηZ

i,j = 0, on boundaries.

Thermodynamics
NOTE: THIS SECTION IS TERRIBLY OUT OF DATE
In its original formulation the sea ice model [Menemenlis et al., 2005] uses simple thermodynamics
following the appendix of Semtner [1976]. This formulation does not allow storage of heat, that is, the
heat capacity of ice is zero. Upward conductive heat flux is parameterized assuming a linear temperature
profile and together with a constant ice conductivity. It is expressed as (K/h)(Tw−T0), where K is the ice
conductivity, h the ice thickness, and Tw −T0 the difference between water and ice surface temperatures.
This type of model is often refered to as a “zero-layer” model. The surface heat flux is computed in a
similar way to that of Parkinson and Washington [1979] and Manabe et al. [1979].

The conductive heat flux depends strongly on the ice thickness h. However, the ice thickness in
the model represents a mean over a potentially very heterogeneous thickness distribution. In order to
parameterize a sub-grid scale distribution for heat flux computations, the mean ice thickness h is split
into N thickness categories Hn that are equally distributed between 2h and a minimum imposed ice
thickness of 5 cm by Hn = 2n−1

7 h for n ∈ [1, N]. The heat fluxes computed for each thickness category is
area-averaged to give the total heat flux [Hibler, 1984]. To use this thickness category parameterization
set SEAICE multDim to the number of desired categories (7 is a good guess, for anything larger than 7
modify SEAICE SIZE.h) in data.seaice; note that this requires different restart files and switching this
flag on in the middle of an integration is not advised. In order to include the same distribution for snow,
set SEAICE useMultDimSnow = .TRUE.; only then, the parameterization of always having a fraction of
thin ice is efficient and generally thicker ice is produced [Castro-Morales et al., 2014].

The atmospheric heat flux is balanced by an oceanic heat flux from below. The oceanic flux is
proportional to ρ cp (Tw − Tfr) where ρ and cp are the density and heat capacity of sea water and Tfr is the
local freezing point temperature that is a function of salinity. This flux is not assumed to instantaneously
melt or create ice, but a time scale of three days (run-time parameter SEAICE gamma t) is used to relax
Tw to the freezing point. The parameterization of lateral and vertical growth of sea ice follows that of
Hibler [1979, 1980]; the so-called lead closing parameter h0 (run-time parameter HO) has a default value
of 0.5 meters.

On top of the ice there is a layer of snow that modifies the heat flux and the albedo [Zhang et al.,
1998]. Snow modifies the effective conductivity according to

K

h
→ 1

hs

Ks
+ h

K

,

where Ks is the conductivity of snow and hs the snow thickness. If enough snow accumulates so that its
weight submerges the ice and the snow is flooded, a simple mass conserving parameterization of snowice
formation (a flood-freeze algorithm following Archimedes’ principle) turns snow into ice until the ice
surface is back at z = 0 [Leppäranta, 1983]. The flood-freeze algorithm is enabled with the CPP-flag
SEAICE ALLOW FLOODING and turned on with run-time parameter SEAICEuseFlooding=.true..

Advection of thermodynamic variables
Effective ice thickness (ice volume per unit area, c ·h), concentration c and effective snow thickness (c ·hs)
are advected by ice velocities:

∂X

∂t
= −∇ · (~uX) + ΓX +DX (6.70)

where ΓX are the thermodynamic source terms and DX the diffusive terms for quantities X = (c ·h), c, (c ·
hs). From the various advection scheme that are available in the MITgcm, we recommend flux-limited
schemes [multidimensional 2nd and 3rd-order advection scheme with flux limiter Roe, 1985; Hundsdorfer
and Trompert, 1994] to preserve sharp gradients and edges that are typical of sea ice distributions and to
rule out unphysical over- and undershoots (negative thickness or concentration). These schemes conserve
volume and horizontal area and are unconditionally stable, so that we can set DX = 0. Run-timeflags:
SEAICEadvScheme (default=2, is the historic 2nd-order, centered difference scheme), DIFF1 = DX/∆x
(default=0.004).

398 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

The MITgcm sea ice model provides the option to use the thermodynamics model of Winton [2000],
which in turn is based on the 3-layer model of Semtner [1976] and which treats brine content by means
of enthalpy conservation; the corresponding package thsice is described in section 6.6.1. This scheme
requires additional state variables, namely the enthalpy of the two ice layers (instead of effective ice
salinity), to be advected by ice velocities. The internal sea ice temperature is inferred from ice enthalpy.
To avoid unphysical (negative) values for ice thickness and concentration, a positive 2nd-order advection
scheme with a SuperBee flux limiter [Roe, 1985] should be used to advect all sea-ice-related quantities of
the Winton [2000] thermodynamic model (runtime flag thSIceAdvScheme=77 and thSIce diffK=DX=0
in data.ice, defaults are 0). Because of the non-linearity of the advection scheme, care must be taken
in advecting these quantities: when simply using ice velocity to advect enthalpy, the total energy (i.e.,
the volume integral of enthalpy) is not conserved. Alternatively, one can advect the energy content
(i.e., product of ice-volume and enthalpy) but then false enthalpy extrema can occur, which then leads
to unrealistic ice temperature. In the currently implemented solution, the sea-ice mass flux is used to
advect the enthalpy in order to ensure conservation of enthalpy and to prevent false enthalpy extrema.

6.6.2.5 Key subroutines

Top-level routine: seaice model.F

C !CALLING SEQUENCE:

c ...

c seaice_model (TOP LEVEL ROUTINE)

c |

c |-- #ifdef SEAICE_CGRID

c | SEAICE_DYNSOLVER

c | |

c | |-- < compute proxy for geostrophic velocity >

c | |

c | |-- < set up mass per unit area and Coriolis terms >

c | |

c | |-- < dynamic masking of areas with no ice >

c | |

c | |

c | #ELSE

c | DYNSOLVER

c | #ENDIF

c |

c |-- if (useOBCS)

c | OBCS_APPLY_UVICE

c |

c |-- if (SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt)

c | SEAICE_ADVDIFF

c |

c |-- if (usePW79thermodynamics)

c | SEAICE_GROWTH

c |

c |-- if (useOBCS)

c | if (SEAICEadvHeff) OBCS_APPLY_HEFF

c | if (SEAICEadvArea) OBCS_APPLY_AREA

c | if (SEAICEadvSALT) OBCS_APPLY_HSALT

c | if (SEAICEadvSNOW) OBCS_APPLY_HSNOW

c |

c |-- < do various exchanges >

c |

c |-- < do additional diagnostics >

c |

c o

6.6.2.6 SEAICE diagnostics

Diagnostics output is available via the diagnostics package (see Section 7.1). Available output fields are
summarized in Table 6.6.2.6.

6.6. SEA ICE PACKAGES 399

6.6.2.7 Experiments and tutorials that use seaice

• Labrador Sea experiment in lab sea verification directory.

• seaice obcs, based on lab sea

• offline exf seaice/input.seaicetd, based on lab sea

• global ocean.cs32x15/input.icedyn and global ocean.cs32x15/input.seaice, global cubed-
sphere-experiment with combinations of seaice and thsice

400 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.6.3 SHELFICE Package

Authors: Martin Losch, Jean-Michel Campin

6.6.3.1 Introduction

Package “shelfice” provides a thermodynamic model for basal melting underneath floating ice shelves.

CPP options enable or disable different aspects of the package (Section 6.6.3.2). Run-Time options,
flags, filenames and field-related dates/times are set in data.shelfice (Section 6.6.3.3). A description
of key subroutines is given in Section 6.6.3.5. Input fields, units and sign conventions are summarized in
Section 6.6.3.3, and available diagnostics output is listed in Section 6.6.3.6.

6.6.3.2 SHELFICE configuration, compiling & running

Compile-time options

As with all MITgcm packages, SHELFICE can be turned on or off at compile time

• using the packages.conf file by adding shelfice to it,

• or using genmake2 adding -enable=shelfice or -disable=shelfice switches

• required packages and CPP options :
SHELFICE does not require any additional packages, but it will only work with conventional vertical
z-coordinates (pressure coordinates are not implemented, yet). If you use it together with vertical
mixing schemes, be aware, that non-local parameterizations have been turned off, e.g. for KPP
(6.4.2).

(see Section 3.4).

Parts of the SHELFICE code can be enabled or disabled at compile time via CPP preprocessor flags.
These options are set SHELFICE OPTIONS.h. Table 6.6.3.2 summarizes these options.

6.6.3.3 Run-time parameters

Run-time parameters are set in files data.pkg (read in packages readparms.F), and data.shelfice

(read in shelfice readparms.F).

Enabling the package
A package is switched on/off at run-time by setting (e.g. for SHELFICE) useSHELFICE = .TRUE. in
data.pkg.

General flags and parameters
Table 6.22 lists all run-time parameters.

Input fields and units

SHEFLICEtopoFile: under-ice topography of ice shelves in meters; upwards is positive, that as for the
bathymetry files, negative values are required for topography below the sea-level;

SHEFLICEloadAnomalyFile: pressure load anomaly at the bottom of the ice shelves in pressure units
(Pa); this field is absolutely required to avoid large excursions of the free surface during initial
adjustment processes; obtained by integrating an approximate density from the surface at z = 0
down to the bottom of the last fully dry cell within the ice shelf, see Eq. (6.75); however, the file

SHEFLICEloadAnomalyFile must not be ptop, but ptop − g
∑n−1

k′=1 ρ0∆zk′ , with ρ0 = rhoConst, so
that in the absenses of a ρ∗ that is different from ρ0, the anomaly is zero.

6.6. SEA ICE PACKAGES 401

6.6.3.4 Description

In the light of isomorphic equations for pressure and height coordinates, the ice shelf topography on top
of the water column has a similar role as (and in the language of Marshall et al. [2004] is isomorphic
to) the orography and the pressure boundary conditions at the bottom of the fluid for atmospheric and
oceanic models in pressure coordinates.

The total pressure ptot in the ocean can be divided into the pressure at the top of the water column
ptop, the hydrostatic pressure and the non-hydrostatic pressure contribution pNH :

ptot = ptop +

∫ η−h

z

g ρ dz + pNH , (6.71)

with the gravitational acceleration g, the density ρ, the vertical coordinate z (positive upwards), and
the dynamic sea-surface height η. For the open ocean, ptop = pa (atmospheric pressure) and h = 0.
Underneath an ice-shelf that is assumed to be floating in isostatic equilibrium, ptop at the top of the
water column is the atmospheric pressure pa plus the weight of the ice-shelf. It is this weight of the
ice-shelf that has to be provided as a boundary condition at the top of the water column (in run-time
parameter SHELFICEloadAnomalyFile). The weight is conveniently computed by integrating a density
profile ρ∗, that is constant in time and corresponds to the sea-water replaced by ice, from z = 0 to a
“reference” ice-shelf draft at z = −h [Beckmann et al., 1999], so that

ptop = pa +

∫ 0

−h

g ρ∗ dz. (6.72)

Underneath the ice shelf, the “sea-surface height” η is the deviation from the “reference” ice-shelf draft
h. During a model integration, η adjusts so that the isostatic equilibrium is maintained for sufficiently
slow and large scale motion.

In the MITgcm, the total pressure anomaly p′tot which is used for pressure gradient computations is
defined by substracting a purely depth dependent contribution −gρ0z with a constant reference density
ρ0 from ptot. Eq. (6.71) becomes

ptot = ptop − g ρ0 (z + h)+g ρ0 η +

∫ η−h

z

g (ρ− ρ0) dz + pNH , (6.73)

and after rearranging

p′tot = p′top +g ρ0 η +

∫ η−h

z

g (ρ− ρ0) dz + pNH , (6.74)

with p′tot = ptot + g ρ0 z and p′top = ptop − g ρ0 h. The non-hydrostatic pressure contribution pNH is
neglected in the following.

In practice, the ice shelf contribution to ptop is computed by integrating Eq. (6.72) from z = 0 to the
bottom of the last fully dry cell within the ice shelf:

ptop = g

n−1∑

k′=1

ρ∗k′∆zk′ + pa (6.75)

where n is the vertical index of the first (at least partially) “wet” cell and ∆zk′ is the thickness of the
k′-th layer (counting downwards). The pressure anomaly for evaluating the pressure gradient is computed
in the center of the “wet” cell k as

p′k = p′top + gρnη + g

k∑

k′=n

(
(ρk′ − ρ0)∆zk′

1 +H(k′ − k)

2

)
(6.76)

where H(k′ − k) = 1 for k′ < k and 0 otherwise.
Setting SHELFICEboundaryLayer=.true. introduces a simple boundary layer that reduces the po-

tential noise problem at the cost of increased vertical mixing. For this purpose the water temperature at

402 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

the k-th layer abutting ice shelf topography for use in the heat flux parameterizations is computed as a
mean temperature θk over a boundary layer of the same thickness as the layer thickness ∆zk:

θk = θkhk + θk+1(1 − hk) (6.77)

where hk ∈ (0, 1] is the fractional layer thickness of the k-th layer. The original contributions due
to ice shelf-ocean interaction gθ to the total tendency terms Gθ in the time-stepping equation θn+1 =
f(θn,∆t, Gn

θ) are

gθ,k =
Q

ρ0cphk∆zk
and gθ,k+1 = 0 (6.78)

for layers k and k + 1 (cp is the heat capacity). Averaging these terms over a layer thickness ∆zk (e.g.,
extending from the ice shelf base down to the dashed line in cell C) and applying the averaged tendency
to cell A (in layer k) and to the appropriate fraction of cells C (in layer k + 1) yields

g∗θ,k =
Q

ρ0cp∆zk
(6.79)

g∗θ,k+1 =
Q

ρ0cp∆zk

∆zk(1 − hk)

∆zk+1
. (6.80)

Eq. (6.80) describes averaging over the part of the grid cell k + 1 that is part of the boundary layer
with tendency g∗θ,k and the part with no tendency. Salinity is treated in the same way. The momentum
equations are not modified.

Three-Equations-Thermodynamics Freezing and melting form a boundary layer between ice shelf
and ocean. Phase transitions at the boundary between saline water and ice imply the following fluxes
across the boundary: the freshwater mass flux q (< 0 for melting); the heat flux that consists of the
diffusive flux through the ice, the latent heat flux due to melting and freezing and the heat that is carried
by the mass flux; and the salinity that is carried by the mass flux, if the ice has a non-zero salinity SI .
Further, the position of the interface between ice and ocean changes because of q, so that, say, in the case
of melting the volume of sea water increases. As a consequence salinity and temperature are modified.

The turbulent exchange terms for tracers at the ice-ocean interface are generally expressed as diffusive
fluxes. Following Jenkins et al. [2001], the boundary conditions for a tracer take into account that this
boundary is not a material surface. The implied upward freshwater flux q (in mass units, negative for
melting) is included in the boundary conditions for the temperature and salinity equation as an advective
flux:

ρK
∂X

∂z

∣∣∣∣
b

= (ργX − q)(Xb −X) (6.81)

where tracer X stands for either temperature T or salinity S. Xb is the tracer at the interface (taken
to be at freezing), X is the tracer at the first interior grid point, ρ is the density of seawater, and γX is
the turbulent exchange coefficient (in units of an exchange velocity). The left hand side of Eq. (6.81) is
shorthand for the (downward) flux of tracer X across the boundary. Tb, Sb and the freshwater flux q are
obtained from solving a system of three equations that is derived from the heat and freshwater balance
at the ice ocean interface.

In this so-called three-equation-model [e.g., Hellmer and Olbers, 1989; Jenkins et al., 2001] the heat
balance at the ice-ocean interface is expressed as

cpργT (T − Tb) + ρIcp,Iκ
(TS − Tb)

h
= −Lq (6.82)

where ρ is the density of sea-water, cp = 3974J kg−1 K−1 is the specific heat capacity of water and γT

the turbulent exchange coefficient of temperature. The value of γT is discussed in Holland and Jenkins
[1999]. L = 334000J kg−1 is the latent heat of fusion. ρI = 920kgm−3, cp,I = 2000J kg−1 K−1, and TS

are the density, heat capacity and the surface temperature of the ice shelf; κ = 1.54× 10−6 m2 s−1 is the
heat diffusivity through the ice-shelf and h is the ice-shelf draft. The second term on the right hand side
describes the heat flux through the ice shelf. A constant surface temperature TS = −20◦ is imposed. T
is the temperature of the model cell adjacent to the ice-water interface. The temperature at the interface

6.6. SEA ICE PACKAGES 403

Tb is assumed to be the in-situ freezing point temperature of sea-water Tf which is computed from a
linear equation of state

Tf = (0.0901− 0.0575 Sb)
◦ − 7.61 × 10−4 K

dBar
pb (6.83)

with the salinity Sb and the pressure pb (in dBar) in the cell at the ice-water interface. From the salt
budget, the salt flux across the shelf ice-ocean interface is equal to the salt flux due to melting and
freezing:

ργS(S − Sb) = −q (Sb − SI), (6.84)

where γS = 5.05 × 10−3γT is the turbulent salinity exchange coefficient, and S and Sb are defined in
analogy to temperature as the salinity of the model cell adjacent to the ice-water interface and at the
interface, respectively. Note, that the salinity of the ice shelf is generally neglected (SI = 0). Equa-
tions (6.82) to (6.84) can be solved for Sb, Tb, and the freshwater flux q due to melting. These values
are substituted into expression (6.81) to obtain the boundary conditions for the temperature and salinity
equations of the ocean model.

This formulation tends to yield smaller melt rates than the simpler formulation of the ISOMIP pro-
tocol because the freshwater flux due to melting decreases the salinity which raises the freezing point
temperature and thus leads to less melting at the interface. For a simpler thermodynamics model where
Sb is not computed explicitly, for example as in the ISOMIP protocol, equation (6.81) cannot be applied
directly. In this case equation (6.84) can be used with Eq. (6.81) to obtain:

ρK
∂S

∂z

∣∣∣∣
b

= q (S − SI). (6.85)

This formulation can be used for all cases for which equation (6.84) is valid. Further, in this formulation
it is obvious that melting (q < 0) leads to a reduction of salinity.

The default value of SHELFICEconserve=.false. removes the contribution q(Xb−X) from Eq. (6.81),
making the boundary conditions for temperature non-conservative.

ISOMIP-Thermodynamics A simpler formulation follows the ISOMIP protocol (http://efdl.cims.nyu.edu/project
The freezing and melting in the boundary layer between ice shelf and ocean is parameterized following
Grosfeld et al. [1997]. In this formulation Eq. (6.82) reduces to

cpργT (T − Tb) = −Lq (6.86)

and the fresh water flux q is computed from

q = −cpργT (T − Tb)

L
. (6.87)

In order to use this formulation, set run-time parameter useISOMIPTD=.true. in data.shelfice.

Remark The shelfice package and experiments demonstrating its strenghts and weaknesses are also
described in Losch [2008]. However, note that unfortunately the description of the thermodynamics in
the appendix of Losch [2008] is wrong.

6.6.3.5 Key subroutines

Top-level routine: shelfice model.F

C !CALLING SEQUENCE:

C ...

C |-FORWARD_STEP :: Step forward a time-step (AT LAST !!!)

C ...

C | |-DO_OCEANIC_PHY :: Control oceanic physics and parameterization

C ...

C | | |-SHELFICE_THERMODYNAMICS :: main routine for thermodynamics

C with diagnostics

C ...

C | |-THERMODYNAMICS :: theta, salt + tracer equations driver.

http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html

404 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

C ...

C | | |-EXTERNAL_FORCING_T :: Problem specific forcing for temperature.

C | | |-SHELFICE_FORCING_T :: apply heat fluxes from ice shelf model

C ...

C | | |-EXTERNAL_FORCING_S :: Problem specific forcing for salinity.

C | | |-SHELFICE_FORCING_S :: apply fresh water fluxes from ice shelf model

C ...

C | |-DYNAMICS :: Momentum equations driver.

C ...

C | | |-MOM_FLUXFORM :: Flux form mom eqn. package (see

C ...

C | | | |-SHELFICE_U_DRAG :: apply drag along ice shelf to u-equation

C with diagnostics

C ...

C | | |-MOM_VECINV :: Vector invariant form mom eqn. package (see

C ...

C | | | |-SHELFICE_V_DRAG :: apply drag along ice shelf to v-equation

C with diagnostics

C ...

C o

6.6.3.6 SHELFICE diagnostics

Diagnostics output is available via the diagnostics package (see Section 7.1). Available output fields are
summarized in Table 6.6.3.6.

6.6.3.7 Experiments and tutorials that use shelfice

• ISOMIP, Experiment 1 (http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html) in
isomip verification directory.

http://efdl.cims.nyu.edu/project_oisi/isomip/overview.html

6.6. SEA ICE PACKAGES 405

6.6.4 STREAMICE Package

Authors: Daniel Goldberg

6.6.4.1 Introduction

Package “streamice” provides a dynamic land ice model for MITgcm.

6.6.4.2 Equations Solved

As of now, the model tracks only 3 variables: x-velocity (u), y-velocity (v), and thickness (h). There is
also a variable that tracks coverage of fractional cells, discussed...

By default the model solves the Shallow Shelf approximation (SSA) for velocity. The SSA is appro-
priate for floating ice (ice shelf) or ice flowing over a low-friction bed (e.g. MacAyeal, 1989). The SSA
consists of the x-momentum balance:

∂x(hν(4ε̇xx + 2ε̇yy)) + ∂y(2hνε̇xy) − τbx = ρghsx (6.88)

the y-momentum balance:

∂x(2hνε̇xy) + ∂y(hν(4ε̇yy + 2ε̇xx)) − τby = ρghsy. (6.89)

From the velocity field, thickness evolves according to the continuity equation:

ht + ∇ · (h~u) = −ḃ, (6.90)

Where ḃ is a basal mass balance (e.g. melting due to contact with the ocean), positive where there is
melting. Surface mass balance is not considered, since pkg/streamice is intended for localized areas
(tens to hundreds of kilometers) over which the integrated effect of surface mass balance is generally
small. Where ice is grounded, surface elevation is given by

s = R+ h, (6.91)

where R(x, y) is the bathymetry, and the basal elevation b is equal to R. If ice is floating, then the
assumption of hydrostasy and constant density gives

s = (1 − ρ

ρw
h, (6.92)

where ρw is a representative ocean density, and b = −(ρ/ρw)h. Again by hydrostasy, floation is assumed
wherever

h ≤ −ρw

ρ
R (6.93)

is satisfied. Floatation criteria is stored in float frac streamice, equal to 1 where ice is at floatation.
The strain rates εij are generalized to the case of orthogonal curvilinear coordinates, to include the

”metric” terms that arise when casting the equations of motion on a sphere or projection on to a sphere
(see pkg/SEAICE, 6.6.2.4.8 of the MITgcm documentation). Thus

ε̇xx =ux + k1v,

ε̇yy =vy + k1u,

ε̇xy =
1

2
(uy + vx) + k1u+ k2v.

ν has the form arising from Glen’s law

ν =
1

2
A−

1
n

(
ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2min

) 1−n
2n , (6.94)

though the form is slightly different if a hybrid formulation is used. Whether τb is nonzero depends on
whether the floatation condition is satisfied. Currently this is determined simply on an instantaneous

406 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

h
i,j

hmask
i,j

area
i,j

u
i,j

, v
i,j

umask
i,j

, vmask
i,j

u
i+1,j

, v
i+1,j

umask
i+1,j

vmask
i+1,j

cell-by-cell basis (unless subgrid interpolation is used), as is the surface elevation s, but possibly this
should be rethought if the effects of tides are to be considered. ~τb has the form

~τb = C(|~u|2 + u2
min)

m−1
2 ~u. (6.95)

Again, the form is slightly different if a hybrid formulation is to be used. The scalar term multiplying ~u
is referred to as β below.

The momentum equations are solved together with appropriate boundary conditions, discussed below.
In the case of a calving front boundary condition (CFBC), the boundary condition has the following form:

(hν(4ε̇xx + 2ε̇yy))nx + (2hνε̇xy)ny =
1

2
g
(
ρh2 − ρwb

2
)
nx (6.96)

(2hνε̇xy)nx + (hν(4ε̇yy + 2ε̇xx))ny =
1

2
g
(
ρh2 − ρwb

2
)
ny. (6.97)

Here ~n is the normal to the boundary, and R(x, y) is the bathymetry.

Hybrid SIA-SSA stress balance The SSA does not take vertical shear stress or strain rates (e.g.,
σxz , ∂u/∂z) into account. Although there are other terms in the stress tensor, studies have found that
in all but a few cases, vertical shear and longitudinal stresses (represented by the SSA) are sufficient
to represent glaciological flow. streamice can allow for representation of vertical shear, although the
approximation is made that longitudinal stresses are depth-independent. The stress balance is referred
to as ”hybrid” because it is a joining of the SSA and the Shallow Ice Approximation (SIA), which only
accounts only for vertical shear. Such hybrid formulations have been shown to be valid over a larger
range of conditions than SSA (Schoof and Hindmarsh 2010, Goldberg 2011).

In the hybrid formulation, u and v, the depth-averaged x− and y− velocities, replace u and v in
(6.88), (6.89), and (6.90), and gradients such as ux are replaced by (u)x. Viscosity becomes

ν =
1

2
A−

1
n

(
ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy +

1

4
u2

z +
1

4
v2

z + ε̇2min

) 1−n
2n

. (6.98)

In the formulation for τb, ub, the horizontal velocity at ub is used instead. The details are given in
Goldberg (2011).

6.6.4.3 Numerical Scheme

Stress/momentum equations The stress balance is solved for velocities using a very straightforward,
structured-grid finite element method. Generally a finite element method is used to deal with irregularly

6.6. SEA ICE PACKAGES 407

No tangential stress
Calving front stress

No slip/no !ow

No slip

/no !ow

X

Y

hmask = 1

hmask = 0

umask = vmask = 0

umask = 1, vmask = 1

umask = 1, vmask = 0

shaped domains, or to deal with complicated boundary conditions; in this case it is the latter, as explained
below. (NOTE: this is not meant as a finite element tutorial, and various mathematical objects are defined
nonrigorously. It is simply meant as an overview of the numerical scheme used.) In this method, the
numerical velocities u and v (or u, v if a hybrid formulation) have a bilinear shape within each cell. For
instance, referring to Fig. 6.6.4.3, at a point (x, y) within cell (i, j), and assuming a rectangular mesh,
the x−velocity u would be given by

u(x, y) =(1 − ζ1) × (1 − ζ2) × ui,j + (6.99)

(ζ1) × (1 − ζ2) × ui+1,j + (6.100)

(1 − ζ1) × (ζ2) × ui,j+1 + (6.101)

(ζ1) × (ζ2) × ui+1,j+1, (6.102)

where

ζ1 = x− xi, ζ2 = y − yj (6.103)

and e.g. ui,j+1 is the nodal value of u at the top right corner of the cell. In finite element terms,
the functions multiplying a nodal value of u are the shape functions φ corresponding to that node, e.g.
φij = ζ1ζ2 in cell (i, j). Note that hij is defined at the center of each cell. In the code velocities are
U STREAMICE and V STREAMICE, and thickness is H STREAMICE.

If we take a vector-valued function Φ = (φ, ψ) which is in the “solution space” of (u, v) (i.e. φ and ψ
are bilinear in each cell as defined above, and are zero where velocities are imposed), take the dot product
with by (6.88,6.89), and integrate by parts over the domain D, we get the weak form of the momentum
equation:

−
∫

D

(hνφx(4ε̇xx + 2ε̇yy) + hνφy ε̇xy + β(uφ+ vψ) + hνψxε̇xy + hνψy(4ε̇yy + 2ε̇xx)) dA =

∫

D

Φ~τd −
∫

Γ

1

2
g
(
ρh2 − ρwR

2
)
Φ · ~ndS, (6.104)

where Γ is the part of the domain boundary where a calving front stress condition is imposed, and ~τd
is the driving stress ρgh∇s. Note that the boundary integral does not involve viscosity, or any velocity-
dependent terms. This is the advantage of using a finite-element formulation: viscosity need not be
represented at boundaries, and so no complicated one-sided derivative expressions need to be used.

Let (U, V) be the vector of all nodal values ui,j , vi,j that determine (u, v). If we assume that ν and β
are independent of (U, V), then for any (φ, ψ), the left hand side of (6.104) is a linear functional of (U, V),
i.e. a linear operator that returns a scalar. We can choose φ and ψ so that they are nonzero only at a

408 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

single node; and we can evaluate (6.104) for each such φij and ψij , giving a linearly independent set of
equations for U and V . The left hand side of (6.104) for each φij and ψij is evaluated in the subroutine
STREAMICE CG ACTION() in the source file streamice cg functions.f. The right hand side is evaluated
in STREAMICE DRIVING STRESS(). The latter is not a straightforward calculation, since the thickness h
and the surface s are not expressed by piecewise bilinear functions, and is discussed below.

STREAMICE CG ACTION() represents the action of a matrix on the vector represented by (U, V) and
STREAMICE DRIVING STRESS() gives the right hand side of a linear system of equations. This information
is enough to solve the linear system, and this is done with the method of conjugate gradients, implemented
(with simple Jacobi preconditioning) in STREAMICE CG SOLVE().

The full nonlinear system is solved in STREAMICE VEL SOLVE(). This subroutine evaluates driving
stress and then calls a loop in which a sequence of linear systems is solved. After each linear solve, the
viscosity ν (the array visc streamice) and basal traction β (tau beta eff streamice) is updated from
the new iterate of u and v. The iteration continues until a desired tolerance is reached or the maximum
number of iterations is reached.

Rather than calling STREAMICE CG ACTION() each iteration of the conjugate gradient, the sparse
matrix can be constructed explicitly. This is done if STREAMICE CONSTRUCT MATRIX is #defined in
STREAMICE OPTIONS.h. This speeds up the solution because STREAMICE CG ACTION() contains a number
of nested loops related to quadrature points and interactions between nodes of a cell.

The driving stress τd = ρg∇s is not as straightforward to deal with in the weak formulation, as h and
s are considered constant in a cell. Furthermore, in the ice shelf the driving stress can be written as

~τd =
1

2
ρg(1 − ρ

ρw
)∇(h2). (6.105)

Among other things, this (along with equations 6.96 and 6.97) implies that for an unconfined shelf
(one for which the only boundaries are a calving front and a grounding line), the stress state along the
grounding line depends only on the location at depth of the grounding line. The numerical representation
of velocities must respect this. Thus the driving stress contribution in the x− momentum equation at
node (i, j) is given as follows.

τd,x(i, j) =

1
4ρg(γijhij + γi−1,jhi−1,j)(γi−1,jsi−1,j − γijsij) case I
1
4

rAi−1,j

∆xf,i−1,j
g(ρh2

i−1,j − ρwb
2
i−1,j) case II

− 1
4

rAi,j

∆xf,ij
g(ρh2

ij − ρwb
2
ij) case III.

(6.106)

where

γij =

√
rAij

∆xf,ij
, (6.107)

rAij is the area of cell (i, j) and ∆xf,ij is the width of the cell at its y−midpoint. Cases I, II, and III
refer to the situations when (I) both cells (i, j) and (i − 1, j) are in the domain, (II) only cell (i − 1, j)
is in the domain, and (III) only cell (i, j) is in the domain. (The fact that τd,x(i, j) is being calculated
means that the implied boundary is a calving stress boundary, as explained below.) The above expression
gives the contribution from the cells above node (i, j) (in the y−direction). A similar expression gives
the contribution from cells (i−1, j−1) and (i, j−1), and corresponding expressions approximate driving
stress in the y− momentum equation. In the ice shelf, the case I expressions give approximations for
(6.105) which are discretely integrable; in grounded ice the expression need not be integrable, so any
errors associated with varying grid metrics can be subsumed into the discretization error.

Orthogonal curvilinear coordinates If the grid is not rectangular, but given in orthogonal curvi-
linear coordinates, the evaluation of (6.104) is not exact, since the gradient of the basis functions are
approximated, as we do not have complete knowledge of the coordinate system, only the grid metrics.
Still, we consider nodal basis functions that are equal to 1 at a single node, and zero elsewhere in a cell.

A cell (i, j) has separation ∆xi,j at the bottom and ∆xi,j+1 at the top (referred to as dxG(i,j) and
dxG(i,j+1) in the code). So, for instance, for a cell given by [ξ1, ξ2] × [η1, η2], the ξ-derivative of the
basis function centered at (ξ1, η1) is approximated by

(
1 − q

∆xi,j

)
+

(
q

∆xi,j+1

)
(6.108)

6.6. SEA ICE PACKAGES 409

where q is the y-coordinate of the quadrature point being used. (The code currently uses 2-point gauss
quadrature to evaluate the integrals in (6.104); with a rectangular grid and cellwise-constant β and ν,
this is exact.)

Basis function derivatives and quadrature weights are stored in Dphi and grid jacq streamice. Both
are initialized in STREAMICE INIT PHI, called only once.

Boundary conditions and masks The computational domain (which may be smaller than the ar-
ray/grid as defined by SIZE.h and GRID.h) is determined by a number of mask arrays within the
STREAMICE package. They are

• hmask (STREAMICE hmask): equal to 1 (ice-covered), 0 (open ocean), 2 (partly-covered), or -1 (out
of domain)

• umask (STREAMICE umask): equal to 1 (an “active” velocity node), 3 (a Dirichlet node), or 0 (zero
velocity)

• vmask (STREAMICE vmask): similar to umask

• ufacemaskbdry (STREAMICE ufacemaskbdry): equal to -1 (interior face), 0 (no-slip), 1 (no-stress),
2 (calving stress front), 3 (Dirichlet), or 4 (flux input boundary); when 4, then u flux bdry SI

must be initialized, through binary or parameter file

• vfacemaskbdry (STREAMICE vfacemaskbdry): similar to ufacemaskbdry

hmask is defined at cell centers, like h. umask and vmask are defined at cell nodes, like velocities.
ufacemaskbdry and vfacemaskbdry are defined at cell faces, like velocities in a C-grid - but unless
STREAMICE GEOM FILE SETUP is #defined in STREAMICE OPTIONS.h, the values are only relevant at the
boundaries of the grid.

Essentially hmask controls the domain; it is specified at initialization and does not change unless
calving front advance is allowed. ufacemaskbdry and vfacemaskbdry are defined at initialization as
well. Masks are either initialized through binary files or through the text file data.streamice (see the
streamice tutorial)

The values of umask and vmask determine which nodal values of u and v are involved in the solve for
velocities. Before each call to STREAMICE VEL SOLVE(), umask and vmask are re-initialized. Values are
only relevant if they border a cell where hmask = 1. Furthermore, if a cell face is a “no-slip” face, both
umask and vmask are set to zero at the face’s nodal endpoints. If the face is a Dirichlet boundary, both
nodal endpoints are set to 3. If ufacemaskbdry = 1 on the x−boundary of a cell, i.e. it is a no-stress
boundary, then vmask is set to 1 at both endpoints while umask is set to zero (i.e. no normal flow).
If the face is a flux boundary, velocities are set to zero (see ???). For a calving stress front, umask and
vmask are 1: the nodes represent active degrees of freedom.

With umask and vmask appropriately initialized, STREAMICE VEL SOLVE can proceed rather generally.
Contributions to (6.104) are only evaluated if hmask = 1 in a given cell, and a given nodal basis function
is only considered if umask = 1 or vmask = 1 at that node.

Thickness evolution (6.90) is solved in the subroutine STREAMICE ADVECT THICKNESS, similarly to
the advection routines in MITgcm. Mass fluxes are evaluated, first in the x-direction. This is done in the
generic subroutine STREAMICE ADV FLUX FL X. Flux velocity in the x−direction at face (i, j) are generated
by averaging ui,j and ui,j+1. Assuming the flux velocity is positive, if hmaski−2,j , maski− 1, j and
hmaski,j are equal to 1, then flux thickness, i.e. the interpolation of h at face (i, j), is through a minmod
limiter as in the generic advdiff package. If these values are not available, then a zero-order upwind
flux is used. The exception is when STREAMICE ufacemask(i,j) is equal to 4; then u flux bdry SI(i,j)

is used for the flux. Fluxes are then differenced to update h in cells that are active (hmask = 1); a similar
procedure follows for the y−direction.

Ice front advance Flux out of the domain across Dirichlet boundaries is ignored, and flux at no-
flow or no-stress boundaries is zero. However, fluxes that cross calving boundaries are stored, and if
STREAMICE move front=.true., then STREAMICE ADV FRONT is called after all cells with hmask = 1 have

410 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

their thickness updated. In this subroutine, cells with hmask = 0 or hmask = 2 with nonzero fluxes
entering their boundaries are processed.

The algorithm is based on Albrecht (2011). In this scheme, if cell (i, j) fits the criteria, a reference
thickness href (i, j) is found, defined as an average over the thickness of all neighboring cells with hmask =
1 that are contributing mass to (i, j). The total mass input over the time step to (i, j) is calculated as
Vin(ij). This is added to the volume of ice already in the cell, which is nonzero only if hmaskij = 2 at
the beginning of the time step, and is equal to

Vcell(i, j) = areaijhij . (6.109)

(If hmaskij is not equal to 1, then hij has not yet been updated in the current time step.) areaij is stored
in the array area shelf streamice. The total volume, Vtot(i, j), is then equal to Vcell(i, j) + Vin(i, j).
Next an effective thickness

heff (i, j) =
Vij

rAij
(6.110)

is found. If heff (ij) < href (i, j) (but nonzero) then

• hmaskij is set to 2,

• hij is set to href (ij),

• areaij is set to Vtot(i,j)
href (i,j) .

If, on the other hand, heff (ij) ≥ href (i, j),

• hmaskij is set to 1,

• hij is set to href (ij),

• areaij is set to rAij ,

• Excess flux qex(i, j) = Vtot(i, j) − heff (i, j)rAij is found.

If qex(i, j) is zero, nothing more needs to happen. If it is positive, then

• adjacent cells that are not completely covered (hmask = 0 or 1) are searched for.

• if there are no suitable cells, qex(i, j) is put back into cell (i, j) (hij is set to href (i, j) + qex(i,j)
rAij

).

• if there are suitable cells, qex is divided uniformly among the corresponding faces of the receiving
cells, and the algorithm begins again.

The last step is a recursive one; in theory the recursion could continue indefinitely, but in practice at most
one recursive call is done. The decision to spread the excess flux uniformly is not the most physically
motivated choice, but with appropriate time steps the excess flux value is expected to be small, and is
more a matter of mass/volume conservation. This algorithm, while complicated, is necessary for realistic
front advance. If newly-covered cells were given full coverage instead of partial coverage and volume were
conserved, the front would quickly diffuse.

If calve to mask=.true., this sets a limit to how far the front can advance, even if advance is allowed.
The front will not advance into cells where the array calve mask is not equal to 1. This mask must be
set through a binary input file.

No calving parameterisation is implemented in STREAMICE. However, front advancement is a precursor
for such a development to be added.

Surface/basal mass balance After updating thickness in fully- and partially-covered cells, surface
and basal mass balances are applied to nonempty cells. Currently surface mass balance is a uniform
value, set through the parameter streamice adot uniform. Basal melt rates are stored in the array
BDOT streamice, but are multiplied through by float frac streamice before being applied.

6.7. PACKAGES RELATED TO COUPLED MODEL 411

6.7 Packages Related to Coupled Model

6.7.1 Coupling interface for Atmospheric Intermediate code

6.7.1.1 Key subroutines, parameters and files

6.7.1.2 Experiments and tutorials that use aim compon interf

• Global coupled ocean atmosphere experiment in cpl aim+ocean verification directory.

412 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.7.2 Coupler for mapping between Atmosphere and ocean

6.7.2.1 Key subroutines, parameters and files

6.7.2.2 Experiments and tutorials that use atm ocn coupler

• Global coupled ocean atmosphere experiment in cpl aim+ocean verification directory.

6.7. PACKAGES RELATED TO COUPLED MODEL 413

6.7.3 Toolkit for building couplers

6.7.3.1 Key subroutines, parameters and files

6.7.3.2 Experiments and tutorials that use component communications

• Global coupled ocean atmosphere experiment in cpl aim+ocean verification directory.

414 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.8 Biogeochemistry Packages

6.8.1 GCHEM Package

6.8.1.1 Introduction

This package has been developed as interface to the PTRACERS package. The purpose is to provide
a structure where various (any) tracer experiments can be added to the code. For instance there are
placeholders for routines to read in parameters needed for any tracer experiments, a routine to read
in extra fields required for the tracer code, routines for either external forcing or internal interactions
between tracers and routines for additional diagnostics relating to the tracers. Note that the gchem
package itself is only a means to call the subroutines used by specific biogeochemical experiments, and
does not ”do” anything on its own.

There are two examples: cfc which looks at 2 tracers with a simple external forcing and dic with 4,5
or 6 tracers whose tendency terms are related to one another. We will discuss these here only as how
they provide examples to use this package.

6.8.1.2 Key subroutines and parameters

FRAMEWORK
The different biogeochemistry frameworks (e.g. cfc of dic) are specified in the packages conf file. GCHEM OPTIONS.h
includes the compiler options to be used in any experiment. An important compiler option is #define
GCHEM SEPARATE FORCING which determined how and when the tracer forcing is applied (see dis-
cussion on Forcing below). See section on dic for some additional flags that can be set for that experiment.

There are further runtime parameters set in data.gchem and kept in common block GCHEM.h. These
runtime options include:
• Parameters to set the timing for periodic forcing files to be loaded are: gchem ForcingPeriod, gchem ForcingCycle.
The former is how often to load, the latter is how often to cycle through those fields (eg. period couple
be monthly and cycle one year). This is used in dic and cfc, with gchem ForcingPeriod=0 meaning no
periodic forcing.
• nsubtime is the integer number of extra timesteps required by the tracer experiment. This will give
a timestep of deltaTtracer/nsubtime for the dependencies between tracers. The default is one.
• File names - these are several filenames than can be read in for external fields needed in the tracer forc-
ing - for instance wind speed is needed in both DIC and CFC packages to calculate the air-sea exchange
of gases. Not all file names will be used for every tracer experiment.
• gchem int * are variable names for run-time set integer numbers. (Currently 1 through 5).
• gchem rl * are variable names for run-time set real numbers. (Currently 1 through 5).
• Note that the old tIter0 has been replaced by PTRACERS Iter0 which is set in data.ptracers
instead.

INITIALIZATION
The values set at runtime in data.gchem are read in using gchem readparms.F which is called from
packages readparms.F. This will include any external forcing files that will be needed by the tracer
experiment.

There are two routine used to initialize parameters and fields needed by the experiment packages.
These are gchem init fixed.F which is called from packages init fixed.F, and gchem init vari.F called from
packages init variable.F. The first should be used to call a subroutine specific to the tracer experiment
which sets fixed parameters, the second should call a subroutine specific to the tracer experiment which
sets (or initializes) time fields that will vary with time.

LOADING FIELDS
External forcing fields used by the tracer experiment are read in by a subroutine (specific to the tracer
experiment) called from gchem fields load.F. This latter is called from forward step.F.

FORCING
Tracer fields are advected-and-diffused by the ptracer package. Additional changes (e.g. surface forcing

6.8. BIOGEOCHEMISTRY PACKAGES 415

or interactions between tracers) to these fields are taken care of by the gchem interface. For trac-
ers that are essentially passive (e.g. CFC’s) but may have some surface boundary conditions this
can easily be done within the regular tracer timestep. In this case gchem calc tendency.F is called
from forward step.F, where the reactive (as opposed to the advective diffusive) tendencies are com-
puted. These tendencies, stored on the 3D field gchemTendency, are added to the passive tracer
tendencies gPtr in gchem add tendency.F, which is called from ptracers forcing.F. For tracers with
more complicated dependencies on each other, and especially tracers which require a smaller timestep
than deltaTtracer, it will be easier to use gchem forcing sep.F which is called from forward step.F.
There is a compiler option set in GCHEM OPTIONS.h that determines which method is used: #define
GCHEM SEPARATE FORCING does the latter where tracers are forced separately from the advection-
diffusion code, and #undef GCHEM SEPARATE FORCING includes the forcing in the regular timestep-
ping.

DIAGNOSTICS
This package also also used the passive tracer routine ptracers monitor.F which prints out tracer statistics
as often as the model dynamic statistic diagnostics (dynsys) are written (or as prescribed by the run-
time flag PTRACERS monitorFreq, set in data.ptracers). There is also a placeholder for any tracer
experiment specific diagnostics to be calculated and printed to files. This is done in gchem diags.F. For
instance the time average CO2 air-sea fluxes, and sea surface pH (among others) are written out by
dic biotic diags.F which is called from gchem diags.F.

6.8.1.3 GCHEM Diagnostics

These diagnostics are particularly for the dic package.

--

<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)

--

DICBIOA | 15 |SM P MR |mol/m3/sec |Biological Productivity (mol/m3/s)

DICCARB | 15 |SM P MR |mol eq/m3/sec |Carbonate chg-biol prod and remin (mol eq/m3/s)

DICTFLX | 1 |SM P L1 |mol/m3/sec |Tendency of DIC due to air-sea exch (mol/m3/s)

DICOFLX | 1 |SM P L1 |mol/m3/sec |Tendency of O2 due to air-sea exch (mol/m3/s)

DICCFLX | 1 |SM P L1 |mol/m2/sec |Flux of CO2 - air-sea exch (mol/m2/s)

DICPCO2 | 1 |SM P M1 |atm |Partial Pressure of CO2 (atm)

DICPHAV | 1 |SM P M1 |dimensionless |pH (dimensionless)

6.8.1.4 Do’s and Don’ts

The pkg ptracer is required with use with this pkg. Also, as usual, the runtime flag useGCHEM must
be set to .TRUE. in data.pkg. By itself, gchem pkg will read in data.gchem and will write out gchem
diagnostics. It requires tracer experiment specific calls to do anything else (for instance the calls to dic
and cfc pkgs).

6.8.1.5 Reference Material

6.8.1.6 Experiments and tutorials that use gchem

• Global Ocean biogeochemical tutorial, in tutorial global oce biogeo verification directory, described
in section 3.17 uses gchem and dic

• Global Ocean cfc tutorial, in tutorial cfc offline verification directory, uses gchem and cfc (and
offline) described in 3.20.5

• Global Ocean online cfc example in cfc example verification directory, uses gchem and cfc

416 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

6.8.2 DIC Package

6.8.2.1 Introduction

This is one of the biogeochemical packages handled from the pkg gchem. The main purpose of this
package is to consider the cycling of carbon in the ocean. It also looks at the cycling of phosphorous and
potentially oxygen and iron. There are four standard tracers DIC, ALK, PO4, DOP and also possibly
O2 and Fe. The air-sea exchange of CO2 and O2 are handled as in the OCMIP experiments (reference).
The export of biological matter is computed as a function of available light and PO4 (and Fe). This
export is remineralized at depth according to a Martin curve (again, this is the same as in the OCMIP
experiments). There is also a representation of the carbonate flux handled as in the OCMIP experiments.
The air-sea exchange on CO2 is affected by temperature, salinity and the pH of the surface waters. The
pH is determined following the method of Follows et al. For more details of the equations see section
3.17.

6.8.2.2 Key subroutines and parameters

INITIALIZATION
DIC ABIOTIC.h contains the common block for the parameters and fields needed to calculate the
air-sea flux of CO2 and O2. The fixed parameters are set in dic abiotic param which is called from
gchem init fixed.F. The parameters needed for the biotic part of the calculations are initialized in dic biotic param
and are stored in DIC BIOTIC.h. The first guess of pH is calculated in dic surfforcing init.F.

LOADING FIELDS
The air-sea exchange of CO2 and O2 need wind, atmospheric pressure (although the current version has
this hardwired to 1), and sea-ice coverage. The calculation of pH needs silica fields. These fields are read
in in dic fields load.F. These fields are initialized to zero in dic ini forcing.F. The fields for interpolating
are in common block in DIC LOAD.h.

FORCING
The tracers are advected-diffused in ptracers integrate.F. The updated tracers are passed to dic biotic forcing.F
where the effects of the air-sea exchange and biological activity and remineralization are calculated and the
tracers are updated for a second time. Below we discuss the subroutines called from dic biotic forcing.F.

Air-sea exchange of CO2 is calculated in dic surfforcing. Air-Sea Exchange of CO2 depends on
T,S and pH. The determination of pH is done in carbon chem.F. There are three subroutines in this
file: carbon coeffs which determines the coefficients for the carbon chemistry equations; calc pco2 which
calculates the pH using a Newton-Raphson method; and calc pco2 approx which uses the much more
efficient method of Follows et al. The latter is hard-wired into this package, the former is kept here for
completeness.

Biological productivity is determined following Dutkiewicz et al. (2005) and is calculated in bio export.F
The light in each latitude band is calculate in insol.F, unless using one of the flags listed below. The
formation of hard tissue (carbonate) is linked to the biological productivity and has an effect on the
alkalinity - the flux of carbonate is calculated in car flux.F, unless using the flag listed below for the Friis
et al (2006) scheme. The flux of phosphate to depth where it instantly remineralized is calculated in
phos flux.F.

The dilution or concentration of carbon and alkalinity by the addition or subtraction of freshwater
is important to their surface patterns. These ”virtual” fluxes can be calculated by the model in several
ways. The older scheme is done following OCMIP protocols (see more in Dutkiewicz et al 2005), in the
subroutines dic surfforcing.F and alk surfforcing.F. To use this you need to set in GCHEM OPTIONS.h:
#define ALLOW OLD VIRTUALFLUX
But this can also be done by the ptracers pkg if this is undefined. You will then need to set the
concentration of the tracer in rainwater and potentially a reference tracer value in data.ptracer (PTRAC-
ERS EvPrRn, and PTRACERS ref respectively).

Oxygen air-sea exchange is calculated in o2 surfforcing.F.
Iron chemistry (the amount of free iron) is taken care of in fe chem.F.

DIAGNOSTICS

6.8. BIOGEOCHEMISTRY PACKAGES 417

Averages of air-sea exchanges, biological productivity, carbonate activity and pH are calculated. These
are initialized to zero in dic biotic init and are stored in common block in DIC BIOTIC.h.

COMPILE TIME FLAGS
These are set in GCHEM OPTIONS.h:

DIC BIOTIC: needs to be set for dic to work properly (should be fixed sometime).
ALLOW O2: include the tracer oxygen.
ALLOW FE: include the tracer iron. Note you will need an iron dust file set in data.gchem in this case.
MINFE: limit the iron, assuming precpitation of any excess free iron.
CAR DISS: use the calcium carbonate scheme of Friis et al 2006.
ALLOW OLD VIRTUALFLUX: use the old OCMIP style virtual flux for alklinity adn carbon (rather
than doing it through pkg/ptracers).
READ PAR: read the light (photosynthetically available radiation) from a file set in data.gchem.
USE QSW: use the numbers from QSW to be the PAR. Note that a file for Qsw must be supplied in
data, or Qsw must be supplied by an atmospheric model.
If the above two flags are not set, the model calculates PAR in insol.F as a function of latitude and year
day.
USE QSW UNDERICE: if using a sea ice model, or if the Qsw variable has the seaice fraction already
taken into account, this flag must be set.

AD SAFE: will use a tanh function instead of a max function - this is better if using the adjoint
DIC NO NEG: will include some failsafes in case any of the variables become negative. (This is advicable).
ALLOW DIC COST: was used for calculating cost function (but hasn’t been updated or maintained, so
not sure if it works still)

6.8.2.3 Do’s and Don’ts

This package must be run with both ptracers and gchem enabled. It is set up for at least 4 tracers, but
there is the provision for oxygen and iron. Note the flags above.

6.8.2.4 Reference Material

Dutkiewicz. S., A. Sokolov, J. Scott and P. Stone, 2005: A Three-Dimensional Ocean-Seaice-Carbon Cy-
cle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies,
Report 122, Joint Program of the Science and Policy of Global Change, M.I.T., Cambridge, MA.

Follows, M., T. Ito and S. Dutkiewicz, 2006: A Compact and Accurate Carbonate Chemistry Solver
for Ocean Biogeochemistry Models. Ocean Modeling, 12, 290-301.

Friis, K., R. Najjar, M.J. Follows, and S. Dutkiewicz, 2006: Possible overestimation of shallow-depth
calcium carbonate dissolution in the ocean, Global Biogeochemical Cycles, 20, GB4019, doi:10.1029/2006GB002727.

6.8.2.5 Experiments and tutorials that use dic

• Global Ocean tutorial, in tutorial global oce biogeo verification directory, described in section 3.17

418 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

---------+----------+----------------+-----------------

<-Name->|<- grid ->|<-- Units -->|<- Tile (max=80c)

---------+----------+----------------+-----------------

sIceLoad|SM U1|kg/m^2 |sea-ice loading (in Mass of ice+snow / area unit)

SEA ICE STATE:

SIarea |SM M1|m^2/m^2 |SEAICE fractional ice-covered area [0 to 1]

SIheff |SM M1|m |SEAICE effective ice thickness

SIhsnow |SM M1|m |SEAICE effective snow thickness

SIhsalt |SM M1|g/m^2 |SEAICE effective salinity

SIuice |UU M1|m/s |SEAICE zonal ice velocity, >0 from West to East

SIvice |VV M1|m/s |SEAICE merid. ice velocity, >0 from South to North

ATMOSPHERIC STATE AS SEEN BY SEA ICE:

SItices |SM C M1|K |Surface Temperature over Sea-Ice (area weighted)

SIuwind |UM U1|m/s |SEAICE zonal 10-m wind speed, >0 increases uVel

SIvwind |VM U1|m/s |SEAICE meridional 10-m wind speed, >0 increases uVel

SIsnPrcp|SM U1|kg/m^2/s |Snow precip. (+=dw) over Sea-Ice (area weighted)

FLUXES ACROSS ICE-OCEAN INTERFACE (ATMOS to OCEAN FOR ICE-FREE REGIONS):

SIfu |UU U1|N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel

SIfv |VV U1|N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel

SIqnet |SM U1|W/m^2 |Ocean surface heatflux, turb+rad, >0 decreases theta

SIqsw |SM U1|W/m^2 |Ocean surface shortwave radiat., >0 decreases theta

SIempmr |SM U1|kg/m^2/s |Ocean surface freshwater flux, > 0 increases salt

SIqneto |SM U1|W/m^2 |Open Ocean Part of SIqnet, turb+rad, >0 decr theta

SIqneti |SM U1|W/m^2 |Ice Covered Part of SIqnet, turb+rad, >0 decr theta

FLUXES ACROSS ATMOSPHERE-ICE INTERFACE (ATMOS to OCEAN FOR ICE-FREE REGIONS):

SIatmQnt|SM U1|W/m^2 |Net atmospheric heat flux, >0 decreases theta

SIatmFW |SM U1|kg/m^2/s |Net freshwater flux from atmosphere & land (+=down)

SIfwSubl|SM U1|kg/m^2/s |Freshwater flux of sublimated ice, >0 decreases ice

THERMODYNAMIC DIAGNOSTICS:

SIareaPR|SM M1|m^2/m^2 |SIarea preceeding ridging process

SIareaPT|SM M1|m^2/m^2 |SIarea preceeding thermodynamic growth/melt

SIheffPT|SM M1|m |SIheff preceeeding thermodynamic growth/melt

SIhsnoPT|SM M1|m |SIhsnow preceeeding thermodynamic growth/melt

SIaQbOCN|SM M1|m/s |Potential HEFF rate of change by ocean ice flux

SIaQbATC|SM M1|m/s |Potential HEFF rate of change by atm flux over ice

SIaQbATO|SM M1|m/s |Potential HEFF rate of change by open ocn atm flux

SIdHbOCN|SM M1|m/s |HEFF rate of change by ocean ice flux

SIdSbATC|SM M1|m/s |HSNOW rate of change by atm flux over sea ice

SIdSbOCN|SM M1|m/s |HSNOW rate of change by ocean ice flux

SIdHbATC|SM M1|m/s |HEFF rate of change by atm flux over sea ice

SIdHbATO|SM M1|m/s |HEFF rate of change by open ocn atm flux

SIdHbFLO|SM M1|m/s |HEFF rate of change by flooding snow

SIdAbATO|SM M1|m^2/m^2/s |Potential AREA rate of change by open ocn atm flux

SIdAbATC|SM M1|m^2/m^2/s |Potential AREA rate of change by atm flux over ice

SIdAbOCN|SM M1|m^2/m^2/s |Potential AREA rate of change by ocean ice flux

SIdA |SM M1|m^2/m^2/s |AREA rate of change (net)

DYNAMIC/RHEOLOGY DIAGNOSTICS:

SIpress |SM M1|m^2/s^2 |SEAICE strength (with upper and lower limit)

SIzeta |SM M1|m^2/s |SEAICE nonlinear bulk viscosity

SIeta |SM M1|m^2/s |SEAICE nonlinear shear viscosity

SIsigI |SM M1|no units |SEAICE normalized principle stress, component one

SIsigII |SM M1|no units |SEAICE normalized principle stress, component two

ADVECTIVE/DIFFUSIVE FLUXES OF SEA ICE variables:

ADVxHEFF|UU M1|m.m^2/s |Zonal Advective Flux of eff ice thickn

ADVyHEFF|VV M1|m.m^2/s |Meridional Advective Flux of eff ice thickn

SIuheff |UU M1|m^2/s |Zonal Transport of eff ice thickn (centered)

SIvheff |VV M1|m^2/s |Meridional Transport of eff ice thickn (centered)

DFxEHEFF|UU M1|m^2/s |Zonal Diffusive Flux of eff ice thickn

DFyEHEFF|VV M1|m^2/s |Meridional Diffusive Flux of eff ice thickn

ADVxAREA|UU M1|m^2/m^2.m^2/s |Zonal Advective Flux of fract area

ADVyAREA|VV M1|m^2/m^2.m^2/s |Meridional Advective Flux of fract area

6.8. BIOGEOCHEMISTRY PACKAGES 419

CPP option Description

ALLOW SHELFICE DEBUG Include code for enhanged diagnosis
ALLOW ISOMIP TD Include code for simplifed ISOMIP thermodynamics

Table 6.21: Available CPP-flags to be set in SHELFICE OPTIONS.h

Table 6.22: Run-time parameters and default values

Name Default value Description Reference

useISOMIPTD F use simplified ISOMIP thermo-
dynamics instead of default

SHELFICEconserve F use conservative form of tem-
perature boundary conditions

SHELFICEboundaryLayer F use simple boundary layer mix-
ing parameterization

SHELFICEloadAnomalyFile UNSET inital geopotential anomaly
SHELFICEtopoFile UNSET under-ice topography of ice

shelves
SHELFICElatentHeat 334.0E+03 latent heat of fusion (L)
SHELFICEHeatCapacity Cp 2000.0E+00 specific heat capacity of ice

(cp,I)
rhoShelfIce 917.0E+00 (constant) mean density of ice

shelf (ρI)
SHELFICEheatTransCoeff 1.0E-04 transfer coefficient (exchange

velocity) for temperature (γT)
SHELFICEsaltTransCoeff 5.05E-03 × SHELFICEheat-

TransCoeff
transfer coefficient (exchange
velocity) for salinity (γS)

SHELFICEkappa 1.54E-06 temperature diffusion coeffi-
cient of the ice shelf (kappa)

SHELFICEthetaSurface -20.0E+00 (constant) surface temperature
above the ice shelf (TS)

no slip shelfice no slip bottom (data) flag for slip along bottom of ice
shelf

SHELFICEDragLinear bottomDragLinear (data) linear drag coefficient at bot-
tom ice shelf

SHELFICEDragQuadratic bottomDragQuadratic (data) quadratic drag coefficient at
bottom ice shelf

SHELFICEwriteState F write ice shelf state to file
SHELFICE dumpFreq dumpFreq (data) dump frequency
SHELFICE taveFreq taveFreq (data) time-averaging frequency
SHELFICE tave mnc timeave mnc (data.mnc) write snap-shot using MNC
SHELFICE dump mnc snapshot mnc (data.mnc) write TimeAverage using MNC

---------+----+----+----------------+-----------------

<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

---------+----+----+----------------+-----------------

SHIfwFlx| 1 |SM |kg/m^2/s |Ice shelf fresh water flux (positive upward)

SHIhtFlx| 1 |SM |W/m^2 |Ice shelf heat flux (positive upward)

SHIUDrag| 30 |UU |m/s^2 |U momentum tendency from ice shelf drag

SHIVDrag| 30 |VV |m/s^2 |V momentum tendency from ice shelf drag

SHIForcT| 1 |SM |W/m^2 |Ice shelf forcing for theta, >0 increases theta

SHIForcS| 1 |SM |g/m^2/s |Ice shelf forcing for salt, >0 increases salt

Table 6.23: Available diagnostics of the shelfice-package

420 CHAPTER 6. PHYSICAL PARAMETERIZATIONS - PACKAGES I

Chapter 7

Diagnostics and I/O - Packages II,
and Post–Processing Utilities

MITgcm has several packages related to the input and output consumed and produced during a model
integration. The packages used are related to the choice of input/output fields and the on-disk format of
the model output.

7.1 Diagnostics–A Flexible Infrastructure

7.1.1 Introduction

This section of the documentation describes the Diagnostics package available within the GCM. A large
selection of model diagnostics is available for output. In addition to the diagnostic quantities pre-defined
in the GCM, there exists the option, in any experiment, to define a new diagnostic quantity and include
it as part of the diagnostic output with the addition of a single subroutine call in the routine where the
field is computed. As a matter of philosophy, no diagnostic is enabled as default, thus each user must
specify the exact diagnostic information required for an experiment. This is accomplished by enabling
the specific diagnostic of interest cataloged in the Diagnostic Menu (see Section 7.1.4.2). Instructions
for enabling diagnostic output and defining new diagnostic quantities are found in Section 7.1.4 of this
document.

The Diagnostic Menu in this section of the manual is a listing of diagnostic quantities available within the
main (dynamics) part of the GCM. Additional diagnostic quantities, defined within the different GCM
packages, are available and are listed in the diagnostic menu subsection of the manual section associated
with each relevant package. Once a diagnostic is enabled, the GCM will continually increment an array
specifically allocated for that diagnostic whenever the appropriate quantity is computed. A counter is
defined which records how many times each diagnostic quantity has been incremented. Several special
diagnostics are included in the menu. Quantities referred to as “Counter Diagnostics”, are defined for
selected diagnostics which record the frequency at which a diagnostic is incremented separately for each
model grid location. Quantities referred to as “User Diagnostics” are included in the menu to facilitate
defining new diagnostics for a particular experiment.

7.1.2 Equations

Not relevant.

7.1.3 Key Subroutines and Parameters

There are several utilities within the GCM available to users to enable, disable, clear, write and retrieve
model diagnostics, and may be called from any routine. The available utilities and the CALL sequences
are listed below.

421

422CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

DIAGNOSTICS ADDTOLIST (pkg/diagnostics/diagnostics addtolist.F): This routine is the
underlying interface routine for defining a new permanent diagnostic in the main model or in a package.
The calling sequence is:

CALL DIAGNOSTICS_ADDTOLIST (

O diagNum,

I diagName, diagCode, diagUnits, diagTitle, diagMate,

I myThid)

where:

diagNum = diagnostic Id number - Output from routine

diagName = name of diagnostic to declare

diagCode = parser code for this diagnostic

diagUnits = field units for this diagnostic

diagTitle = field description for this diagnostic

diagMate = diagnostic mate number

myThid = my Thread Id number

DIAGNOSTICS FILL (pkg/diagnostics/diagnostics fill.F): This is the main user interface rou-
tine to the diagnostics package. This routine will increment the specified diagnostic quantity with a field
sent through the argument list.

CALL DIAGNOSTICS_FILL(

I inpFld, diagName,

I kLev, nLevs, bibjFlg, bi, bj, myThid)

where:

inpFld = Field to increment diagnostics array

diagName = diagnostic identificator name (8 characters long)

kLev = Integer flag for vertical levels:

> 0 (any integer): WHICH single level to increment in qdiag.

0,-1 to increment "nLevs" levels in qdiag,

0 : fill-in in the same order as the input array

-1: fill-in in reverse order.

nLevs = indicates Number of levels of the input field array

(whether to fill-in all the levels (kLev<1) or just one (kLev>0))

bibjFlg = Integer flag to indicate instructions for bi bj loop

= 0 indicates that the bi-bj loop must be done here

= 1 indicates that the bi-bj loop is done OUTSIDE

= 2 indicates that the bi-bj loop is done OUTSIDE

AND that we have been sent a local array (with overlap regions)

(local array here means that it has no bi-bj dimensions)

= 3 indicates that the bi-bj loop is done OUTSIDE

AND that we have been sent a local array

AND that the array has no overlap region (interior only)

NOTE - bibjFlg can be NEGATIVE to indicate not to increment counter

bi = X-direction tile number - used for bibjFlg=1-3

bj = Y-direction tile number - used for bibjFlg=1-3

myThid = my thread Id number

DIAGNOSTICS SCALE FILL (pkg/diagnostics/diagnostics scale fill.F): This is a possible
alternative routine to DIAGNOSTICS FILL which performs the same functions and has an additional
option to scale the field before filling or raise the field to a power before filling.

CALL DIAGNOSTICS_SCALE_FILL(

I inpFld, scaleFact, power, diagName,

file:../code_reference/vdb/byname/pkg-diagnostics-diagnostics_addtolist.F.html
file:../code_reference/vdb/byname/pkg-diagnostics-diagnostics_fill.F.html
file:../code_reference/vdb/byname/pkg-diagnostics-diagnostics_scale_fill.F.html

7.1. DIAGNOSTICS–A FLEXIBLE INFRASTRUCTURE 423

I kLev, nLevs, bibjFlg, bi, bj, myThid)

where all the arguments are the same as for DIAGNOSTICS_FILL with

the addition of:

scaleFact = Scaling factor to apply to the input field product

power = Integer power to which to raise the input field (after scaling)

DIAGNOSTICS FRACT FILL (pkg/diagnostics/diagnostics fract fill.F): This is a specific
alternative routine to DIAGNOSTICS [SCALE] FILL for the case of a diagnostics which is associated
to a fraction-weight factor (referred to as the diagnostics ”counter mate”). This fraction-weight field is
expected to vary during the simulation and is provided as argument to DIAGNOSTICS FRACT FILL
in order to perform fraction-weighted time-average diagnostics. Note that the fraction-weight field has
to correspond to the diagnostics counter-mate which has to be filled independently with a call to DIAG-
NOSTICS FILL.

CALL DIAGNOSTICS_FRACT_FILL(

I inpFld, fractFld, scaleFact, power, diagName,

I kLev, nLevs, bibjFlg, bi, bj, myThid)

where all the arguments are the same as for DIAGNOSTICS_SCALE_FILL with

the addition of:

fractFld = fraction used for weighted average diagnostics

DIAGNOSTICS IS ON: Function call to inquire whether a diagnostic is active and should be in-
cremented. Useful when there is a computation that must be done locally before a call to DIAGNOS-
TICS FILL. The call sequence:

flag = DIAGNOSTICS_IS_ON(diagName, myThid)

where:

diagName = diagnostic identificator name (8 characters long)

myThid = my thread Id number

DIAGNOSTICS COUNT (pkg/diagnostics/diagnostics utils.F): This subroutine increments
the diagnostics counter only. In general, the diagnostics counter is incremented at the same time as the
diagnostics is filled, by calling DIAGNOSTICS FILL. However, there are few cases where the counter is
not incremented during the filling (e.g., when the filling is done level per level but level 1 is skipped) and
needs to be done explicitly with a call to subroutine DIAGNOSTICS COUNT. The call sequence is:

CALL DIAGNOSTICS_COUNT(

I diagName, bi, bj, myThid)

where:

diagName = name of diagnostic to increment the counter

bi = X-direction tile number, or 0 if called outside bi,bj loops

bj = Y-direction tile number, or 0 if called outside bi,bj loops

myThid = my thread Id number

The diagnostics are computed at various times and places within the GCM. Because MITgcm may
employ a staggered grid, diagnostics may be computed at grid box centers, corners, or edges, and at the
middle or edge in the vertical. Some diagnostics are scalars, while others are components of vectors. An
internal array is defined which contains information concerning various grid attributes of each diagnostic.
The GDIAG array (in common block diagnostics in file DIAGNOSTICS.h) is internally defined as a
character*16 variable, and is equivalenced to a character*1 ”parse” array in output in order to extract
the grid-attribute information. The GDIAG array is described in Table 7.1.

file:../code_reference/vdb/byname/pkg-diagnostics-diagnostics_fract_fill.F.html
file:../code_reference/vdb/byname/pkg-diagnostics-diagnostics_utils.F.html

424CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

Table 7.1: Diagnostic Parsing Array

Diagnostic Parsing Array

Array Value Description
parse(1) → S Scalar Diagnostic

→ U U-vector component Diagnostic
→ V V-vector component Diagnostic

parse(2) → U C-Grid U-Point
→ V C-Grid V-Point
→ M C-Grid Mass Point
→ Z C-Grid Vorticity (Corner) Point

parse(3) → Used for Level Integrated output: cumulate levels
→ r same but cumulate product by model level thickness
→ R same but cumulate product by hFac & level thickness

parse(4) → P Positive Definite Diagnostic
parse(5) → C with Counter array

→ P post-processed (not filled up) from other diags
→ D Disabled Diagnostic for output

parse(6-8) retired, formerly: 3-digit mate number
parse(9) → U model-level plus 1/2

→ M model-level middle
→ L model-level minus 1/2

parse(10) → 0 levels = 0
→ 1 levels = 1
→ R levels = Nr
→ L levels = MAX(Nr,NrPhys)
→ M levels = MAX(Nr,NrPhys) - 1
→ G levels = Ground level Number
→ I levels = sea-Ice level Number
→ X free levels option (need to be set explicitly)

7.1. DIAGNOSTICS–A FLEXIBLE INFRASTRUCTURE 425

As an example, consider a diagnostic whose associated GDIAG parameter is equal to “UUR MR”.
From GDIAG we can determine that this diagnostic is a U-vector component located at the C-grid
U-point, model mid-level (M) with Nr levels (last R).
In this way, each Diagnostic in the model has its attributes (ie. vector or scalar, C-grid location, etc.)
defined internally. The Output routines use this information in order to determine what type of trans-
formations need to be performed. Any interpolations are done at the time of output rather than during
each model step. In this way the User has flexibility in determining the type of gridded data which is
output.

7.1.4 Usage Notes

7.1.4.1 Using available diagnostics

To use the diagnostics package, other than enabling it in packages.conf and turning the useDiagnostics
flag in data.pkg to .TRUE., there are two further steps the user must take to enable the diagnostics
package for output of quantities that are already defined in the GCM under an experiment’s configuration
of packages. A parameter file data.diagnostics must be supplied in the run directory, and the file
DIAGNOSTICS SIZE.h must be included in the code directory. The steps for defining a new (permanent
or experiment-specific temporary) diagnostic quantity will be outlined later.
The namelist in parameter file data.diagnosticswill activate a user-defined list of diagnostics quantities
to be computed, specify the frequency and type of output, the number of levels, and the name of all the
separate output files. A sample data.diagnostics namelist file:

Diagnostic Package Choices

#--------------------

dumpAtLast (logical): always write output at the end of simulation (default=F)

diag_mnc (logical): write to NetCDF files (default=useMNC)

#--for each output-stream:

fileName(n) : prefix of the output file name (max 80c long) for outp.stream n

frequency(n):< 0 : write snap-shot output every |frequency| seconds

> 0 : write time-average output every frequency seconds

timePhase(n) : write at time = timePhase + multiple of |frequency|

averagingFreq : frequency (in s) for periodic averaging interval

averagingPhase : phase (in s) for periodic averaging interval

repeatCycle : number of averaging intervals in 1 cycle

levels(:,n) : list of levels to write to file (Notes: declared as REAL)

when this entry is missing, select all common levels of this list

fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n

(see "available_diagnostics.log" file for the full list of diags)

missing_value(n) : missing value for real-type fields in output file "n"

fileFlags(n) : specific code (8c string) for output file "n"

#--------------------

&DIAGNOSTICS_LIST

fields(1:2,1) = ’UVEL ’,’VVEL ’,

levels(1:5,1) = 1.,2.,3.,4.,5.,

filename(1) = ’diagout1’,

frequency(1) = 86400.,

fields(1:2,2) = ’THETA ’,’SALT ’,

filename(2) = ’diagout2’,

fileflags(2) = ’ P1 ’,

frequency(2) = 3600.,

&

&DIAG_STATIS_PARMS

&

In this example, there are two output files that will be generated for each tile and for each output
time. The first set of output files has the prefix diagout1, does time averaging every 86400. seconds,

426CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

(frequency is 86400.), and will write fields which are multiple-level fields at output levels 1-5. The names
of diagnostics quantities are UVEL and VVEL. The second set of output files has the prefix diagout2,
does time averaging every 3600. seconds, includes fields with all levels, and the names of diagnostics
quantities are THETA and SALT.
The user must assure that enough computer memory is allocated for the diagnostics and the output
streams selected for a particular experiment. This is accomplished by modifying the file DIAGNOS-
TICS SIZE.h and including it in the experiment code directory. The parameters that should be checked
are called numDiags, numLists, numperList, and diagSt size.
numDiags (and diagSt size):
All GCM diagnostic quantities are stored in the single diagnostic array QDIAG which is located in the
file pkg/diagnostics/DIAGNOSTICS.h and has the form:

_RL qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numDiags,nSx,nSy)

_RL qSdiag(0:nStats,0:nRegions,diagSt_size,nSx,nSy)

COMMON / DIAG_STORE_R / qdiag, qSdiag

The first two-dimensions of qdiag correspond to the horizontal dimension of a given diagnostic, and the
third dimension of qdiag is used to identify diagnostic fields and levels combined. In order to minimize
the memory requirement of the model for diagnostics, the default GCM executable is compiled with
room for only one horizontal diagnostic array, or with numDiags set to Nr. In order for the User to
enable more than 1 three-dimensional diagnostic, the size of the diagnostics common must be expanded
to accommodate the desired diagnostics. This can be accomplished by manually changing the parameter
numDiags in the file pkg/diagnostics/DIAGNOSTICS SIZE.h. numDiags should be set greater than or
equal to the sum of all the diagnostics activated for output each multiplied by the number of levels
defined for that diagnostic quantity. For the above example, there are 4 multiple level fields, which the
diagnostics menu (see below) indicates are defined at the GCM vertical resolution, Nr. The value of
numDiags in DIAGNOSTICS SIZE.h would therefore be equal to 4*Nr, or, say 40 if Nr = 10.
numLists and numperList:
The parameter numLists must be set greater than or equal to the number of separate output streams
that the user specifies in the namelist file data.diagnostics. The parameter numperList corresponds to
the maximum number of diagnostics requested per output streams.

7.1.4.2 Adding new diagnostics to the code

In order to define and include as part of the diagnostic output any field that is desired for a particular
experiment, two steps must be taken. The first is to enable the “User Diagnostic” in data.diagnostics.
This is accomplished by adding one of the “User Diagnostic” field names (UDIAG1 through UDIAG10,
for multi-level fields, or SDIAG1 through SDIAG10 for single level fields) to the data.diagnostics namelist
in one of the output streams. These fields are listed in the diagnostics menu. The second step is to add
a call to DIAGNOSTICS FILL from the subroutine in which the quantity desired for diagnostic output
is computed.
In order to add a new diagnostic to the permanent set of diagnostics that the main model or any package
contains as part of its diagnostics menu, the subroutine DIAGNOSTICS ADDTOLIST should be called
during the initialization phase of the main model or package. For the main model, the call should be made
from subroutine DIAGNOSTICS MAIN INIT, and for a package, the call should probably be made from
from inside the particular package’s init fixed routine. A typical code sequence to set the input arguments
to DIAGNOSTICS ADDTOLIST would look like:

diagName = ’RHOAnoma’

diagTitle = ’Density Anomaly (=Rho-rhoConst)’

diagUnits = ’kg/m^3 ’

diagCode = ’SMR MR ’

CALL DIAGNOSTICS_ADDTOLIST(diagNum,

I diagName, diagCode, diagUnits, diagTitle, 0, myThid)

If the new diagnostic quantity is associated with either a vector pair or a diagnostic counter, the diagMate
argument must be provided with the proper index corresponding to the “mate”. The output argument

file:../code_reference/vdb/byname/pkg-diagnostics-DIAGNOSTICS.h.html
file:../code_reference/vdb/byname/pkg-diagnostics-DIAGNOSTICS_SIZE.h.html

7.1. DIAGNOSTICS–A FLEXIBLE INFRASTRUCTURE 427

from DIAGNOSTICS ADDTOLIST that is called diagNum here contains a running total of the number
of diagnostics defined in the code up to any point during the run. The sequence number for the next
two diagnostics defined (the two components of the vector pair, for instance) will be diagNum+1 and
diagNum+2. The definition of the first component of the vector pair must fill the “mate” segment of the
diagCode as diagnostic number diagNum+2. Since the subroutine increments diagNum, the definition of
the second component of the vector fills the “mate” part of diagCode with diagNum. A code sequence
for this case would look like:

diagName = ’UVEL ’

diagTitle = ’Zonal Component of Velocity (m/s)’

diagUnits = ’m/s ’

diagCode = ’UUR MR ’

diagMate = diagNum + 2

CALL DIAGNOSTICS_ADDTOLIST(diagNum,

I diagName, diagCode, diagUnits, diagTitle, diagMate, myThid)

diagName = ’VVEL ’

diagTitle = ’Meridional Component of Velocity (m/s)’

diagUnits = ’m/s ’

diagCode = ’VVR MR ’

diagMate = diagNum

CALL DIAGNOSTICS_ADDTOLIST(diagNum,

I diagName, diagCode, diagUnits, diagTitle, diagMate, myThid)

428CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

NAME UNITS LEVELS DESCRIPTION

UVEL m/sec Nr U-Velocity
VVEL m/sec Nr V-Velocity
UVEL k2 m/sec 1 U-Velocity
VVEL k2 m/sec 1 V-Velocity
WVEL m/sec Nr Vertical-Velocity
THETASQ deg2 Nr Square of Potential Temperature

SALTSQ g2/kg2 Nr Square of Salt (or Water Vapor Mixing Ratio)

SALTSQan g2/kg2 Nr Square of Salt anomaly (=SALT-35)
UVELSQ m2/sec2 Nr Square of U-Velocity
VVELSQ m2/sec2 Nr Square of V-Velocity
WVELSQ m2/sec2 Nr Square of Vertical-Velocity
UV VEL C m2/sec2 Nr Meridional Transport of Zonal Momentum (cell

center)
UV VEL Z m2/sec2 Nr Meridional Transport of Zonal Momentum (cor-

ner)
WU VEL m2/sec2 Nr Vertical Transport of Zonal Momentum (cell cen-

ter)
WV VEL m2/sec2 Nr Vertical Transport of Meridional Momentum (cell

center)
UVELMASS m/sec Nr Zonal Mass-Weighted Component of Velocity
VVELMASS m/sec Nr Meridional Mass-Weighted Component of Velocity
WVELMASS m/sec Nr Vertical Mass-Weighted Component of Velocity
UTHMASS m− deg/sec Nr Zonal Mass-Weight Transp of Pot Temp
VTHMASS m− deg/sec Nr Meridional Mass-Weight Transp of Pot Temp
WTHMASS m− deg/sec Nr Vertical Mass-Weight Transp of Pot Temp
ETAN (hPa,m) 1 Perturbation of Surface (pressure, height)
ETANSQ (hPa2,m2) 1 Square of Perturbation of Surface (pressure,

height)
DETADT2 r − unit2/s2 1 Square of Eta (Surf.P,SSH) Tendency
THETA degK Nr Potential Temperature
SST degK 1 Sea Surface Temperature
SALT g/kg Nr Salt (or Water Vapor Mixing Ratio)
SSS g/kg 1 Sea Surface Salinity
SALTanom g/kg Nr Salt anomaly (=SALT-35)

MITgcm Kernel Diagnostic Menu:

7.1. DIAGNOSTICS–A FLEXIBLE INFRASTRUCTURE 429

NAME UNITS LEVELS DESCRIPTION

USLTMASS m− kg/sec− kg Nr Zonal Mass-Weight Transp of Salt (or W.Vap Mix
Rat.)

VSLTMASS m− kg/sec− kg Nr Meridional Mass-Weight Transp of Salt (or W.Vap
Mix Rat.)

WSLTMASS m− kg/sec− kg Nr Vertical Mass-Weight Transp of Salt (or W.Vap
Mix Rat.)

UVELTH m− deg/sec Nr Zonal Transp of Pot Temp
VVELTH m− deg/sec Nr Meridional Transp of Pot Temp
WVELTH m− deg/sec Nr Vertical Transp of Pot Temp
UVELSLT m− kg/sec− kg Nr Zonal Transp of Salt (or W.Vap Mix Rat.)
VVELSLT m− kg/sec− kg Nr Meridional Transp of Salt (or W.Vap Mix Rat.)
WVELSLT m− kg/sec− kg Nr Vertical Transp of Salt (or W.Vap Mix Rat.)
RHOAnoma kg/m3 Nr Density Anomaly (=Rho-rhoConst)
RHOANOSQ kg2/m6 Nr Square of Density Anomaly (=(Rho-rhoConst))
URHOMASS kg/m2/s Nr Zonal Transport of Density
VRHOMASS kg/m2/s Nr Meridional Transport of Density
WRHOMASS kg/m2/s Nr Vertical Transport of Potential Density
PHIHYD m2/s2 Nr Hydrostatic (ocean) pressure / (atmos) geo-

Potential
PHIHYDSQ m4/s4 Nr Square of Hyd. (ocean) press / (atmos) geoPoten-

tial
PHIBOT m2/s2 Nr ocean bottom pressure / top. atmos geo-Potential
PHIBOTSQ m4/s4 Nr Square of ocean bottom pressure / top. geo-

Potential
DRHODR kg/m3/r − unit Nr Stratification: d.Sigma/dr
VISCA4 m4/sec 1 Biharmonic Viscosity Coefficient
VISCAH m2/sec 1 Harmonic Viscosity Coefficient
TAUX N/m2 1 zonal surface wind stress, ¿0 increases uVel
TAUY N/m2 1 meridional surf. wind stress, ¿0 increases vVel
TFLUX W/m2 1 net surface heat flux, ¿0 increases theta
TRELAX W/m2 1 surface temperature relaxation, ¿0 increases theta
TICE W/m2 1 heat from melt/freeze of sea-ice, ¿0 increases theta
SFLUX g/m2/s 1 net surface salt flux, ¿0 increases salt
SRELAX g/m2/s 1 surface salinity relaxation, ¿0 increases salt
PRESSURE Pa Nr Atmospheric Pressure (Pa)

430CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

NAME UNITS LEVELS DESCRIPTION

ADVr TH K.Pa.m2/s Nr Vertical Advective Flux of Pot.Temperature
ADVx TH K.Pa.m2/s Nr Zonal Advective Flux of Pot.Temperature
ADVy TH K.Pa.m2/s Nr Meridional Advective Flux of Pot.Temperature
DFrE TH K.Pa.m2/s Nr Vertical Diffusive Flux of Pot.Temperature (Ex-

plicit part)
DIFx TH K.Pa.m2/s Nr Zonal Diffusive Flux of Pot.Temperature
DIFy TH K.Pa.m2/s Nr Meridional Diffusive Flux of Pot.Temperature
DFrI TH K.Pa.m2/s Nr Vertical Diffusive Flux of Pot.Temperature (Im-

plicit part)
ADVr SLT g/kg.Pa.m2/s Nr Vertical Advective Flux of Water-Vapor
ADVx SLT g/kg.Pa.m2/s Nr Zonal Advective Flux of Water-Vapor
ADVy SLT g/kg.Pa.m2/s Nr Meridional Advective Flux of Water-Vapor
DFrE SLT g/kg.Pa.m2/s Nr Vertical Diffusive Flux of Water-Vapor (Explicit

part)
DIFx SLT g/kg.Pa.m2/s Nr Zonal Diffusive Flux of Water-Vapor
DIFy SLT g/kg.Pa.m2/s Nr Meridional Diffusive Flux of Water-Vapor
DFrI SLT g/kg.Pa.m2/s Nr Vertical Diffusive Flux of Water-Vapor (Implicit

part)

7.1. DIAGNOSTICS–A FLEXIBLE INFRASTRUCTURE 431

NAME UNITS LEVELS DESCRIPTION

SDIAG1 1 User-Defined Surface Diagnostic-1
SDIAG2 1 User-Defined Surface Diagnostic-2
SDIAG3 1 User-Defined Surface Diagnostic-3
SDIAG4 1 User-Defined Surface Diagnostic-4
SDIAG5 1 User-Defined Surface Diagnostic-5
SDIAG6 1 User-Defined Surface Diagnostic-6
SDIAG7 1 User-Defined Surface Diagnostic-7
SDIAG8 1 User-Defined Surface Diagnostic-8
SDIAG9 1 User-Defined Surface Diagnostic-9
SDIAG10 1 User-Defined Surface Diagnostic-1-
SDIAGC 1 User-Defined Counted Surface Diagnostic
SDIAGCC 1 User-Defined Counted Surface Diagnostic Counter
UDIAG1 Nrphys User-Defined Upper-Air Diagnostic-1
UDIAG2 Nrphys User-Defined Upper-Air Diagnostic-2
UDIAG3 Nrphys User-Defined Multi-Level Diagnostic-3
UDIAG4 Nrphys User-Defined Multi-Level Diagnostic-4
UDIAG5 Nrphys User-Defined Multi-Level Diagnostic-5
UDIAG6 Nrphys User-Defined Multi-Level Diagnostic-6
UDIAG7 Nrphys User-Defined Multi-Level Diagnostic-7
UDIAG8 Nrphys User-Defined Multi-Level Diagnostic-8
UDIAG9 Nrphys User-Defined Multi-Level Diagnostic-9
UDIAG10 Nrphys User-Defined Multi-Level Diagnostic-10

432CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

For a list of the diagnostic fields available in the different MITgcm packages, follow the link to the
diagnostics menu in the manual section describing the package:

• aim: 6.5.1.2

• exf: 6.4.7.7

• gchem: 6.8.1.3

• generic advdiff: 6.2.1.3

• gridalt: 6.2.5.6

• gmredi: 6.4.1.6

• fizhi: 6.5.3.3

• kpp: 6.4.2.6

• land: 6.5.2.3

• mom common: 2.14.8

• obcs: 6.3.1.7

• thsice: 6.6.1.3

• shap filt: 2.20.1

• ptracers: 6.3.3.4

7.1.5 Dos and Donts

7.1.6 Diagnostics Reference

7.2. NETCDF I/O: MNC 433

7.2 NetCDF I/O: MNC

The mnc package is a set of convenience routines written to expedite the process of creating, appending,
and reading NetCDF files. NetCDF is an increasingly popular self-describing file format Rew et al. [1997]
intended primarily for scientific data sets. An extensive collection of NetCDF reference papers, user
guides, software, FAQs, and other information can be obtained from UCAR’s web site at:

http://www.unidata.ucar.edu/packages/netcdf/

Since it is a “wrapper” for netCDF, MNC depends upon the Fortran-77 interface included with the
standard netCDF v3.x library which is often called libnetcdf.a. Please contact your local systems
administrators or the MITgcm-support list for help building and installing netCDF for your particular
platform.

7.2.1 Using MNC

7.2.1.1 MNC Configuration:

As with all MITgcm packages, MNC can be turned on or off at compile time using the packages.conf

file or the genmake2 -enable=mnc or -disable=mnc switches.

While MNC is likely to work “as is”, there are a few compile–time constants that may need to be
increased for simulations that employ large numbers of tiles within each process. Note that the important
quantity is the maximum number of tiles per process. Since MPI configurations tend to distribute large
numbers of tiles over relatively large numbers of MPI processes, these constants will rarely need to be
increased.

If MNC runs out of space within its “lookup” tables during a simulation, then it will provide an error
message along with a recommendation of which parameter to increase. The parameters are all located
within pkg/mnc/mnc common.h and the ones that may need to be increased are:

Name Default Description

MNC MAX ID 1000 IDs for various low-level entities
MNC MAX INFO 400 IDs (mostly for object sizes)
MNC CW MAX I 150 IDs for the “wrapper” layer

In those rare cases where MNC “out-of-memory” error messages are encountered, it is a good idea
to increase the too-small parameter by a factor of 2–10 in order to avoid wasting time on an iterative
compile–test sequence.

7.2.1.2 MNC Inputs:

Like most MITgcm packages, all of MNC can be turned on/off at runtime using a single flag in data.pkg

Name T Default Description

useMNC L .FALSE. overall MNC ON/OFF switch

One important MNC–related flag is present in the main data namelist file in the PARM03 section and
it is:

Name T Default Description

outputTypesInclusive L .FALSE. use all available output “types”

which specifies that turning on MNC for a particular type of output should not simultaneously turn off
the default output method as it normally does. Usually, this option is only used for debugging purposes
since it is inefficient to write output types using both MNC and MDSIO or ASCII output. This option
can also be helpful when transitioning from MDSIO to MNC since the output can be readily compared.

For run-time configuration, most of the MNC–related model parameters are contained within a Fortran
namelist file called data.mnc. The availabe parameters currently include:

file:../code_reference/vdb/byname/pkg-mnc-mnc_common.h.html

434CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

Name T Default Description

mnc use outdir L .FALSE. create a directory for output
mnc outdir str S ’mnc ’ output directory name
mnc outdir date L .FALSE. embed date in the outdir name
mnc outdir num L .TRUE. optional

pickup write mnc L .TRUE. use MNC to write pickup files
pickup read mnc L .TRUE. use MNC to read pickup files
mnc use indir L .FALSE. use a directory (path) for input
mnc indir str S ’’ input directory (or path) name

snapshot mnc L .TRUE. write snapshot output w/MNC
monitor mnc L .TRUE. write monitor output w/MNC
timeave mnc L .TRUE. write timeave output w/MNC
autodiff mnc L .TRUE. write autodiff output w/MNC
mnc max fsize R 2.1e+09 max allowable file size (¡2GB)
mnc filefreq R -1 frequency of new file creation (seconds)
readgrid mnc L .FALSE. read grid quantities using MNC
mnc echo gvtypes L .FALSE. list pre-defined “types” (debug)

Unlike the older MDSIO method, MNC has the ability to create or use existing output directories.
If either mnc outdir date or mnc outdir num is true, then MNC will try to create directories on a PER
PROCESS basis for its output. This means that a single directory will be created for a non-MPI run
and multiple directories (one per MPI process) will be created for an MPI run. This approach was
chosen since it works safely on both shared global file systems (such as NFS and AFS) and on local
(per-compute-node) file systems. And if both mnc outdir date and mnc outdir num are false, then the
MNC package will assume that the directory specified in mnc outdir str already exists and will use it.
This allows the user to create and specify directories outside of the model.

For input, MNC can use a single global input directory. This is a just convenience that allows MNC
to gather all of its input files from a path other than the current working directory. As with MDSIO, the
default is to use the current working directory.

The flags snapshot mnc, monitor mnc, timeave mnc, and autodiff mnc allow the user to turn on
MNC for particular “types” of output. If a type is selected, then MNC will be used for all output that
matches that type. This applies to output from the main model and from all of the optional MITgcm
packages. Mostly, the names used here correspond to the names used for the output frequencies in the
main data namelist file.

The mnc max fsize parameter is a convenience added to help users work around common file size
limitations. On many computer systems, either the opterating system, the file system(s), and/or the
netCDF libraries are unable to handle files greater than two or four gigabytes in size. The MNC package
is able to work within this limitation by creating new files which grow along the netCDF “unlimited”
(usually, time) dimension. The default value for this parameter is just slightly less than 2GB which is
safe on virtually all operating systems. Essentially, this feature is a way to intelligently and automatically
split files output along the unlimited dimension. On systems that support large file sizes, these splits
can be readily concatenated (that is, un-done) using tools such as the netCDF Operators (with ncrcat)
which is available at:

http://nco.sourceforge.net/

Another way users can force the splitting of MNC files along the time dimension is the mnc filefreq

option. With it, files that contain variables with a temporal dimension can be split at regular intervals
based solely upon the model time (specified in seconds). For some problems, this can be much more
convenient than splitting based upon file size.

Additional MNC–related parameters may be contained within each package. Please see the individual
packages for descriptions of their use of MNC.

7.2.1.3 MNC Output:

Depending upon the flags used, MNC will produce zero or more directories containing one or more netCDF
files as output. These files are either mostly or entirely compliant with the netCDF “CF” convention
(v1.0) and any conformance issues will be fixed over time. The patterns used for file names are:

BASENAME.tileNum.nc

BASENAME.nIter.faceNum.nc

BASENAME.nIter.tileNum.nc

7.2. NETCDF I/O: MNC 435

and examples are:

grid.t001.nc, grid.t002.nc
state.0000000000.t001.nc, surfDiag.0000036000.t001.nc
input.0000072000.f001.nc

where BASENAME is the name selected to represent a set of variables written together, nIter is the current
iteration number as specified in the main data namelist input file and written in a zero-filled 10-digit
format, tileNum is a three-or-more-digit zero-filled and “t”–prefixed tile number, faceNum is a three-
or-more-digit zero-filled and “f”–prefixed face number, and .nc is the file suffix specified by the current
netCDF “CF” conventions.

Some example BASENAME values are:

grid contains the variables that describe the various grid constants related to locations, lengths, areas,
etc.

state contains the variables output at the snapshot or dumpFreq time frequency

pickup.ckptA, pickup.ckptB are the “rolling” checkpoint files

tave contains the time-averaged quantities from the main model

All MNC output is currently done in a “file-per-tile” fashion since most NetCDF v3.x implementions
cannot write safely within MPI or multi-threaded environments. This tiling is done in a global fashion
and the tile numbers are appended to the base names as described above. Some scripts to manipulate
MNC output are available at MITgcm/utils/matlab/ which includes a spatial “assembly” script called
MITgcm/utils/matlab/mnc assembly.m.

More general manipulations can be performed on netCDF files with

the NetCDF Operators (‘‘NCO’’)

at http://nco.sourceforge.net

or with

the Climate Data Operators (‘‘CDO’’)

at http://www.mpimet.mpg.de/~cdo/

Unlike the older MDSIO routines, MNC reads and writes variables on different “grids” depending
upon their location on, for instance, an Arakawa C–grid. The following table provides examples:

Name C–grid location # in X # in Y
Temperature mass sNx sNy

Salinity mass sNx sNy

U velocity U sNx+1 sNy

V velocity V sNx sNy+1

Vorticity vorticity sNx+1 sNy+1

and the intent is two–fold:

1. For some grid topologies it is impossible to output all quantities using only sNx,sNy arrays for
every tile. Two examples of this failure are the missing corners problem for vorticity values on the
cubesphere and the velocity edge values for some open–boundary domains.

2. Writing quantities located on velocity or vorticity points with the above scheme introduces a very
small data redundancy. However, any slight inconvenience is easily offset by the ease with which
one can, on every individual tile, interpolate these values to mass points without having to perform
an “exchange” (or “halo-filling”) operation to collect the values from neighboring tiles. This makes
the most common post–processing operations much easier to implement.

436CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

7.2.2 MNC Troubleshooting

7.2.2.1 Build Troubleshooting:

In order to build MITgcm with MNC enabled, the netCDF v3.x Fortran-77 (not Fortran-90) library must
be available. This library is compposed of a single header file (called netcdf.inc) and a single library
file (usually called libnetcdf.a) and it must be built with the same compiler (or a binary-compatible
compiler) with compatible compiler options as the one used to build MITgcm.

For more details concerning the netCDF build and install process, please visit the netCDF home page
at:

http://www.unidata.ucar.edu/packages/netcdf/

which includes an extensive list of known–good netCDF configurations for various platforms

7.2.2.2 Runtime Troubleshooting:

Please be aware of the following:

• As a safety feature, the MNC package does not, by default, allow pre-existing files to be appended
to or overwritten. This is in contrast to the older MDSIO package which will, without any warning,
overwrite existing files. If MITgcm aborts with an error message about the inability to open or
write to a netCDF file, please check first whether you are attempting to overwrite files from a
previous run.

• The constraints placed upon the “unlimited” (or “record”) dimension inherent with NetCDF v3.x
make it very inefficient to put variables written at potentially different intervals within the same
file. For this reason, MNC output is split into groups of files which attempt to reflect the nature of
their content.

• On many systems, netCDF has practical file size limits on the order of 2–4GB (the maximium
memory addressable with 32bit pointers or pointer differences) due to a lack of operating system,
compiler, and/or library support. The latest revisions of netCDF v3.x have large file support and,
on some operating systems, file sizes are only limited by available disk space.

• There is an 80 character limit to the total length of all file names. This limit includes the directory
(or path) since paths and file names are internally appended. Generally, file names will not exceed
the limit and paths can usually be shortened using, for example, soft links.

• MNC does not (yet) provide a mechanism for reading information from a single “global” file as can
be done with the MDSIO package. This is in progress.

7.2.3 MNC Internals

The mnc package is a two-level convenience library (or “wrapper”) for most of the NetCDF Fortran API.
Its purpose is to streamline the user interface to NetCDF by maintaining internal relations (look-up
tables) keyed with strings (or names) and entities such as NetCDF files, variables, and attributes.

The two levels of the mnc package are:

Upper level

The upper level contains information about two kinds of associations:

grid type is lookup table indexed with a grid type name. Each grid type name is associated with a
number of dimensions, the dimension sizes (one of which may be unlimited), and starting and
ending index arrays. The intent is to store all the necessary size and shape information for the
Fortran arrays containing MITgcm–style “tile” variables (that is, a central region surrounded
by a variably-sized “halo” or exchange region as shown in Figures 4.7 and 4.8).

variable type is a lookup table indexed by a variable type name. For each name, the table contains
a reference to a grid type for the variable and the names and values of various attributes.

7.2. NETCDF I/O: MNC 437

Within the upper level, these associations are not permanently tied to any particular NetCDF file.
This allows the information to be re-used over multiple file reads and writes.

Lower level

In the lower (or internal) level, associations are stored for NetCDF files and many of the entities
that they contain including dimensions, variables, and global attributes. All associations are on a
per-file basis. Thus, each entity is tied to a unique NetCDF file and will be created or destroyed
when files are, respectively, opened or closed.

7.2.3.1 MNC Grid–Types and Variable–Types:

As a convenience for users, the MNC package includes numerous routines to aid in the writing of data to
NetCDF format. Probably the biggest convenience is the use of pre-defined “grid types” and “variable
types”. These “types” are simply look-up tables that store dimensions, indicies, attributes, and other
information that can all be retrieved using a single character string.

The “grid types” are a way of mapping variables within MITgcm to NetCDF arrays. Within MITgcm,
most spatial variables are defined using two– or three–dimensional arrays with “overlap” regions (see
Figures 4.7, a possible vertical index, and 4.8) and tile indicies such as the following “U” velocity:

_RL uVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)

as defined in model/inc/DYNVARS.h

The grid type is a character string that encodes the presence and types associated with the four
possible dimensions. The character string follows the format

H0 H1 H2 V T

where the terms H0, H1, H2, V, T can be almost any combination of the following:

Horizontal Vertical Time
H0: location H1: dimensions H2: halo V: location T: level

- xy Hn - -

U x Hy i t
V y c

Cen
Cor

A example list of all pre-defined combinations is contained in the file

pkg/mnc/pre-defined grids.txt.

The variable type is an association between a variable type name and the following items:

Item Purpose
grid type defines the in-memory arrangement
bi,bj dimensions tiling indices, if present

and is used by the mnc cw * [R|W] subroutines for reading and writing variables.

7.2.3.2 Using MNC: Examples:

Writing variables to NetCDF files can be accomplished in as few as two function calls. The first function
call defines a variable type, associates it with a name (character string), and provides additional infor-
mation about the indicies for the tile (bi,bj) dimensions. The second function call will write the data
at, if necessary, the current time level within the model.

Examples of the initialization calls can be found in the file model/src/ini mnc io.F where these
function calls:

file:../code_reference/vdb/byname/model-inc-DYNVARS.h.html
file:../code_reference/vdb/byname/model-src-ini_model_io.F.html

438CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

C Create MNC definitions for DYNVARS.h variables

CALL MNC_CW_ADD_VNAME(’iter’, ’-_-_--__-__t’, 0,0, myThid)

CALL MNC_CW_ADD_VATTR_TEXT(’iter’,1,

& ’long_name’,’iteration_count’, myThid)

CALL MNC_CW_ADD_VNAME(’model_time’, ’-_-_--__-__t’, 0,0, myThid)

CALL MNC_CW_ADD_VATTR_TEXT(’model_time’,1,

& ’long_name’,’Model Time’, myThid)

CALL MNC_CW_ADD_VATTR_TEXT(’model_time’,1,’units’,’s’, myThid)

CALL MNC_CW_ADD_VNAME(’U’, ’U_xy_Hn__C__t’, 4,5, myThid)

CALL MNC_CW_ADD_VATTR_TEXT(’U’,1,’units’,’m/s’, myThid)

CALL MNC_CW_ADD_VATTR_TEXT(’U’,1,

& ’coordinates’,’XU YU RC iter’, myThid)

CALL MNC_CW_ADD_VNAME(’T’, ’Cen_xy_Hn__C__t’, 4,5, myThid)

CALL MNC_CW_ADD_VATTR_TEXT(’T’,1,’units’,’degC’, myThid)

CALL MNC_CW_ADD_VATTR_TEXT(’T’,1,’long_name’,

& ’potential_temperature’, myThid)

CALL MNC_CW_ADD_VATTR_TEXT(’T’,1,

& ’coordinates’,’XC YC RC iter’, myThid)

initialize four VNAMEs and add one or more NetCDF attributes to each.
The four variables defined above are subsequently written at specific time steps within model/src/write state.F

using the function calls:

C Write dynvars using the MNC package

CALL MNC_CW_SET_UDIM(’state’, -1, myThid)

CALL MNC_CW_I_W(’I’,’state’,0,0,’iter’, myIter, myThid)

CALL MNC_CW_SET_UDIM(’state’, 0, myThid)

CALL MNC_CW_RL_W(’D’,’state’,0,0,’model_time’,myTime, myThid)

CALL MNC_CW_RL_W(’D’,’state’,0,0,’U’, uVel, myThid)

CALL MNC_CW_RL_W(’D’,’state’,0,0,’T’, theta, myThid)

While it is easiest to write variables within typical 2D and 3D fields where all data is known at a
given time, it is also possible to write fields where only a portion (eg. a “slab” or “slice”) is known at a
given instant. An example is provided within pkg/mom vecinv/mom vecinv.F where an offset vector is
used:

IF (useMNC .AND. snapshot_mnc) THEN

CALL MNC_CW_RL_W_OFFSET(’D’,’mom_vi’,bi,bj, ’fV’, uCf,

& offsets, myThid)

CALL MNC_CW_RL_W_OFFSET(’D’,’mom_vi’,bi,bj, ’fU’, vCf,

& offsets, myThid)

ENDIF

to write a 3D field one depth slice at a time.
Each element in the offset vector corresponds (in order) to the dimensions of the “full” (or virtual)

array and specifies which are known at the time of the call. A zero within the offset array means that
all values along that dimension are available while a positive integer means that only values along that
index of the dimension are available. In all cases, the matrix passed is assumed to start (that is, have
an in-memory structure) coinciding with the start of the specified slice. Thus, using this offset array
mechanism, a slice can be written along any single dimension or combinations of dimensions.

file:../code_reference/vdb/byname/model-src-write_state.F.html
file:../code_reference/vdb/byname/pkg-mom_vecinv-mom_vecinv.F.html

7.3. FORTRAN NATIVE I/O: MDSIO AND RW 439

7.3 Fortran Native I/O: MDSIO and RW

7.3.1 MDSIO

7.3.1.1 Introduction

The mdsio package contains a group of Fortran routines intended as a general interface for reading and
writing direct-access (“binary”) Fortran files. The mdsio routines are used by the rw package.

The mdsio package is currently the primary method for MITgcm I/O, but it is not being actively
extended or enhanced. Instead, the mnc netCDF package (see Section 7.2) is expected to gain all of the
current mdsio functionality and, eventually, replace it. For the short term, every effort has been made
to allow mnc and mdsio to peacefully co-exist. In may cases, the model can read one format and write to
the other. This side-by-side functionality can be used to, for instance, help convert pickup files or other
data sets between the two formats.

7.3.1.2 Using MDSIO

The mdsio package is geared toward the reading and writing of floating point (Fortran REAL*4 or REAL*8)
arrays. It assumes that the in-memory layout of all arrays follows the per-tile MITgcm convention

C Example of a "2D" array

_RL anArray(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)

C Example of a "3D" array

_RL anArray(1-OLx:sNx+OLx,1-OLy:sNy+OLy,1:Nr,nSx,nSy)

where the first two dimensions are spatial or “horizontal” indicies that include a “halo” or exchange
region (please see Chapters 4 and 6.2.4 which describe domain decomposition), and the remaining indicies
(Nr,nSx, and nSx) are often present but not required.

In order to write output, the mdsio package is called with a function such as:

CALL MDSWRITEFIELD(fn,prec,lgf,typ,Nr,arr,irec,myIter,myThid)

where:

fn is a CHARACTER string containing a file “base” name which will then be used to create file
names that contain tile and/or model iteration indicies

prec is an integer that contains one of two globally defined values (precFloat64 or precFloat32)

lgf is a LOGICAL that typically contains the globally defined globalFile option which spec-
ifies the creation of globally (spatially) concatenated files

typ is a CHARACTER string that specifies the type of the variable being written (’RL’ or ’RS’)

Nr is an integer that specifies the number of vertical levels within the variable being written

arr is the variable (array) to be written

irec is the starting record within the output file that will contain the array

myIter,myThid are integers containing, respectively, the current model iteration count and
the unique thread ID for the current context of execution

As one can see from the above (generic) example, enough information is made available (through both
the argument list and through common blocks) for the mdsio package to perform the following tasks:

1. open either a per-tile file such as:

uVel.0000302400.003.001.data

or a “global” file such as

uVel.0000302400.data

440CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

2. byte-swap (as necessary) the input array and write its contents (minus any halo information) to
the binary file – or to the correct location within the binary file if the globalfile option is used, and

3. create an ASCII–text metadata file (same name as the binary but with a .meta extension) describing
the binary file contents (often, for later use with the MatLAB rdmds() utility).

Reading output with mdsio is very similar to writing it. A typical function call is

CALL MDSREADFIELD(fn,prec,typ,Nr,arr,irec,myThid)

where variables are exactly the same as the MDSWRITEFIELD example provided above. It is important to
note that the lgf argument is missing from the MDSREADFIELD function. By default, mdsio will first try
to read from an appropriately named global file and, failing that, will try to read from a per-tile file.

7.3.1.3 Important Considerations

When using mdsio, one should be aware of the following package features and limitations:

Byte-swapping is, for the most part, gracefully handled. All files intended for reading/writing by
mdsio should contain big-endian (sometimes called “network byte order”) data. By handling byte-
swapping within the model, MITgcm output is more easily ported between different machines,
architectures, compilers, etc. Byteswapping can be turned on/off at compile time within mdsio

using the BYTESWAPIO CPP macro which is usually set within a genmake2 options file or “optfile”
which are located in

MITgcm/tools/build_options

Additionally, some compilers may have byte-swap options that are speedier or more convenient to
use.

Types are currently limited to single– or double–precision floating point values. These values can be
converted, on-the-fly, from one to the other so that any combination of either single– or double–
precision variables can be read from or written to files containing either single– or double–precision
data.

Array sizes are limited. The mdsio package is very much geared towards the reading/writing of per-tile
(that is, domain-decomposed and halo-ed) arrays. Data that cannot be made to “fit” within these
assumed sizes can be challenging to read or write with mdsio.

Tiling or domain decomposition is automatically handled by mdsio for logically rectangular grid topolo-
gies (eg. lat-lon grids) and “standard” cubesphere topologies. More complicated topologies will
probably not be supported. The mdsio package can, without any coding changes, read and write
to/from files that were run on the same global grid but with different tiling (grid decomposition)
schemes. For example, mdsio can use and/or create identical input/output files for a “C32” cube
when the model is run with either 6, 12, or 24 tiles (corresponding to 1, 2 or 4 tiles per cubesphere
face). Currently, this is one of the primary advantages that the mdsio package has over mnc.

Single-CPU I/O can be specified with the flag

useSingleCpuIO = .TRUE.,

in the PARM01 namelist within the main data file. Single–CPU I/O mode is appropriate for com-
puters (eg. some SGI systems) where it can either speed overall I/O or solve problems where
the operating system or file systems cannot correctly handle multiple threads or MPI processes
simultaneously writing to the same file.

Meta-data is written by MITgcm on a per-file basis using a second file with a .meta extension as
described above. MITgcm itself does not read the *.meta files, they are there primarly for conve-
nience during post-processing. One should be careful not to delete the meta-data files when using
MatLAB post-processing scripts such as rdmds() since it relies upon them.

7.3. FORTRAN NATIVE I/O: MDSIO AND RW 441

Numerous files can be written by mdsio due to its typically per-time-step and per-variable orientation.
The creation of both a binary (*.data) and ASCII text meta-data (*.meta) file for each output type
step tends to exacerbate the problem. Some (mostly, older) operating systems do not gracefully
handle large numbers (eg. many thousands) of files within one directory. So care should be taken
to split output into smaller groups using subdirectories.

Overwriting is the default behavior for mdsio. If a model tries to write to a file name that already
exists, the older file will be deleted. For this reason, MITgcm users should be careful to move out-
put that that wish to keep into, for instance, subdirectories before performing subsequent runs that
may over–lap in time or otherwise produce files with identical names (eg. Monte-Carlo simulations).

No “halo” information is written or read by mdsio. Along the horizontal dimensions, all variables
are written in an sNx–by–sNy fashion. So, although variables (arrays) may be defined at different
locations on Arakawa grids [U (right/left horizontal edges), V (top/bottom horizontal edges), M
(mass or cell center), or Z (vorticity or cell corner) points], they are all written using only interior
(1:sNx and 1:sNy) values. For quantities defined at U, V, and M points, writing 1:sNx and 1:sNy

for every tile is sufficient to ensure that all values are written globally for some grids (eg. cubesphere,
re-entrant channels, and doubly-periodic rectangular regions). For Z points, failing to write values
at the sNx+1 and sNy+1 locations means that, for some tile topologies, not all values are written.
For instance, with a cubesphere topology at least two corner values are “lost” (fail to be written
for any tile) if the sNx+1 and sNy+1 values are ignored. To fix this problem, the mnc package writes
the sNx+1 and sNy+1 grid values for the U, V, and Z locations. Also, the mnc package is capable of
reading and/or writing entire halo regions and more complicated array shapes which can be helpful
when debugging–features that do not exist within mdsio.

7.3.2 RW Basic binary I/O utilities

The rw package provides a very rudimentary binary I/O capability for quickly writing single record
direct-access Fortran binary files. It is primarily used for writing diagnostic output.

7.3.2.1 Introduction

Package rw is an interface to the more general mdsio package. The rw package can be used to write
or read direct-access Fortran binary files for two-dimensional XY and three-dimensional XYZ arrays.
The arrays are assumed to have been declared according to the standard MITgcm two-dimensional or
three-dimensional floating point array type:

C Example of declaring a standard two dimensional "long"

C floating point type array (the _RL macro is usually

C mapped to 64-bit floats in most configurations)

_RL anArray(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)

Each call to an rw read or write routine will read (or write) to the first record of a file. To write
direct access Fortran files with multiple records use the package mdsio (see section 7.3.1). To write self-
describing files that contain embedded information describing the variables being written and the spatial
and temporal locations of those variables use the package mnc (see section 7.2) which produces netCDF1

Rew et al. [1997] based output.

1http://www.unidata.ucar.edu/packages/netcdf

442CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

7.4 Monitor: Simulation state monitoring toolkit

7.4.1 Introduction

The monitor package is primarily intended as a convenient method for calculating and writing the
following statistics:

minimum, maximum, mean, and standard deviation

for spatially distributed fields. By default, monitor output is sent to the “standard output” channel
where it appears as ASCII text containing a %MON string such as this example:

(PID.TID 0000.0001) %MON time_tsnumber = 3

(PID.TID 0000.0001) %MON time_secondsf = 3.6000000000000E+03

(PID.TID 0000.0001) %MON dynstat_eta_max = 1.0025466645951E-03

(PID.TID 0000.0001) %MON dynstat_eta_min = -1.0008899950901E-03

(PID.TID 0000.0001) %MON dynstat_eta_mean = 2.1037438449350E-14

(PID.TID 0000.0001) %MON dynstat_eta_sd = 5.0985228723396E-04

(PID.TID 0000.0001) %MON dynstat_eta_del2 = 3.5216706549525E-07

(PID.TID 0000.0001) %MON dynstat_uvel_max = 3.7594045977254E-05

(PID.TID 0000.0001) %MON dynstat_uvel_min = -2.8264287531564E-05

(PID.TID 0000.0001) %MON dynstat_uvel_mean = 9.1369201945671E-06

(PID.TID 0000.0001) %MON dynstat_uvel_sd = 1.6868439193567E-05

(PID.TID 0000.0001) %MON dynstat_uvel_del2 = 8.4315445301916E-08

The monitor text can be readily parsed by the testreport script to determine, somewhat crudely but
quickly, how similar the output from two experiments are when run on different platforms or before/after
code changes.

The monitor output can also be useful for quickly diagnosing practical problems such as CFL limita-
tions, model progress (through iteration counts), and behavior within some packages that use it.

7.4.2 Using Monitor

As with most packages, monitor can be turned on or off at compile and/or run times using the packages.conf
and data.pkg files.

The monitor output can be sent to the standard output channel, to an mnc–generated file, or to both
simultaneously. For mnc output, the flag:

monitor_mnc=.TRUE.,

should be set within the data.mnc file. For output to both ASCII and mnc, the flag

outputTypesInclusive=.TRUE.,

should be set within the PARM03 section of the main data file. It should be noted that the outputTypesInclusive
flag will make ALL kinds of output (that is, everything written by mdsio, mnc, and monitor) simulta-
neously active so it should be used only with caution–and perhaps only for debugging purposes.

7.5. GRID GENERATION 443

7.5 Grid Generation

The horizontal discretizations within MITgcm have been written to work with many different grid types
including:

• cartesian coordinates

• spherical polar (“latitude-longitude”) coordinates

• general curvilinear orthogonal coordinates

The last of these, especially when combined with the domain decomposition capabilities of MITgcm,
allows a great degree of grid flexibility. To date, general curvilinear orthogonal coordinates have been
used primarily (in fact, almost exclusively) in conjunction with so-called “cube-sphere” grids. However,
it is important to observe that cube-sphere arrangements are only one example of what is possible
with domain-decomposed logically rectangular regions each containing curvilinear orthogonal coordinate
systems. Much more sophisticated domains can be imagined and constructed.

In order to explore the possibilities of domain-decomposed curvilinear orthogonal coordinate systems,
a suite of grid generation software called “SPGrid” (for SPherical Gridding) has been developed. SPGrid
is a relatively new facility and papers detailing its algorithms are in preparation. Althogh SPGrid is new
and rapidly developing, it has already demonstrated the ability to generate some useful and interesting
grids.

This section provides a very brief introduction to SPGrid and shows some early results. For further
information, please contact the MITgcm support list at:

MITgcm-support@mitgcm.org

7.5.1 Using SPGrid

The SPGrid software is not a single program. Rather, it is a collection of C++ code and MatLAB scripts
that can be used as a framework or library for grid generation and manipulation. Currently, grid creation
is accomplished by either directly running matlab scripts or by writing a C++ “driver” program. The
matlab scripts are suitable for grids composed of a single “face” (that is, a single logically rectangular
region on the surface of a sphere). The C++ driver programs are appropriate for grids composed of
multiple connected logically rectangular patches. Each driver is program is written to specify the shape
and connectivity of tiles and the preferred grid density (that is, the number of grid cells in each logical
direction) and edge locations of the cells where they meet the edges of each face. The driver programs
pass this information to the SPGrid library which generates the actual grid and produces the output files
that describe it.

Currently, driver programs are available for a few examples including cubes, “lat-lon caps” (cube
topologies that have conformal caps at the poles and are exactly lat-lon channels for the remainder of
the domain), and some simple “embedded” regions that are meant to be used within typical cubes or
traditional lat-lon grids.

To create new grids, one may start with an existing driver program and modify it to describe a domain
that has a different arrangement. The number, location, size, and connectivity of grid “faces” (the name
used for the logically rectangular regions) can be readily changed. Further, the number of grid cells
within faces and the location of the grid cells at the face edges can also be specified.

7.5.1.1 SPGrid Requirements

The following programs and libraries are required to build and/or run the SPGrid suite:

• MatLAB is a run-time requirement since many of the generation algorithms have been written as
MatLAB scripts:
http://www.mathworks.com

• the Wild Magic graphics engine (a C++ library) is needed for the main “driver” code:
http://geometrictools.com/

444CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

• the NetCDF library is needed for file I/O:
http://www.mathworks.com

• the BOOST Serialization library is used for I/O:
http://www.boost.org

• a typical Linux/Unix build environment including the make utility (preferably Gnu Make) and a
C++ compiler (SPGrid was developed with g++ v4.x).

7.5.1.2 Obtaining SPGrid

The latest version can be obtained from:

http://mitgcm.org/∼edhill/grids/spgrid releases/

7.5.1.3 Building SPGrid

The procedure for building is similar to many open source projects:

tar -xf spgrid-0.9.4.tar.gz

cd spgrid-0.9.4

export CPPFLAGS="-I/usr/include/netcdf-3"

export LDFLAGS="-L/usr/lib/netcdf-3"

./configure

make

where the CPPFLAGS and LDFLAGS environment variables can be edited to reflect the locations of all the
necessary dependencies. SPGrid is known to work on Fedora Core Linux (versions 4 and 5) and is likely
to work on most any Linux distribution that provides the needed dependencies.

7.5.1.4 Running SPGrid

Within the src sub-directory, various example driver programs exist. These examples describe small,
simple domains and can generate the input files (formatted as either binary *.mitgrid or netCDF) used
by MITgcm.

One such example is called “SpF test cube cap” and it can be run with the following sequence of
commands:

cd spgrid-0.9.4/src

make SpF_test_cube_cap

mkdir SpF_test_cube_cap.d

(cd SpF_test_cube_cap.d && ln -s ../../scripts/*.m .)

./SpF_test_cube_cap

which should create a series of output files:

SpF_test_cube_cap.d/grid_*.mitgrid

SpF_test_cube_cap.d/grid_*.nc

SpF_test_cube_cap.d/std_topology.nc

where the grid *.mitgrid and grid *.nc files contain the grid information in binary and netCDF
formats and the std topology.nc file contains the information describing the connectivity (both edge–
edge and corner–corner contacts) between all the faces.

7.5.2 Example Grids

The following grids are various examples created with SPGrid.

7.6. PRE– AND POST–PROCESSING SCRIPTS AND UTILITIES 445

7.6 Pre– and Post–Processing Scripts and Utilities

There are numerous tools for pre-processing data, converting model output and analysis written in Matlab,
fortran (f77 and f90) and perl. As yet they remain undocumented although many are self-documenting
(Matlab routines have ”help” written into them).

Here we’ll summarize what is available but this is an ever growing resource so this may not cover
everything that is out there:

7.6.1 Utilities supplied with the model

We supply some basic scripts with the model to facilitate conversion or reading of data into analysis
software.

7.6.1.1 utils/scripts

In the directory utils/scripts you will find joinds and joinmds: these are perl scripts used from joining
the multi-part files created by MITgcm. Use joinmds always. You will only need joinds if you are
working with output older than two years (prior to c23).

7.6.1.2 utils/matlab

In the directory utils/matlab you will find several Matlab scripts (.m or dot-em files). The priniciple
script is rdmds.m used for reading the multi-part model output files in to matlab. Place the scripts in
your matlab path or change the path appropriately, then at the matlab prompt type:

>> help rdmds

to get help on how to use rdmds.
Another useful script scans the terminal output file for ”monitor” information.
Most other scripts are for working in the curvilinear coordinate systems which as yet are unpublished

and undocumented.

7.6.1.3 MNC Utils

The MITgcm netCDF integration is relatively new and the tools used to work on netCDF data sets are
developing. The following scripts and utilities have been written to help manipulate MNC (netCDF)
files:

Tile Assembly: a matlab script utils/matlab/mnc assembly.m is available for spatially “assembling”
MNC output. A convenience wrapper script called utils/matlab/gluemnc.m is also provided.
Please use the matlab help facility for more information.

gmt: As MITgcm evolves to handle more complicated domains and topologies, a suite of matlab tools
is being written to more gracefully handle the model files. This suite is called “gmt” which refers
to “generalized model topology” pre-/post-processing. Currently, this directory contains a matlab
script utils/matlab/gmt/rdnctiles.m that is able to read the MNC-created netCDF files for any
domain. Additional scripts are being created that will work with these fields on a per-tile basis.

7.6.2 Pre-processing software

There is a suite of pre-processing software for intepolating bathymetry and forcing data, written by
Adcroft and Biastoch. At some point, these will be made available for download. If you are in need of
such software, contact one of them.

446CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

7.7 Potential vorticity Matlab Toolbox

Author: Guillaume Maze

7.7.1 Introduction

This section of the documentation describes a Matlab package that aims to provide useful routines to
compute vorticity fields (relative, potential and planetary) and its related components. This is an offline
computation. It was developed to be used in mode water studies, so that it comes with other related
routines, in particular ones computing surface vertical potential vorticity fluxes.

7.7.2 Equations

7.7.2.1 Potential Vorticity

The package computes the three components of the relative vorticity defined by:

ω = ∇× U =

ωx

ωy

ζ

 ≃

−∂v
∂z

−∂u
∂z

∂v
∂x − ∂u

∂y

 (7.1)

where we omitted (like all across the package) the vertical velocity component.

The package then computes the potential vorticity as:

Q = −1

ρ
ω · ∇σθ (7.2)

Q = −1

ρ

(
ωx
∂σθ

∂x
+ ωy

∂σθ

∂y
+ (f + ζ)

∂σθ

∂z

)
(7.3)

where ρ is the density, σθ is the potential density (both eventually computed by the package) and f is
the Coriolis parameter.

The package is also able to compute the simpler planetary vorticity as:

splQ = −f
ρ

σθ

∂z
(7.4)

7.7.2.2 Surface vertical potential vorticity fluxes

These quantities are useful in mode water studies because of the impermeability theorem which states
that for a given potential density layer (embedding a mode water), the integrated PV only changes
through surface input/output.

Vertical PV fluxes due to frictional and diabatic processes are given by:

JB
z = −f

h

(
αQnet

Cw
− ρ0βSnet

)
(7.5)

JF
z =

1

ρδe
~k × τ · ∇σm (7.6)

These components can be computed with the package. Details on the variables definition and the way
these fluxes are derived can be found in section 7.7.5.

We now give some simple explanations about these fluxes and how they can reduce the PV level of an
oceanic potential density layer.

7.7. POTENTIAL VORTICITY MATLAB TOOLBOX 447

Diabatic process Let’s take the PV flux due to surface buoyancy forcing from Eq.7.5 and simplify it
as:

JB
z ≃ − αf

hCw
Qnet (7.7)

When the net surface heat flux Qnet is upward i.e. negative and cooling the ocean (buoyancy loss),
surface density will increase, triggering mixing which reduces the stratification and then the PV.

Qnet < 0 (upward, cooling)

JB
z > 0 (upward)

−ρ−1∇ · JB
z < 0 (PV flux divergence)

PV ց where Qnet < 0

Frictional process: ”Down-front” wind-stress Now let’s take the PV flux due to the ”wind-driven
buoyancy flux” from Eq.7.6 and simplify it as:

JF
z =

1

ρδe

(
τx
∂σ

∂y
− τy

∂σ

∂x

)
(7.8)

JF
z ≃ 1

ρδe
τx
∂σ

∂y

When the wind is blowing from the east above the Gulf Stream (a region of high meridional density
gradient), it induces an advection of dense water from the northern side of the GS to the southern side
through Ekman currents. Then, it induces a ”wind-driven” buoyancy lost and mixing which reduces the
stratification and the PV.

~k × τ · ∇σ > 0 (”Down-front” wind)

JF
z > 0 (upward)

−ρ−1∇ · JF
z < 0 (PV flux divergence)

PV ց where ~k × τ · ∇σ > 0

Diabatic versus frictional processes A recent debate in the community arose about the relative
role of these processes. Taking the ratio of Eq.7.5 and Eq.7.6 leads to:

JF
z

JB
Z

=

1
ρδe

~k × τ · ∇σ

− f
h

(
αQnet

Cw
− ρ0βSnet

) (7.9)

≃ QEk/δe
Qnet/h

where appears the lateral heat flux induced by Ekman currents:

QEk = − Cw

αρf
~k × τ · ∇σ

=
Cw

α
δe ~uEk · ∇σ (7.10)

which can be computed with the package. In the aim of comparing both processes, it will be useful to
plot surface net and lateral Ekman-induced heat fluxes together with PV fluxes.

7.7.3 Key routines

• A compute potential density.m: Compute the potential density field. Requires the potential
temperature and salinity (either total or anomalous) and produces one output file with the potential
density field (file prefix is SIGMATHETA). The routine uses densjmd95.m a Matlab counterpart of the
MITgcm built-in function to compute the density.

448CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

• B compute relative vorticity.m: Compute the three components of the relative vorticity defined
in Eq. (7.1). Requires the two horizontal velocity components and produces three output files with
the three components (files prefix are OMEGAX, OMEGAY and ZETA).

• C compute potential vorticity.m: Compute the potential vorticity without the negative ratio
by the density. Two options are possible in order to compute either the full component (term
into parenthesis in Eq. 7.3) or the planetary component (f∂zσθ in Eq. 7.4). Requires the relative
vorticity components and the potential density, and produces one output file with the potential
vorticity (file prefix is PV for the full term and splPV for the planetary component).

• D compute potential vorticity.m: Load the field computed with C comp... and divide it by −ρ
to obtain the correct potential vorticity. Require the density field and after loading, overwrite the
file with prefix PV or splPV.

• compute density.m: Compute the density ρ from the potential temperature and the salinity fields.

• compute JFz.m: Compute the surface vertical PV flux due to frictional processes. Requires the
wind stress components, density, potential density and Ekman layer depth (all of them, except the
wind stress, may be computed with the package), and produces one output file with the PV flux
JF

z (see Eq. 7.6) and with JFz as a prefix.

• compute JBz.m: Compute the surface vertical PV flux due to diabatic processes as:

JB
z = −f

h

αQnet

Cw

which is a simplified version of the full expression given in Eq. (7.5). Requires the net surface heat
flux and the mixed layer depth (of which an estimation can be computed with the package), and
produces one output file with the PV flux JB

z and with JBz as a prefix.

• compute QEk.m: Compute the horizontal heat flux due to Ekman currents from the PV flux induced
by frictional forces as:

QEk = −Cwδe
αf

JF
z

Requires the PV flux due to frictional forces and the Ekman layer depth, and produces one output
with the heat flux and with QEk as a prefix.

• eg main getPV: A complete example of how to set up a master routine able to compute everything
from the package.

7.7.4 Technical details

7.7.4.1 File name

A file name is formed by three parameters which need to be set up as global variables in Matlab before
running any routines. They are:

• the prefix, ie the variable name (netcdf UVEL for example). This parameter is specified in the help
section of all diagnostic routines.

• netcdf domain: the geographical domain.

• netcdf suff: the netcdf extension (nc or cdf for example).

Then, for example, if the calling Matlab routine had set up:

global netcdf_THETA netcdf_SALTanom netcdf_domain netcdf_suff

netcdf_THETA = ’THETA’;

netcdf_SALTanom = ’SALT’;

netcdf_domain = ’north_atlantic’;

netcdf_suff = ’nc’;

7.7. POTENTIAL VORTICITY MATLAB TOOLBOX 449

the routine A compute potential density.m to compute the potential density field, will look for the
files:

THETA.north_atlantic.nc

SALT.north_atlantic.nc

and the output file will automatically be: SIGMATHETA.north atlantic.nc.
Otherwise indicated, output file prefix cannot be changed.

7.7.4.2 Path to file

All diagnostic routines look for input files in a subdirectory (relative to the Matlab routine directory)
called ./netcdf-files which in turn, is supposed to contain subdirectories for each set of fields. For
example, computing the potential density for the timestep 12H00 02/03/2005 will require a subdirectory
with the potential temperature and salinity files like:

./netcdf-files/200501031200/THETA.north_atlantic.nc

./netcdf-files/200501031200/SALT.north_atlantic.nc

The output file SIGMATHETA.north atlantic.nc will be created in ./netcdf-files/200501031200/.
All diagnostic routines take as argument the name of the timestep subdirectory into ./netcdf-files.

7.7.4.3 Grids

With MITgcm numerical outputs, velocity and tracer fields may not be defined on the same grid. Usually,
UVEL and VVEL are defined on a C-grid but when interpolated from a cube-sphere simulation they are
defined on a A-grid. When it is needed, routines allow to set up a global variable which define the grid
to use.

7.7.5 Notes on the flux form of the PV equation and vertical PV fluxes

7.7.5.1 Flux form of the PV equation

The conservative flux form of the potential vorticity equation is:

∂ρQ

∂t
+ ∇ · ~J = 0 (7.11)

where the potential vorticity Q is given by the Eq.7.3.
The generalized flux vector of potential vorticity is:

~J = ρQ~u+ ~NQ (7.12)

which allows to rewrite Eq.7.11 as:

DQ

dt
= −1

ρ
∇ · ~NQ (7.13)

where the nonadvective PV flux ~NQ is given by:

~NQ = −ρ0

g
B ~ωa + ~F ×∇σθ (7.14)

Its first component is linked to the buoyancy forcing2:

B = − g

ρo

Dσθ

dt
(7.16)

and the second one to the nonconservative body forces per unit mass:

~F =
D~u

dt
+ 2Ω × ~u+ ∇p (7.17)

2 Note that introducing B into Eq.7.14 yields to:

~NQ = ωa
Dσθ

dt
+ ~F ×∇σθ (7.15)

450CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

7.7.5.2 Determining the PV flux at the ocean’s surface

In the context of mode water study, we’re particularly interested in how the PV may be reduced by
surface PV fluxes because a mode water is characterised by a low PV level. Considering the volume
limited by two iso − σθ, PV flux is limited to surface processes and then vertical component of ~NQ. It

is supposed that B and ~F will only be nonzero in the mixed layer (of depth h and variable density σm)
exposed to mechanical forcing by the wind and buoyancy fluxes through the ocean’s surface.

Given the assumption of a mechanical forcing confined to a thin surface Ekman layer (of depth δe,
eventually computed by the package) and of hydrostatic and geostrophic balances, we can write:

~ug =
1

ρf
~k ×∇p (7.18)

∂pm

∂z
= −σmg (7.19)

∂σm

∂t
+ ~um · ∇σm = −ρ0

g
B (7.20)

where:

~um = ~ug + ~uEk + o(Ro) (7.21)

is the full velocity field composed by the geostrophic current ~ug and the Ekman drift:

~uEk = − 1

ρf
~k × ∂τ

∂z
(7.22)

(where τ is the wind stress) and last by other ageostrophic components of o(Ro) which are neglected.
Partitioning the buoyancy forcing as:

B = Bg +BEk (7.23)

and using Eq.7.21 and Eq.7.22, the Eq.7.20 becomes:

∂σm

∂t
+ ~ug · ∇σm = −ρ0

g
Bg (7.24)

revealing the ”wind-driven buoyancy forcing”:

BEk =
g

ρ0

1

ρf

(
~k × ∂τ

∂z

)
· ∇σm (7.25)

Note that since:

∂Bg

∂z
=

∂

∂z

(
− g

ρ0
~ug · ∇σm

)
= − g

ρ0

∂ ~ug

∂z
· ∇σm = 0 (7.26)

Bg must be uniform throughout the depth of the mixed layer and then being related to the surface
buoyancy flux by integrating Eq.7.23 through the mixed layer:

∫ 0

−h

B dz = hBg +
∫ 0

−hBEk dz = Bin (7.27)

where Bin is the vertically integrated surface buoyancy (in)flux:

Bin =
g

ρo

(
αQnet

Cw
− ρ0βSnet

)
(7.28)

with α ≃ 2.5 × 10−4K−1 the thermal expansion coefficient (computed by the package otherwise), Cw =
4187J.kg−1.K−1 the specific heat of seawater, Qnet[W.m

−2] the net heat surface flux (positive downward,
warming the ocean), β[PSU−1] the saline contraction coefficient, and Snet = S ∗ (E − P)[PSU.m.s−1]
the net freshwater surface flux with S[PSU] the surface salinity and (E−P)[m.s−1] the fresh water flux.

7.7. POTENTIAL VORTICITY MATLAB TOOLBOX 451

Introducing the body force in the Ekman layer:

Fz =
1

ρ

∂τ

∂z
(7.29)

the vertical component of Eq.7.14 is:

~NQz = −ρ0

g
(Bg +BEk)ωz +

1

ρ

(
∂τ

∂z
×∇σθ

)
· ~k

= −ρ0

g
Bgωz −

ρ0

g

(
g

ρ0

1

ρf
~k × ∂τ

∂z
· ∇σm

)
ωz +

1

ρ

(
∂τ

∂z
×∇σθ

)
· ~k

= −ρ0

g
Bgωz +

(
1 − ωz

f

)(
1

ρ

∂τ

∂z
×∇σθ

)
· ~k (7.30)

and given the assumption that ωz ≃ f , the second term vanishes and we obtain:

~NQz = −ρ0

g
fBg (7.31)

Note that the wind-stress forcing does not appear explicitly here but is implicit in Bg through Eq.7.27:
the buoyancy forcing Bg is determined by the difference between the integrated surface buoyancy flux
Bin and the integrated ”wind-driven buoyancy forcing”:

Bg =
1

h

(
Bin −

∫ 0

−h

BEkdz

)

=
1

h

g

ρ0

(
αQnet

Cw
− ρ0βSnet

)
− 1

h

∫ 0

−h

g

ρ0

1

ρf
~k × ∂τ

∂z
· ∇σmdz

=
1

h

g

ρ0

(
αQnet

Cw
− ρ0βSnet

)
− g

ρ0

1

ρfδe
~k × τ · ∇σm (7.32)

Finally, from Eq.7.14, the vertical surface flux of PV may be written as:

~NQz = JB
z + JF

z (7.33)

JB
z = −f

h

(
αQnet

Cw
− ρ0βSnet

)
(7.34)

JF
z =

1

ρδe
~k × τ · ∇σm (7.35)

452CHAPTER 7. DIAGNOSTICS AND I/O - PACKAGES II, AND POST–PROCESSING UTILITIES

Chapter 8

Ocean State Estimation Packages

This chapter describes packages that have been introduced for ocean state estimation purposes and in
relation with automatic differentiation (see Chapter 5)

8.1 ECCO: model-data comparisons using gridded data sets

The functionalities implemented in pkg/ecco are: (1) output time-averaged model fields to compare
with gridded data sets; (2) compute normalized model-data distances (i.e., cost functions); (3) compute
averages and transports (i.e., integrals). The former is achieved as the model runs forwards in time
whereas the others occur after time-integration has completed. Following Forget et al. [2015] the total
cost function is formulated generically as

J (~u) =
∑

i

αi

(
~dT
i R
−1
i
~di

)
+
∑

j

βj~u
T~u, (8.1)

~di = P(~mi − ~oi), (8.2)

~mi = SDM(~v), (8.3)

~v = Q(~u), (8.4)

~u = R(~u′) (8.5)

using symbols defined in table 8.1. Per Eq. (8.3) model counterparts (~mi) to observational data (~oi) derive
from adjustable model parameters (~v) through model dynamics integration (M), diagnostic calculations
(D), and averaging in space and time (S). Alternatively S stands for subsampling in space and time
(section 8.2). Plain model-data misfits (~mi−~oi) can be penalized directly in Eq. (8.1) but penalized misfits

(~di) more generally derive from ~mi−~oi through the generic P post-processor (Eq. (8.2)). Eqs. (8.4)-(8.5)
pertain to model control parameter adjustment capabilities described in section 8.3.

8.1.1 Generic Cost Function

The parameters available for configuring generic cost function terms in data.ecco are given in table 8.2
and examples of possible specifications are available in:

• MITgcm contrib/verification other/global oce cs32/input/data.ecco

• MITgcm contrib/verification other/global oce cs32/input ad.sens/data.ecco

• MITgcm contrib/gael/verification/global oce llc90/input.ecco v4/data.ecco

The gridded observation file name is specified by gencost datafile. Observational time series may be
provided as on big file or split into yearly files finishing in ‘ 1992’, ‘ 1993’, etc. The corresponding ~mi

physical variable is specified via the gencost barfile root (see table 8.3). A file named as specified by
gencost barfile gets created where averaged fields are written progressively as the model steps forward
in time. After the final time step this file is re-read by cost generic.F to compute the corresponding
cost function term. If gencost outputlevel = 1 and gencost name=‘foo’ then cost generic.F outputs

model-data misfit fields (i.e., ~di) to a file named ‘misfit foo.data’ for offline analysis and visualization.

453

454 CHAPTER 8. OCEAN STATE ESTIMATION PACKAGES

symbol definition
~u vector of nondimensional control variables
~v vector of dimensional control variables

αi, βj misfit and control cost function multipliers (1 by default)
Ri data error covariance matrix (R−1

i are weights)
~di a set of model-data differences
~oi observational data vector
~mi model counterpart to ~oi

P post-processing operator (e.g., a smoother)
M forward model dynamics operator
D diagnostic computation operator
S averaging/subsampling operator
Q Pre-processing operator
R Pre-conditioning operator

Table 8.1: Symbol definitions for pkg/ecco and pkg/ctrl generic cost functions.

In the current implementation, model-data error covariance matrices Ri omit non-diagonal terms.
Specifying Ri thus boils down to providing uncertainty fields (σi such that Ri = σ2

i) in a file specified via
gencost errfile. By default σi is assumed to be time-invariant but a σi time series of the same length
as the ~oi time series can be provided using the variaweight option (table 8.4). By default cost functions

are quadratic but ~dT
i R
−1
i
~di can be replaced with R

−1/2
i

~di using the nosumsq option (table 8.4).
In principle, any averaging frequency should be possible, but only ‘day’, ‘month’, ‘step’, and ‘const’

are implemented for gencost avgperiod. If two different averaging frequencies are needed for a variable
used in multiple cost function terms (e.g., daily and monthly) then an extension starting with ‘ ’ should
be added to gencost barfile (such as ‘ day’ and ‘ mon’). 1 If two cost function terms use the same
variable and frequency, however, then using a common gencost barfile saves disk space.

Climatologies of ~mi can be formed from the time series of model averages in order to compare with
climatologies of ~oi by activating the ‘clim’ option via gencost preproc and setting the corresponding
gencost preproc i integer parameter to the number of records (i.e., a # of months, days, or time steps)
per climatological cycle. The generic post-processor (P in Eq. (8.2)) also allows model-data misfits to
be, for example, smoothed in space by setting gencost posproc to ‘smooth’ and specifying the smoother
parameters via gencost posproc c and gencost posproc i (see table 8.4). Other options associated
with the computation of Eq. (8.1) are summarized in table 8.4 and further discussed below. Multiple
gencost preproc / gencost posproc options may be specified per cost term.

In general the specification of gencost name is optional, has no impact on the end-result, and
only serves to distinguish between cost function terms amongst the model output (STDOUT.0000,
STDERR.0000, costfunction000, misfit*.data). Exceptions listed in table 8.6 however activate alter-
native cost function codes (in place of cost generic.F) described in section 8.1.3. In this section and in
table 8.3 (unlike in other parts of the manual) ‘zonal’ / ‘meridional’ are to be taken literally and these
components are centered (i.e., not at the staggered model velocity points). Preparing gridded velocity
data sets for use in cost functions thus boils down to interpolating them to XC / YC.

1ecco check may be missing a test for conflicting names...

8.1. ECCO: MODEL-DATA COMPARISONS USING GRIDDED DATA SETS 455

parameter type function
gencost name character(*) Name of cost term
gencost barfile character(*) File to receive model counterpart ~mi (see table 8.3)
gencost datafile character(*) File containing observational data ~oi

gencost avgperiod character(5) Averaging period for ~oi and ~mi (see text)
gencost outputlevel integer Greater than 0 will output misfit fields
gencost errfile character(*) Uncertainty field name (not used in section 8.1.2)
gencost mask character(*) Mask file name root (used only in section 8.1.2)
mult gencost real Multiplier αi (default: 1)
gencost preproc character(*) Preprocessor names
gencost preproc c character(*) Preprocessor character arguments
gencost preproc i integer(*) Preprocessor integer arguments
gencost preproc r real(*) Preprocessor real arguments
gencost posproc character(*) Post-processor names
gencost posproc c character(*) Post-processor character arguments
gencost posproc i integer(*) Post-processor integer arguments
gencost posproc r real(*) Post-processor real arguments
gencost spmin real Data less than this value will be omitted
gencost spmax real Data greater than this value will be omitted
gencost spzero real Data points equal to this value will be omitted
gencost startdate1 integer Start date of observations (YYYMMDD)
gencost startdate2 integer Start date of observations (HHMMSS)
gencost is3d logical Needs to be true for 3D fields
gencost enddate1 integer Not fully implemented (used only in sec. 8.1.3)
gencost enddate2 integer Not fully implemented (used only in sec. 8.1.3)

Table 8.2: Parameters in ecco gencost nml namelist in data.ecco. All parameters are vectors
of length NGENCOST (the # of available cost terms) except for gencost *proc* are arrays of size
NGENPPROC×NGENCOST. Notes: gencost is3d is automatically reset to true in all 3D cases in table 8.3;
NGENCOST (20) and NGENPPROC (10) can be changed in ecco.h only at compile time.

456 CHAPTER 8. OCEAN STATE ESTIMATION PACKAGES

variable name description remarks

m eta sea surface height free surface + ice + global steric correction
m sst sea surface temperature first level potential temperature
m sss sea surface salinity first level salinity
m bp bottom pressure phiHydLow
m siarea sea-ice area from pkg/seaice
m siheff sea-ice effective thickness from pkg/seaice
m sihsnow snow effective thickness from pkg/seaice
m theta potential temperature three-dimensional
m salt salinity three-dimensional
m UE zonal velocity three-dimensional
m VN meridional velocity three-dimensional
m ustress zonal wind stress from pkg/exf
m vstress meridional wind stress from pkg/exf
m uwind zonal wind from pkg/exf
m vwind meridional wind from pkg/exf
m atemp atmospheric temperature from pkg/exf
m aqh atmospheric specific humidity from pkg/exf
m precip precipitation from pkg/exf
m swdown downward shortwave from pkg/exf
m lwdown downward longwave from pkg/exf
m wspeed wind speed from pkg/exf
m diffkr vertical/diapycnal diffusivity three-dimensional, constant
m kapgm GM diffusivity three-dimensional, constant
m kapredi isopycnal diffusivity three-dimensional, constant
m geothermalflux geothermal heat flux constant
m bottomdrag bottom drag constant

Table 8.3: Implemented gencost barfile options (as of checkpoint 65z) that can be used via
cost generic.F (section 8.1.1). An extension starting with ‘ ’ can be appended at the end of the
variable name to distinguish between separate cost function terms. Note: the ‘m eta’ formula depends on
the ATMOSPHERIC LOADING and ALLOW PSBAR STERIC compile time options and ‘useRealFreshWaterFlux’
run time parameter.

name description specs needed via gencost preproc i, r, or c

gencost preproc

clim Use climatological misfits integer: no. of records per climatological cycle
mean Use time mean of misfits —
anom Use anomalies from time mean —
variaweight Use time-varying weight Wi —
nosumsq Use linear misfits —
factor Multiply ~mi by a scaling factor real: the scaling factor

gencost posproc

smooth Smooth misfits character: smoothing scale file
integer: smoother # of time steps

Table 8.4: gencost preproc and gencost posproc options implemented as of checkpoint 65z. Note: the
distinction between gencost preproc and gencost posproc seems unclear and may be revisited in the
future.

8.1. ECCO: MODEL-DATA COMPARISONS USING GRIDDED DATA SETS 457

8.1.2 Generic Integral Function

The functionality described in this section is operated by cost gencost boxmean.F. It is primarily aimed
at obtaining a mechanistic understanding of a chosen physical variable via adjoint sensitivity computations
(see Chapter 5) as done for example in Marotzke et al. [1999]; Heimbach et al. [2011]; Fukumori et al.

[2015]. Thus the quadratic term in Eq. 8.1 (~dT
i R
−1
i
~di) is by default replaced with a di scalar2 that derives

from model fields through a generic integral formula (Eq. 8.3). The specification of gencost barfile

again selects the physical variable type. Current valid options to use cost gencost boxmean.F are
reported in table 8.5. A suffix starting with ‘ ’ can again be appended to gencost barfile.

The integral formula is defined by masks provided via binary files which names are specified via
gencost mask. There are two cases: (1) if gencost mask = ‘foo mask’ and gencost barfile is of the
‘m boxmean*’ type then the model will search for horizontal, vertical, and temporal mask files named
foo maskC, foo maskK, and foo maskT; (2) if instead gencost barfile is of the ‘m horflux *’ type then
the model will search for foo maskW, foo maskS, foo maskK, and foo maskT.

The ‘C’ mask or the ‘W’ / ‘S’ masks are expected to be two-dimensional fields. The ‘K’ and ‘T’
masks (both optional; all 1 by default) are expected to be one-dimensional vectors. The ‘K’ vector
length should match Nr. The ‘T’ vector length should match the # of records that the specification of
gencost avgperiod implies but there is no restriction on its values. In case #1 (‘m boxmean*’) the ‘C’
and ‘K’ masks should consists of +1 and 0 values and a volume average will be computed accordingly.
In case #2 (‘m horflux*’) the ‘W’, ‘S’, and ‘K’ masks should consists of +1, -1, and 0 values and an
integrated horizontal transport (or overturn) will be computed accordingly.

variable name description remarks

m boxmean theta mean of theta over box specify box
m boxmean salt mean of salt over box specify box
m boxmean eta mean of SSH over box specify box
m horflux vol volume transport through section specify transect

Table 8.5: Implemented gencost barfile options (as of checkpoint 65z) that can be used via
cost gencost boxmean.F (section 8.1.2).

8.1.3 Custom Cost Functions

This section (very much a work in progress...) pertains to the special cases of cost gencost bpv4.F,
cost gencost seaicev4.F, cost gencost sshv4.F, cost gencost sstv4.F, and cost gencost transp.F.
The cost gencost transp.F function can be used to compute a transport of volume, heat, or salt through a
specified section (non quadratic cost function). To this end one sets gencost name = ‘transp*’, where
* is an optional suffix starting with ‘ ’, and set gencost barfile to one of m trVol, m trHeat, and
m trSalt.

8.1.4 Key Routines

TBA... ecco readparms.F, ecco check.F, ecco summary.F, ... cost generic.F, cost gencost boxmean.F,

ecco toolbox.F, ... ecco phys.F, cost gencost customize.F, cost averagesfields.F, ...

8.1.5 Compile Options

TBA... ALLOW GENCOST CONTRIBUTION, ALLOW GENCOST3D, ... ALLOW PSBAR STERIC,

ALLOW SHALLOW ALTIMETRY, ALLOW HIGHLAT ALTIMETRY, ... ALLOW PROFILES CONTRIBUTION,
... ALLOW ECCO OLD FC PRINT, ... ECCO CTRL DEPRECATED, ... packages required for some

functionalities: smooth, profiles, ctrl

2The quadratic option in fact does not yet exist in cost gencost boxmean.F...

458 CHAPTER 8. OCEAN STATE ESTIMATION PACKAGES

name description remarks

sshv4-mdt sea surface height mean dynamic topography (SSH - geod)
sshv4-tp sea surface height Along-Track Topex/Jason SLA (level 3)
sshv4-ers sea surface height Along-Track ERS/Envisat SLA (level 3)
sshv4-gfo sea surface height Along-Track GFO class SLA (level 3)
sshv4-lsc sea surface height Large-Scale SLA (from the above)
sshv4-gmsl sea surface height Global-Mean SLA (from the above)
bpv4-grace bottom pressure GRACE maps (level 4)
sstv4-amsre sea surface temperature Along-Swath SST (level 3)
sstv4-amsre-lsc sea surface temperature Large-Scale SST (from the above)
si4-cons sea ice concentration needs sea-ice adjoint (level 4)
si4-deconc model sea ice deficiency proxy penalty (from the above)
si4-exconc model sea ice excess proxy penalty (from the above)
transp trVol volume transport specify section as in section 8.1.2
transp trHeat heat transport specify section as in section 8.1.2
transp trSalt salt transport specify section as in section 8.1.2

Table 8.6: Pre-defined gencost name special cases (as of checkpoint 65z; section 8.1.3).

8.2 PROFILES: model-data comparisons at observed locations

The purpose of pkg/profiles is to allow sampling of MITgcm runs according to a chosen pathway (after a
ship or a drifter, along altimeter tracks, etc.), typically leading to easy model-data comparisons. Given
input files that contain positions and dates, pkg/profiles will interpolate the model trajectory at the
observed location. In particular, pkg/profiles can be used to do model-data comparison online and
formulate a least-squares problem (ECCO application).

pkg/profiles is associated with three CPP keys:
(k1) ALLOW PROFILES
(k2) ALLOW PROFILES GENERICGRID
(k3) ALLOW PROFILES CONTRIBUTION
k1 switches the package on. By default, pkg/profiles assumes a regular lat-long grid. For other grids
such as the cubed sphere, k2 and pre-processing (see below) are necessary. k3 switches the least-squares
application on (pkg/ecco needed). pkg/profiles requires needs pkg/cal and netcdf libraries.

The namelist (data.profiles) is illustrated in table 8.7. This example includes two input netcdf files
name (ARGOifremer r8.nc and XBT v5.nc are to be provided) and cost function multipliers (for least-
squares only). The first index is a file number and the second index (in mult* only) is a variable number.
By convention, the variable number is an integer ranging 1 to 6: temperature, salinity, zonal velocity,
meridional velocity, sea surface height anomaly, and passive tracer.

The input file structure is illustrated in table 8.8. To create such files, one can use the netcdf ecco create.m
matlab script, which can be checked out of
MITgcm contrib/gael/profilesMatlabProcessing/
along with a full suite of matlab scripts associated with pkg/profiles. At run time, each file is scanned
to determine which variables are included; these will be interpolated. The (final) output file structure
is similar but with interpolated model values in prof T etc., and it contains model mask variables (e.g.
prof Tmask). The very model output consists of one binary (or netcdf) file per processor. The final
netcdf output is to be built from those using netcdf ecco recompose.m (offline).

When the k2 option is used (e.g. for cubed sphere runs), the input file is to be completed with inter-
polation grid points and coefficients computed offline using netcdf ecco GenericgridMain.m. Typically,
you would first provide the standard namelist and files. After detecting that interpolation information
is missing, the model will generate special grid files (profilesXCincl1PointOverlap* etc.) and then stop.

8.2. PROFILES: MODEL-DATA COMPARISONS AT OBSERVED LOCATIONS 459

You then want to run netcdf ecco GenericgridMain.m using the special grid files. This operation could
eventually be inlined.

#

PROFILES cost function

&PROFILES NML
#
profilesfiles(1)= ’ARGOifremer r8’,
mult profiles(1,1) = 1.,
mult profiles(1,2) = 1.,
profilesfiles(2)= ’XBT v5’,
mult profiles(2,1) = 1.,
#
/

Table 8.7: pkg/profiles: data.profiles example.

460 CHAPTER 8. OCEAN STATE ESTIMATION PACKAGES

netcdf XBT v5 {
dimensions:
iPROF = 278026 ;
iDEPTH = 55 ;
lTXT = 30 ;

variables:
double depth(iDEPTH) ;
depth:units = ”meters” ;
double prof YYYYMMDD(iPROF) ;
prof YYYYMMDD:missing value = -9999. ;
prof YYYYMMDD:long name = ”year (4 digits), month (2 digits), day (2 digits)” ;
double prof HHMMSS(iPROF) ;
prof HHMMSS:missing value = -9999. ;
prof HHMMSS:long name = ”hour (2 digits), minute (2 digits), seconde (2 digits)” ;
double prof lon(iPROF) ;
prof lon:units = ”(degree E)” ;
prof lon:missing value = -9999. ;
double prof lat(iPROF) ;
prof lat:units = ”(degree N)” ;
prof lat:missing value = -9999. ;
char prof descr(iPROF, lTXT) ;
prof descr:long name = ”profile description” ;
double prof T(iPROF, iDEPTH) ;
prof T:long name = ”potential temperature” ;
prof T:units = ”degree Celsius” ;
prof T:missing value = -9999. ;
double prof Tweight(iPROF, iDEPTH) ;
prof Tweight:long name = ”weights” ;
prof Tweight:units = ”(degree Celsius)̂-2” ;
prof Tweight:missing value = -9999. ;

}

Table 8.8: pkg/profiles: input file structure as would be shown by ”ncdump -h ARGOifremer r8.nc”.

8.3. CTRL: MODEL PARAMETER ADJUSTMENT CAPABILITY 461

8.3 CTRL: Model Parameter Adjustment Capability

The parameters available for configuring generic cost terms in data.ctrl are given in table 8.9.

parameter type function
xx gen* file character(*) Name of control. Prefix from table 8.10 + suffix.
xx gen* weight character(*) Weights in the form of σ−2

~uj

xx gen* bounds real(5) Apply bounds
xx gen* preproc character(*) Control preprocessor(s) (see table 8.11)
xx gen* preproc c character(*) Preprocessor character arguments
xx gen* preproc i integer(*) Preprocessor integer arguments
xx gen* preproc r real(*) Preprocessor real arguments
gen*Precond real Preconditioning factor (= 1 by default)
mult gen* real Cost function multiplier βj (= 1 by default)
xx gentim2d period real Frequency of adjustments (in seconds)
xx gentim2d startdate1 integer Adjustment start date
xx gentim2d startdate2 integer Default: model start date
xx gentim2d cumsum logical Accumulate control adjustments
xx gentim2d glosum logical Global sum of adjustment (output is still 2D)

Table 8.9: Parameters in ctrl nml genarr namelist in data.ctrl. The * can be replaced by arr2d,
arr3d, or tim2d for time-invariant two and three dimensional controls and time-varying 2D controls,
respectively. Parameters for genarr2d, genarr3d, and gentime2d are arrays of length maxCtrlArr2D,
maxCtrlArr3D, and maxCtrlTim2D, respectively, with one entry per term in the cost function.

name description

2D, time-invariant controls genarr2d

xx etan initial sea surface height
xx bottomdrag bottom drag
xx geothermal geothermal heat flux

3D, time-invariant controls genarr3d

xx theta initial potential temperature
xx salt initial salinity
xx kapgm GM coefficient
xx kapredi isopycnal diffusivity
xx diffkr diapycnal diffusivity

2D, time-varying controls gentim2D

xx atemp atmospheric temperature
xx aqh atmospheric specific humidity
xx swdown downward shortwave
xx lwdown downward longwave
xx precip precipitation
xx uwind zonal wind
xx vwind meridional wind
xx tauu zonal wind stress
xx tauv meridional wind stress
xx gen precip globally averaged precipitation?

Table 8.10: Generic control prefixes implemented as of checkpoint 65x.

The control problem is non-dimensional by default, as reflected in the omission of weights in control
penalties [(~uT

j ~uj in (8.1)]. Non-dimensional controls (~uj) are scaled to physical units (~vj) through multi-
plication by the respective uncertainty fields (σ~uj

), as part of the generic preprocessor Q in (8.4). Besides
the scaling of ~uj to physical units, the preprocessor Q can include, for example, spatial correlation mod-
eling (using an implementation of Weaver and Coutier, 2001) by setting xx gen* preproc = ’WC01’.
Alternatively, setting xx gen* preproc = ’smooth’ activates the smoothing part of WC01, but omits the

462 CHAPTER 8. OCEAN STATE ESTIMATION PACKAGES

name description arguments

WC01 Correlation modeling integer: operator type (default: 1)
smooth Smoothing without normalization integer: operator type (default: 1)
docycle Average period replication integer: cycle length
replicate Alias for docycle (units of xx gentim2d period)
rmcycle Periodic average subtraction integer: cycle length
variaweight Use time-varying weight —
noscalinga Do not scale with xx gen* weight —
documul Sets xx gentim2d cumsum —
doglomean Sets xx gentim2d glosum —

Table 8.11: xx gen????d preproc options implemented as of checkpoint 65x. Notes: a: If noscaling is
false, the control adjustment is scaled by one on the square root of the weight before being added to the
base control variable; if noscaling is true, the control is multiplied by the weight in the cost function
itself.

normalization. Additionally, bounds for the controls can be specified by setting xx gen* bounds. In for-
ward mode, adjustments to the ith control are clipped so that they remain between xx gen* bounds(i,1)

and xx gen* bounds(i,4). If xx gen* bounds(i,1) < xx gen* bounds(i+1,1) for i = 1, 2, 3, then the
bounds will “emulate a local minimum;”3 otherwise, the bounds have no effect in adjoint mode.

For the case of time-varying controls, the frequency is specified by xx gentim2d period. The generic
control package interprets special values of xx gentim2d period in the same way as the exf pack-
age: a value of −12 implies cycling monthly fields while a value of 0 means that the field is steady.
Time varying weights can be provided by specifying the preprocessor variaweight, in which case the
xx gentim2d weight file must contain as many records as the control parameter time series itself (ap-
proximately the run length divided by xx gentim2d period).

The parameter mult gen* sets the multiplier for the corresponding cost function penalty [βj in (8.1);
βj = 1 by default). The preconditioner, R, does not directly appear in the estimation problem, but only
serves to push the optimization process in a certain direction in control space; this operator is specified
by gen*Precond (= 1 by default).

3Not sure what this means.

8.4. SMOOTH: SMOOTHING AND COVARIANCE MODEL 463

8.4 SMOOTH: Smoothing And Covariance Model

TBA ...

464 CHAPTER 8. OCEAN STATE ESTIMATION PACKAGES

8.5 The line search optimisation algorithm

Author: Patrick Heimbach

8.5.1 General features

The line search algorithm is based on a quasi-Newton variable storage method which was implemented
by Gilbert and Lemaréchal [1989].

TO BE CONTINUED...

8.5.2 The online vs. offline version

• Online version
Every call to simul refers to an execution of the forward and adjoint model. Several iterations of
optimization may thus be performed within a single run of the main program (lsopt top). The
following cases may occur:

– cold start only (no optimization)

– cold start, followed by one or several iterations of optimization

– warm start from previous cold start with one or several iterations

– warm start from previous warm start with one or several iterations

• Offline version
Every call to simul refers to a read procedure which reads the result of a forward and adjoint run
Therefore, only one call to simul is allowed, itmax = 0, for cold start itmax = 1, for warm start
Also, at the end, x(i+1) needs to be computed and saved to be available for the offline model and
adjoint run

In order to achieve minimum difference between the online and offline code xdiff(i+1) is stored to
file at the end of an (offline) iteration, but recomputed identically at the beginning of the next iteration.

8.5.3 Number of iterations vs. number of simulations

- itmax: controls the max. number of iterations
- nfunc: controls the max. number of simulations within one iteration

Summary
From one iteration to the next the descent direction changes. Within one iteration more than one forward
and adjoint run may be performed. The updated control used as input for these simulations uses the
same descent direction, but different step sizes.

Description
From one iteration to the next the descent direction dd changes using the result for the adjoint vector gg
of the previous iteration. In lsline the updated control

xdiff(i, 1) = xx(i− 1) + tact(i− 1, 1) ∗ dd(i− 1)

serves as input for a forward and adjoint model run yielding a new gg(i,1). In general, the new solution
passes the 1st and 2nd Wolfe tests so xdiff(i,1) represents the solution sought:

xx(i) = xdiff(i, 1)

If one of the two tests fails, an inter- or extrapolation is invoked to determine a new step size tact(i-1,2).
If more than one function call is permitted, the new step size is used together with the ”old” descent
direction dd(i-1) (i.e. dd is not updated using the new gg(i)), to compute a new

xdiff(i, 2) = xx(i− 1) + tact(i− 1, 2) ∗ dd(i− 1)

8.5. THE LINE SEARCH OPTIMISATION ALGORITHM 465

that serves as input in a new forward and adjoint run, yielding gg(i,2). If now, both Wolfe tests are
successful, the updated solution is given by

xx(i) = xdiff(i, 2) = xx(i− 1) + tact(i− 1, 2) ∗ dd(i− 1)

In order to save memory both the fields dd and xdiff have a double usage.

xdiff

- in lsopt top: used as x(i) - x(i-1) for Hessian update
- in lsline: intermediate result for control update x = x + tact*dd

dd

- in lsopt top, lsline: descent vector, dd = -gg and hessupd

- in dgscale: intermediate result to compute new preconditioner

The parameter file lsopt.par

• NUPDATE max. no. of update pairs (gg(i)-gg(i-1), xx(i)-xx(i-1)) to be stored in OPWARMD

to estimate Hessian [pair of current iter. is stored in (2*jmax+2, 2*jmax+3) jmax must be ¿ 0 to
access these entries] Presently NUPDATE must be ¿ 0 (i.e. iteration without reference to previous
iterations through OPWARMD has not been tested)

• EPSX relative precision on xx bellow which xx should not be improved

• EPSG relative precision on gg below which optimization is considered successful

• IPRINT controls verbose (¿=1) or non-verbose output

• NUMITER max. number of iterations of optimisation; NUMTER = 0: cold start only, no
optimization

• ITER NUM index of new restart file to be created (not necessarily = NUMITER!)

• NFUNC max. no. of simulations per iteration (must be ¿ 0); is used if step size tact is inter-
/extrapolated; in this case, if NFUNC ¿ 1, a new simulation is performed with same gradient but
”improved” step size

• FMIN first guess cost function value (only used as long as first iteration not completed, i.e. for
jmax ¡= 0)

OPWARMI, OPWARMD files Two files retain values of previous iterations which are used in latest
iteration to update Hessian:

• OPWARMI: contains index settings and scalar variables

n = nn no. of control variables
fc = ff cost value of last iteration
isize no. of bytes per record in OPWARMD
m = nupdate max. no. of updates for Hessian
jmin, jmax pointer indices for OPWARMD file (cf. below)
gnorm0 norm of first (cold start) gradient gg
iabsiter total number of iterations with respect to cold start

• OPWARMD: contains vectors (control and gradient)

entry name description
1 xx(i) control vector of latest iteration
2 gg(i) gradient of latest iteration
3 xdiff(i),diag preconditioning vector; (1,...,1) for cold start

2*jmax+2 gold=g(i)-g(i-1) for last update (jmax)
2*jmax+3 xdiff=tact*d=xx(i)-xx(i-1) for last update (jmax)

Error handling

466 CHAPTER 8. OCEAN STATE ESTIMATION PACKAGES

Example 1: jmin = 1, jmax = 3, mupd = 5

1 2 3 | 4 5 6 7 8 9 empty empty

|___|___|___| | |___|___| |___|___| |___|___| |___|___| |___|___|

0 | 1 2 3

Example 2: jmin = 3, jmax = 7, mupd = 5 ---> jmax = 2

1 2 3 |

|___|___|___| | |___|___| |___|___| |___|___| |___|___| |___|___|

| 6 7 3 4 5

Figure 8.1: Examples of OPWARM file handling

lsopt_top
|
|---- check arguments

|---- CALL INSTORE
| |

| |---- determine whether OPWARMI available:
| * if no: cold start: create OPWARMI
| * if yes: warm start: read from OPWARMI

| create or open OPWARMD
|

|---- check consistency between OPWARMI and model parameters
|

|---- >>> if COLD start: <<<
| | first simulation with f.g. xx_0; output: first ff_0, gg_0
| | set first preconditioner value xdiff_0 to 1

| | store xx(0), gg(0), xdiff(0) to OPWARMD (first 3 entries)
| |

| >>> else: WARM start: <<<
| read xx(i), gg(i) from OPWARMD (first 2 entries)
| for first warm start after cold start, i=0

|
|

|
|---- /// if ITMAX > 0: perform optimization (increment loop index i)

| (
|)---- save current values of gg(i-1) -> gold(i-1), ff -> fold(i-1)
| (---- CALL LSUPDXX

|) |
| (|---- >>> if jmax=0 <<<

|) | | first optimization after cold start:
| (| | preconditioner estimated via ff_0 - ff_(first guess)

|) | | dd(i-1) = -gg(i-1)*preco
| (| |
|) | >>> if jmax > 0 <<<

| (| dd(i-1) = -gg(i-1)
|) | CALL HESSUPD

| (| |
|) | |---- dd(i-1) modified via Hessian approx.
| (|

|) |---- >>> if <dd,gg> >= 0 <<<
| (| ifail = 4

|) |
| (|---- compute step size: tact(i-1)

|) |---- compute update: xdiff(i) = xx(i-1) + tact(i-1)*dd(i-1)
| (
|)---- >>> if ifail = 4 <<<

| (goto 1000
|)

| (---- CALL OPTLINE / LSLINE
|) |

...

Figure 8.2: Flow chart (part 1 of 3)

8.5. THE LINE SEARCH OPTIMISATION ALGORITHM 467

... ...
|)
| (---- CALL OPTLINE / LSLINE

|) |
| (|---- /// loop over simulations

|) (
| ()---- CALL SIMUL
|) (|

| () |---- input: xdiff(i)
|) (|---- output: ff(i), gg(i)

| () |---- >>> if ONLINE <<<
|) (runs model and adjoint

| () >>> if OFFLINE <<<
|) (reads those values from file
| ()

|) (---- 1st Wolfe test:
| () ff(i) <= tact*xpara1*<gg(i-1),dd(i-1)>

|) (
| ()---- 2nd Wolfe test:
|) (<gg(i),dd(i-1)> >= xpara2*<gg(i-1),dd(i-1)>

| ()
|) (---- >>> if 1st and 2nd Wolfe tests ok <<<

| () | 320: update xx: xx(i) = xdiff(i)
|) (|

| () >>> else if 1st Wolfe test not ok <<<
|) (| 500: INTERpolate new tact:
| () | barr*tact < tact < (1-barr)*tact

|) (| CALL CUBIC
| () |

|) (>>> else if 2nd Wolfe test not ok <<<
| () 350: EXTRApolate new tact:
|) ((1+barmin)*tact < tact < 10*tact

| () CALL CUBIC
|) (

| ()---- >>> if new tact > tmax <<<
|) (| ifail = 7

| () |
|) (---- >>> if new tact < tmin OR tact*dd < machine precision <<<
| () | ifail = 8

|) (|
| ()---- >>> else <<<

|) (update xdiff for new simulation
| ()
|) \\\ if nfunc > 1: use inter-/extrapolated tact and xdiff

| (for new simulation
|) N.B.: new xx is thus not based on new gg, but

| (rather on new step size tact
|)

| (---- store new values xx(i), gg(i) to OPWARMD (first 2 entries)
|)---- >>> if ifail = 7,8,9 <<<
| (goto 1000

|)
... ...

Figure 8.3: Flow chart (part 2 of 3)

468 CHAPTER 8. OCEAN STATE ESTIMATION PACKAGES

... ...
|)

| (---- store new values xx(i), gg(i) to OPWARMD (first 2 entries)
|)---- >>> if ifail = 7,8,9 <<<
| (goto 1000

|)
| (---- compute new pointers jmin, jmax to include latest values

|) gg(i)-gg(i-1), xx(i)-xx(i-1) to Hessian matrix estimate
| (---- store gg(i)-gg(i-1), xx(i)-xx(i-1) to OPWARMD

|) (entries 2*jmax+2, 2*jmax+3)
| (
|)---- CALL DGSCALE

| (|
|) |---- call dostore

| (| |
|) | |---- read preconditioner of previous iteration diag(i-1)
| (| from OPWARMD (3rd entry)

|) |
| (|---- compute new preconditioner diag(i), based upon diag(i-1),

|) | gg(i)-gg(i-1), xx(i)-xx(i-1)
| (|

|) |---- call dostore
| (|
|) |---- write new preconditioner diag(i) to OPWARMD (3rd entry)

| (
|---- \\\ end of optimization iteration loop

|
|
|

|---- CALL OUTSTORE
| |

| |---- store gnorm0, ff(i), current pointers jmin, jmax, iterabs to OPWARMI
|

|---- >>> if OFFLINE version <<<
| xx(i+1) needs to be computed as input for offline optimization
| |

| |---- CALL LSUPDXX
| | |

| | |---- compute dd(i), tact(i) -> xdiff(i+1) = x(i) + tact(i)*dd(i)
| |
| |---- CALL WRITE_CONTROL

| | |
| | |---- write xdiff(i+1) to special file for offline optim.

|
|---- print final information

|
O

Figure 8.4: Flow chart (part 3 of 3)

Chapter 9

Under development

This chapter contains short descriptions of new features that are stil in a development stage.

9.1 Other Time-stepping Options

9.1.1 Adams-Bashforth III

0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

3

6

9

α,β= 0.60,0.000 ; f
c
= 0.5025

0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

3

6

9

α,β= 0.50,0.250 ; f
c
= 0.7698

0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

3

69

α,β= 0.50,0.417 ; f
c
= 0.7236(0.6760)

0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

3

6
9

α,β= 0.50,0.281 ; f
c
= 0.7861(0.7686)

Oscil. response of AB−3 : CFL (f*dt)= 0.0 −> 0.9 every 0.1

Figure 9.1: Comparison of the oscillatory response of Adams-Bashforth scheme.

The third-order Adams-Bashforth time stepping (AB-3) provides several advantages (see, e.g., Durran
[1991]) compared to the default quasi-second order Adams-Bashforth (AB-2):

469

470 CHAPTER 9. UNDER DEVELOPMENT

• higher accuracy;

• stable with a longer time-step;

• no additional computation (just requires the storage of one additional time level).

The 3rd order Adams-Bashforth can be used to extrapolate forward in time the tendency (replacing
equation 2.24) which writes:

G(n+1/2)
τ = (1 + αAB + βAB)Gn

τ − (αAB + 2βAB)Gn−1
τ + βABG

n−2
τ (9.1)

The 3rd order AB is obtained with (αAB , βAB) = (1/2, 5/12). Note that selecting (αAB, βAB) =
(1/2 + ǫAB, 0) one recovers the quasi-2nd order AB.

The AB-3 time stepping improves the stability limit for an oscillatory problem like advection or
Coriolis. As seen from Fig.9.1, it remains stable up to a CFL of 0.72, compared to only 0.50 with AB-2
and ǫAB = 0.1. It is interesting to note that the stability limit can be further extended up to a CFL of
0.786 for an oscillatory problem (see fig.9.1) using (αAB , βAB) = (0.5, 0.2811) but then the scheme is
only 2nd order accurate.

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

α,β= 0.50,0.000 ; µ
c
= 1.0000

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

α,β= 0.60,0.000 ; µ
c
= 0.9091

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

α,β= 0.50,0.417 ; µ
c
= 0.5455

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

α,β= 0.50,0.281 ; µ
c
= 0.6401

Damping response of AB−3 : λ = 1.0 ; λ*dt= 0.0 −> 1.1 every 0.1

Figure 9.2: Comparison of the damping (diffusion like) response of Adams-Bashforth schemes.

However, the behavior of the AB-3 for a damping problem (like diffusion) is less favorable, since
the stability limit is reduced to 0.54 only (and 0.64 with βAB = 0.2811) compared to 1. (and 0.9 with
ǫAB = 0.1) with the AB-2 (see fig.9.2).

A way to enable the use of a longer time step is to keep the dissipation terms outside the AB
extrapolation (setting momDissip In AB=.FALSE. in main parameter file ”data”, namelist PARM03),
thus returning to a simple forward time-stepping for dissipation, and to use AB-3 only for advection and
Coriolis terms.

9.1. OTHER TIME-STEPPING OPTIONS 471

The AB-3 time stepping is activated by defining the option #define ALLOW ADAMSBASHFORTH 3
in ”CPP OPTIONS.h”. The parameters αAB, βAB can be set from the main parameter file ”data” (namelist
PARM03) and their default value corresponds to the 3rd order Adams-Bashforth. A simple example is
provided in ”verification/advect xy/input.ab3 c4”.

The AB-3 is not yet available for the vertical momentum equation (Non-Hydrostatic) neither for
passive tracers.

9.1.2 Time-extrapolation of tracer (rather than tendency)

(to be continued ...)

472 CHAPTER 9. UNDER DEVELOPMENT

Chapter 10

Previous Applications of MITgcm

To date, MITgcm has been used for number of purposes. The following papers are an incomplete yet
fairly broad sample of MITgcm applications:

• R.S. Gross and I. Fukumori and D. Menemenlis (2003). Atmospheric and oceanic excitation of the
Earth’s wobbles during 1980-2000. Journal of Geophysical Research-Solid Earth, vol.108.

• M.A. Spall and R.S. Pickart (2003). Wind-driven recirculations and exchange in the Labrador and
Irminger Seas. Journal of Physical Oceanography, vol.33, pp.1829–1845.

• B. Ferron and J. Marotzke (2003). Impact of 4D-variational assimilation of WOCE hydrography
on the meridional circulation of the Indian Ocean. Deep-Sea Research Part II-Topical Studies in
Oceanography, vol.50, pp.2005–2021.

• G.A. McKinley and M.J. Follows and J. Marshall and S.M. Fan (2003). Interannual variability of
air-sea O-2 fluxes and the determination of CO2 sinks using atmospheric O-2/N-2. Geophysical
Research Letters, vol.30.

• B.Y. Huang and P.H. Stone and A.P. Sokolov and I.V. Kamenkovich (2003). The deep-ocean heat
uptake in transient climate change. Journal of Climate, vol.16, pp.1352–1363.

• G. de Coetlogon and C. Frankignoul (2003). The persistence of winter sea surface temperature in
the North Atlantic. Journal of Climate, vol.16, pp.1364–1377.

• K.H. Nisancioglu and M.E. Raymo and P.H. Stone (2003). Reorganization of Miocene deep water
circulation in response to the shoaling of the Central American Seaway. Paleoceanography, vol.18.

• T. Radko and J. Marshall (2003). Equilibration of a Warm Pumped Lens on a beta plane. Journal
of Physical Oceanography, vol.33, pp.885–899.

• T. Stipa (2002). The dynamics of the N/P ratio and stratification in a large nitrogen-limited
estuary as a result of upwelling: a tendency for offshore Nodularia blooms. Hydrobiologia, vol.487,
pp.219–227.

• D. Stammer and C. Wunsch and R. Giering and C. Eckert and P. Heimbach and J. Marotzke
and A. Adcroft and C.N. Hill and J. Marshall (2003). Volume, heat, and freshwater transports
of the global ocean circulation 1993-2000, estimated from a general circulation model constrained
by World Ocean Circulation Experiment (WOCE) data. Journal of Geophysical Research-Oceans,
vol.108.

• P. Heimbach and C. Hill and R. Giering (2002). Automatic generation of efficient adjoint code for
a parallel Navier-Stokes solver. Computational Science-ICCS 2002, PT II, Proceedings, vol.2330,
pp.1019–1028.

• D. Stammer and C. Wunsch and R. Giering and C. Eckert and P. Heimbach and J. Marotzke and A.
Adcroft and C.N. Hill and J. Marshall (2002). Global ocean circulation during 1992-1997, estimated
from ocean observations and a general circulation model. Journal of Geophysical Research-Oceans,
vol.107.

473

474 CHAPTER 10. PREVIOUS APPLICATIONS OF MITGCM

• M. Solovev and P.H. Stone and P. Malanotte-Rizzoli (2002). Assessment of mesoscale eddy pa-
rameterizations for a single-basin coarse-resolution ocean model. Journal of Geophysical Research-
Oceans, vol.107.

• C. Herbaut and J. Sirven and S. Fevrier (2002). Response of a simplified oceanic general circulation
model to idealized NAO-like stochastic forcing. Journal of Physical Oceanography, vol.32, pp.3182–
3192.

• C. Wunsch (2002). Oceanic age and transient tracers: Analytical and numerical solutions. Journal
of Geophysical Research-Oceans, vol.107.

• J. Sirven and C. Frankignoul and D. de Coetlogon and V. Taillandier (2002). Spectrum of wind-
driven baroclinic fluctuations of the ocean in the midlatitudes. Journal of Physical Oceanography,
vol.32, pp.2405–2417.

• R. Zhang and M. Follows and J. Marshall (2002). Mechanisms of thermohaline mode switching
with application to warm equable climates. Journal of Climate, vol.15, pp.2056–2072.

• G. Brostrom (2002). On advection and diffusion of plankton in coarse resolution ocean models.
Journal of Marine Systems, vol.35, pp.99–110.

• T. Lee and I. Fukumori and D. Menemenlis and Z.F. Xing and L.L. Fu (2002). Effects of the
Indonesian Throughflow on the Pacific and Indian oceans. Journal of Physical Oceanography,
vol.32, pp.1404–1429.

• C. Herbaut and J. Marshall (2002). Mechanisms of buoyancy transport through mixed layers and
statistical signatures from isobaric floats. Journal of Physical Oceanography, vol.32, pp.545–557.

• J. Marshall and H. Jones and R. Karsten and R. Wardle (2002). Can eddies set ocean stratification?,
Journal of Physical Oceanography, vol.32, pp.26–38.

• C. Herbaut and J. Sirven and A. Czaja (2001). An idealized model study of the mass and heat
transports between the subpolar and subtropical gyres. Journal of Physical Oceanography, vol.31,
pp.2903–2916.

• R.H. Kase and A. Biastoch and D.B. Stammer (2001). On the Mid-Depth Circulation in the
Labrador and Irminger Seas. Geophysical Research Letters, vol.28, pp.3433–3436.

• R. Zhang and M.J. Follows and J.P. Grotzinger and J. Marshall (2001). Could the Late Permian
deep ocean have been anoxic?. Paleoceanography, vol.16, pp.317–329.

• A. Adcroft and J.R. Scott and J. Marotzke (2001). Impact of geothermal heating on the global
ocean circulation. Geophysical Research Letters, vol.28, pp.1735–1738.

• J. Marshall and D. Jamous and J. Nilsson (2001). Entry, flux, and exit of potential vorticity in
ocean circulation. Journal of Physical Oceanography, vol.31, pp.777–789.

• A. Mahadevan (2001). An analysis of bomb radiocarbon trends in the Pacific. Marine Chemistry,
vol.73, pp.273–290.

• G. Brostrom (2000). The role of the annual cycles for the air-sea exchange of CO2. Marine
Chemistry, vol.72, pp.151–169.

• Y.H. Zhou and H.Q. Wu and N.H. Yu and D.W. Zheng (2000). Excitation of seasonal polar motion
by atmospheric and oceanic angular momentums. Progress in Natural Science, vol.10, pp.931–936.

• R. Wardle and J. Marshall (2000). Representation of eddies in primitive equation models by a PV
flux. Journal of Physical Oceanography, vol.30, pp.2481–2503.

• P.S. Polito and O.T. Sato and W.T. Liu (2000). Characterization and validation of the heat storage
variability from TOPEX/Poseidon at four oceanographic sites. Journal of Geophysical Research-
Oceans, vol.105, pp.16911–16921.

475

• R.M. Ponte and D. Stammer (2000). Global and regional axial ocean angular momentum signals and
length-of-day variations (1985-1996). Journal of Geophysical Research-Oceans, vol.105, pp.17161–
17171.

• J. Wunsch (2000). Oceanic influence on the annual polar motion. Journal of GEODYNAMICS,
vol.30, pp.389–399.

• D. Menemenlis and M. Chechelnitsky (2000). Error estimates for an ocean general circulation model
from altimeter and acoustic tomography data. Monthly Weather Review, vol.128, pp.763–778.

• Y.H. Zhou and D.W. Zheng and N.H. Yu and H.Q. Wu (2000). Excitation of annual polar motion
by atmosphere and ocean. Chinese Science Bulletin, vol.45, pp.139–142.

• J. Marotzke and R. Giering and K.Q. Zhang and D. Stammer and C. Hill and T. Lee (1999).
Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat
transport sensitivity. Journal of Geophysical Research-Oceans, vol.104, pp.29529–29547.

• R.M. Ponte and D. Stammer (1999). Role of ocean currents and bottom pressure variability on
seasonal polar motion. Journal of Geophysical Research-Oceans, vol.104, pp.23393–23409.

• J. Nastula and R.M. Ponte (1999). Further evidence for oceanic excitation of polar motion. Geo-
physical Journal International, vol.139, pp.123–130.

• K.Q. Zhang and J. Marotzke (1999). The importance of open-boundary estimation for an Indian
Ocean GCM-data synthesis. Journal of Marine Research, vol.57, pp.305–334.

• J. Marshall and D. Jamous and J. Nilsson (1999). Reconciling thermodynamic and dynamic meth-
ods of computation of water-mass transformation rates. Deep-Sea Research PART I-Oceanographic
Research Papers, vol.46, pp.545–572.

• J. Marshall and F. Schott (1999). Open-ocean convection: Observations, theory, and models.
Reviews of Geophysics, vol.37, pp.1–64.

• J. Marshall and H. Jones and C. Hill (1998). Efficient ocean modeling using non-hydrostatic algo-
rithms. Journal of Marine Systems, vol.18, pp.115–134.

• A.B. Baggeroer and T.G. Birdsall and C. Clark and J.A. Colosi and B.D. Cornuelle and D. Costa and
B.D. Dushaw and M. Dzieciuch and A.M.G. Forbes and C. Hill and B.M. Howe and J. Marshall
and D. Menemenlis and J.A. Mercer and K. Metzger and W. Munk and R.C. Spindel and D.
Stammer and P.F. Worcester and C. Wunsch (1998). Ocean climate change: Comparison of acoustic
tomography, satellite altimetry, and modeling. Science, vol.281, pp.1327–1332.

• C. Wunsch and D. Stammer (1998). Satellite altimetry, the marine geoid, and the oceanic general
circulation. Annual Review of Earth and Planetary Sciences, vol.26, pp.219–253.

• A. Shaw and Arvind and K.C. Cho and C. Hill and R.P. Johnson and J. Marshall (1998). A com-
parison of implicitly parallel multithreaded and data-parallel implementations of an ocean model.
Journal of Parallel and Distributed Computing, vol.48, pp.1–51.

• T.W.N. Haine and J. Marshall (1998). Gravitational, symmetric, and baroclinic instability of the
ocean mixed layer. Journal of Physical Oceanography, vol.28, pp.634–658.

• R.M. Ponte and D. Stammer and J. Marshall (1998). Oceanic signals in observed motions of the
Earth’s pole of rotation. Nature, vol.391, pp.476–479.

• D. Menemenlis and C. Wunsch (1997). Linearization of an oceanic general circulation model for
data assimilation and climate studies. Journal of Atmospheric and Oceanic Technology, vol.14,
pp.1420–1443.

• H. Jones and J. Marshall (1997). Restratification after deep convection. Journal of Physical
Oceanography, vol.27, pp.2276–2287.

• S.R. Jayne and R. Tokmakian (1997). Forcing and sampling of ocean general circulation models:
Impact of high-frequency motions. Journal of Physical Oceanography, vol.27, pp.1173–1179.

476 CHAPTER 10. PREVIOUS APPLICATIONS OF MITGCM

Bibliography

Adcroft, A., Numerical algorithms for use in a dynamical model of the ocean, Ph.D. thesis, Imperial
College, London, 1995.

Adcroft, A., and J.-M. Campin, Comparison of finite volume schemes and direct-space-time methods for
ocean circulation models, Ocean Modelling, in preparation, 2002.

Adcroft, A., and J.-M. Campin, Re-scaled height coordinates for accurate representation
of free-surface flows in ocean circulation models, Ocean Modelling, 7, 269–284, 2004.
doi:10.1016/j.ocemod.2003.09.003.

Adcroft, A., and D. Marshall, How slippery are piecewise-constant coastlines in numerical ocean models?,
Tellus, 50(1), 95–108, 1998.

Adcroft, A., C. Hill, and J. Marshall, Representation of topography by
shaved cells in a height coordinate ocean model, Mon. Wea. Rev., 125,
2293–2315, 1997. Available from: http://mitgcm.org/pdfs/mwr_1997.pdf,
doi:10.1175/1520-0493%281997%29125¡2293:ROTBSC¿2.0.CO;2.

Adcroft, A., J.-M. Campin, C. Hill, and J. Marshall, Implementation of an atmosphere-ocean general
circulation model on the expanded spherical cube, Mon. Wea. Rev., 132, 2845–2863, 2004a. Available
from: http://mitgcm.org/pdfs/mwr_2004.pdf, doi:10.1175/MWR2823.1.

Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, Overview of the formulation and
numerics of the MITgcm, in Proceedings of the ECMWF seminar series on Numerical Methods, Recent
developments in numerical methods for atmosphere and ocean modelling, pp. 139–149. ECMWF, 2004b.
Available from: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf.

Adcroft, A., e. a., Energy conversion in discrete numerical models, Ocean Modelling, in preparation, 2002.

Adcroft, A., H. C., and J. Marshall, A new treatment of the coriolis terms
in c-grid models at both high and low resolutions, Mon. Wea. Rev., 127,
1928–1936, 1999. Available from: http://mitgcm.org/pdfs/mwr_1999.pdf,
doi:10.1175/1520-0493%281999%29127¡1928:ANTOTC¿2.0.CO;2.

Arakawa, A., and V. Lamb, Computational design of the basic dynamical processes of the ucla general
circulation model, in Methods in Computational Physics, vol. 17, pp. 174–267. Academic Press, 1977.

Beckmann, A., H. H. Hellmer, and R. Timmermann, A numerical model of the Weddell Sea: Large-scale
circulation and water mass distribution, J. Geophys. Res., 104(C10), 23,375–23,392, 1999.

Blackadar, A. K., High resolution models of the planetary boundary layer., in Advances in Environ-
mental Science and Engineering, Vol 1, edited by Pfafflin, and Zeigler. Gordon and Breach, Scientific
Publishers, 1977.

Bouillon, S., T. Fichefet, V. Legat, and G. Madec, The elastic-viscous-plastic method
revisited, Ocean Modelling, 71(0), 2–12, Arctic Ocean, 2013. Available from:
http://dx.doi.org/10.1016/j.ocemod.2013.05.013, doi:10.1016/j.ocemod.2013.05.013.

Bretherton, C. S., et al., An intercomparison of radiatively driven entrainment and turbulence in a smoke
cloud, as simulated by different numerical models., Q. J. R. Meteorol. Soc., 125, 391–423, 1999.

477

http://dx.doi.org/10.1016/j.ocemod.2003.09.003
http://mitgcm.org/pdfs/mwr_1997.pdf
http://dx.doi.org/10.1175/1520-0493%281997%29125<2293:ROTBSC>2.0.CO;2
http://mitgcm.org/pdfs/mwr_2004.pdf
http://dx.doi.org/10.1175/MWR2823.1
http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf
http://mitgcm.org/pdfs/mwr_1999.pdf
http://dx.doi.org/10.1175/1520-0493%281999%29127<1928:ANTOTC>2.0.CO;2
http://dx.doi.org/10.1016/j.ocemod.2013.05.013
http://dx.doi.org/10.1016/j.ocemod.2013.05.013

478 BIBLIOGRAPHY

Bryan, K., Accelerating the convergence to equilibrium of ocean-climate models, J. Phys. Oceanogr.,
14(4), 666–673, 1984.

Bryan, K., S. Manabe, and R. C. Pacanowski, A global ocean-atmosphere climate model. Part II. The
oceanic circulation, Journal of Physical Oceanography, 5, 30–46, 1975.

Bushell, A. C., and G. Martin, The impact of vertical resolution upon gcm simulations of marine stra-
tocumulus., Climate Dyn., 15, 293–318, 1999.

Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, Conservation of properties in a free-surface model,
Ocean Modelling, 6, 221–244, 2004.

Campin, J.-M., J. Marshall, and D. Ferreira, Sea-ice ocean coupling using a rescaled vertical coordinate
z∗, Ocean Modelling, 24(1–2), 1–14, 2008. doi:10.1016/j.ocemod.2008.05.005.

Castro-Morales, K., F. Kauker, M. Losch, S. Hendricks, K. Riemann-Campe, and R. Gerdes, Sensitivity
of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations, J. Geo-
phys. Res., 119(1), 559–571, 2014. Available from: http://dx.doi.org/10.1002/2013JC009342,
doi:10.1002/2013JC009342.

Chou, M.-D., Parameterizations for the absorption of solar radiation by o2 and co2 with applications to
climate studies., J. Clim., 3, 209–217, 1990.

Chou, M.-D., A solar radiation model for use in climate studies., J. Atmos. Sci., 49, 762–772, 1992.

Chou, M.-D., and M.J.Suarez, An efficient thermal infrared radiation parameterization for use in
general circulation models, NASA Technical Memorandum 104606-Vol 3, National Aeronautics
and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA,
http://www.gmao.nasa.gov/, 1994.

Chris Hill, Alistair Adcroft, D. J., and J. Marshall, A strategy for terascale climate modeling, in In
Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, pp.
406–425. World Scientific, 1999.

Clarke, R. H., Observational studies in the atmospheric boundary layer., Q. J. R. Meteorol. Soc., 96,
91–114, 1970.

Cox, M. D., An isopycnal diffusion in a z-coordinate ocean model, Ocean modelling, 74, 1–5 (Unpublished
manuscript), 1987.

Danabasoglu, G., and J. C. McWilliams, Sensitivity of the global ocean circulation to parameterizations
of mesoscale tracer transports, J. Clim., 8(12), 2967–2987, 1995.

de Szoeke, R. A., and R. M. Samelson, The duality between the Boussinesq and Non-Boussinesq hydro-
static equations of motion, J. Phys. Oceanogr., 32(8), 2194–2203, 2002.

Defries, R. S., and J. R. G. Townshend, Ndvi-derived land cover classification at global scales., Int’l J.
Rem. Sens., 15, 3567–3586, 1994.

Dorman, J. L., and P. J. Sellers, A global climatology of albedo, roughness length and stomatal resis-
tance for atmospheric general circulation models as represented by the simple biosphere model (sib).,
J. Appl. Meteor., 28, 833–855, 1989.

Durran, D. R., The third-order adams-bashforth method: An attractive alternative to leapfrog time
differencing, Mon. Wea. Rev., 119, 702–720, 1991.

Dutay, J.-C., et al., Evaluation of ocean model ventilation with cfc-11: comparison of 13 global ocean
models, Ocean Modelling, 4, 89–120, 2002.

Dutkiewicz, S., A. Sokolov, J. Scott, and P. Stone, A three-dimensional ocean-seaice-carbon cycle model
and its coupling to a two-dimensional atmospheric model: Uses in climate change studies, report
122, Tech. rep., MIT Joint Program of the Science and Policy of Global Change, Cambridge, MA,
http://web.mit.edu/globalchange/www/MITJPSPGC Rpt122.pdf, 2005.

http://dx.doi.org/10.1016/j.ocemod.2008.05.005
http://dx.doi.org/10.1002/2013JC009342
http://dx.doi.org/10.1002/2013JC009342

BIBLIOGRAPHY 479

Ferreira, D., J. Marshall, and P. Heimbach, Estimating eddy stresses by fitting dynamics to observations
using a residual-mean ocean circulation model and its adjoint, J. Phys. Oceanogr., 35, 1891–1910, 2005.

Flato, G. M., and W. D. Hibler, III, Modeling pack ice as a cavitating fluid, J. Phys. Oceanogr., 22,
626–651, 1992.

Fofonoff, P., and R. Millard, Jr., Algorithms for computation of fundamental properties of seawater,
Unesco Technical Papers in Marine Science 44, Unesco, 1983.

Follows, M., T. Ito, and S. Dutkiewicz, A compact and accurate carbonate chemistry solver for ocean
biogeochemistry models, Ocean Modeling, in press.

Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch,
ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean
state estimation, Geoscientific Model Development, 8(10), 3071–3104, 2015. Available from:
http://www.geosci-model-dev.net/8/3071/2015/, doi:10.5194/gmd-8-3071-2015.

Fukumori, I., O. Wang, W. Llovel, I. Fenty, and G. Forget, A near-uniform fluctua-
tion of ocean bottom pressure and sea level across the deep ocean basins of the arctic
ocean and the nordic seas, Progress in Oceanography, 134(0), 152 – 172, 2015. Avail-
able from: http://www.sciencedirect.com/science/article/pii/S0079661115000245,
doi:http://dx.doi.org/10.1016/j.pocean.2015.01.013.

Gaspar, P., Y. Grégoris, and J.-M. Lefevre, A simple eddy kinetic energy model for simulations of the
oceanic vertical mixing: Tests at station papa and long-term upper ocean study site, J. Geophys. Res.,
95 (C9), 16,179–16,193, 1990.

Geiger, C. A., W. D. Hibler, III, and S. F. Ackley, Large-scale sea ice drift and deformation: Comparison
between models and observations in the western Weddell Sea during 1992, J. Geophys. Res., 103(C10),
21893–21913, 1998.

Gent, P. R., and J. C. McWilliams, Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr.,
20, 150–155, 1990.

Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, Parameterizing eddy-induced tracer
transports in ocean circulation models, J. Phys. Oceanogr., 25, 463–474, 1995.

Gerdes, R., C. Koberle, and J. Willebrand, The influence of numerical advection schemes on the results
of ocean general circulation models, Clim. Dynamics, 5(4), 211–226, 1991. doi:10.1007/BF00210006.

Giering, R., Tangent linear and adjoint model compiler. users manual 1.4 (tamc version 5.2), Report ,
Massachusetts Institute of Technology, MIT/EAPS; 77 Massachusetts Ave.; Cambridge (MA) 02139;
USA, http://puddle.mit.edu/∼ralf/tamc/tamc.html, 1999.

Giering, R., Tangent linear and adjoint biogeochemical models, in Inverse methods in global biogeochemical
cycles, edited by P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R. Prinn, and D. Hartley, vol.
114 of Geophysical Monograph, pp. 33–48. American Geophysical Union, Washington, DC, 2000.

Giering, R., and T. Kaminski, Recipes for adjoint code construction, ACM Transactions on Mathematical
Software, 24, 437–474, 1998.

Gilbert, J., and C. Lemaréchal, Some numerical experiments with variable-storage quasi-newton algo-
rithms, Math. Programming, 45, 407–435, 1989.

Gill, A. E., Atmosphere-Ocean Dynamics. Academic Press, New York, 662pp., 1982.

Griewank, A., Achieving logarithmic growth of temporal and spatial complexity in reverse Automatic
Differentiation, Optimization Methods and Software, 1, 35–54, 1992.

Griewank, A., Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, vol. 19
of Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

http://www.geosci-model-dev.net/8/3071/2015/
http://dx.doi.org/10.5194/gmd-8-3071-2015
http://www.sciencedirect.com/science/article/pii/S0079661115000245
http://dx.doi.org/http://dx.doi.org/10.1016/j.pocean.2015.01.013
http://dx.doi.org/10.1007/BF00210006

480 BIBLIOGRAPHY

Griffies, S., M., and W. Hallberg, R., Biharmonic friction with a Smagorinsky-like viscosity for use in
large-scale eddy-permitting ocean models, Mon. Wea. Rev., 128(8), 2935–2946, 2000.

Griffies, S. M., The Gent-McWilliams skew flux, J. Phys. Oceanogr., 28, 831–841, 1998.

Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz, and R. D. Smith,
Isoneutral diffusion in a z-coordinate ocean model, J. Phys. Oceanogr., 28, 805–830, 1998.

Grosfeld, K., R. Gerdes, and J. Determann, Thermohaline circulation and interaction between ice shelf
cavities and the adjacent open water, J. Geophys. Res., 102(C7), 15,595–15,610, 1997.

Haney, R., Surface thermal boundary conditions for ocean circulation models, J. Phys. Oceanogr., 1,
241–248, 1971.

Heimbach, P., C. Wunsch, R. M. Ponte, G. Forget, C. Hill, and J. Utke, Timescales and regions of the
sensitivity of Atlantic meridional volume and heat transport: Toward observing system design, Deep
Sea Research Part II: Topical Studies in Oceanography, 58(17), 1858–1879, 2011.

Held, I., and M. Suarez, A proposal for the intercomparison of the dynamical cores of atmospheric general
circulation models, Bulletin of the American Meteorological Society, 75(10), 1825–1830, 1994.

Helfand, H. M., and J. C. Labraga, Design of a non-singular level 2.5 second-order closure model for the
prediction of atmospheric turbulence., J. Atmos. Sci., 45, 113–132, 1988.

Helfand, H. M., and S. D. Schubert, Climatology of the simulated great plains low-level jet and its
contribution to the continental moisture budget of the united states., J. Clim., 8, 784–806, 1995.

Hellmer, H. H., and D. J. Olbers, A two-dimensional model of the thermohaline circulation under an ice
shelf, Antarct. Sci., 1, 325–336, 1989.

Hibler, III, W. D., A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815–846, 1979.

Hibler, III, W. D., Modeling a variable thickness sea ice cover, Mon. Wea. Rev., 1, 1943–1973, 1980.

Hibler, III, W. D., The role of sea ice dynamics in modeling co2 increases, in Climate processes and
climate sensitivity, edited by J. E. Hansen, and T. Takahashi, vol. 29 of Geophysical Monograph, pp.
238–253. AGU, Washington, D.C., 1984.

Hibler, III, W. D., and K. Bryan, A diagnostic ice-ocean model, J. Phys. Oceanogr., 17(7), 987–1015,
1987.

Hibler, III, W. D., and C. F. Ip, The effect of sea ice rheology on Arcitc buoy drift, in Ice Mechanics,
edited by J. P. Dempsey, and Y. D. S. Rajapakse, vol. 204 of AMD, pp. 255–264. Am. Soc. of Mech.
Eng., New York, 1995.

Hibler, III, W. D., and E. M. Schulson, On modeling sea-ice fracture and flow in numerical investigations
of climate, Ann. Glaciol., 25, 26–32, 1997.

Hill, C., and J. Marshall, Application of a parallel navier-stokes model to ocean circulation in parallel
computational fluid dynamics, in Implementations and Results Using Parallel Computers, edited by
N. S. A. Ecer, J. Periaux, and S. Taylor, pp. 545–552. Elsevier Science B.V.: New York, 1995.

Hill, C., M. Follows, V. Bugnion, and J. Marshall, Spatial and temporal impacts of ocean general circu-
lation on carbon sequestration, Global Biogeochemical Cycles, submitted, 2002.

Hoe, J. C., C. Hill, and A. Adcroft, A personal supercomputer for climate research, in In Proceedings of
the ACM/IEEE Super-Computing Confrence, p. 10.1109/SC.1999. IEEE, 1999.

Holland, D. M., and A. Jenkins, Modeling thermodynamic ice-ocean interactions at the base of an ice
shelf, J. Phys. Oceanogr., 29(8), 1787–1800, 1999.

Holland, W., and L. B. Lin, On the origin of mesoscale eddies and their contribution to the general
circulation of the ocean. i. a preliminary numerical experiment, J. Phys. Oceanogr., 5, 642–657, 1975a.

BIBLIOGRAPHY 481

Holland, W. R., The role of mesoscale eddies in the general circulation of the ocean–numerical experiments
using a wind-driven quasi-geostrophic model, Journal of Physical Oceanography, 8, 363–392, 1978.

Hundsdorfer, W., and R. A. Trompert, Method of lines and direct discretization: a comparison for linear
advection, Applied Numerical Mathematics, 13(6), 469–490, 1994. doi:10.1016/0168-9274(94)90009-4.

Hunke, E. C., Viscous-plastic sea ice dynamics with the EVP model: Linearization issues, J. Com-
put. Phys., 170, 18–38, 2001. doi:10.1006/jcph.2001.6710.

Hunke, E. C., and J. K. Dukowicz, An elastic-viscous-plastic model for sea ice dynamics,
J. Phys. Oceanogr., 27, 1849–1867, 1997.

Hutchings, J. K., H. Jasak, and S. W. Laxon, A strength implicit correction scheme for the viscous-plastic
sea ice model, Ocean Modelling, 7(1–2), 111–133, 2004. doi:10.1016/S1463-5003(03)00040-4.

Inness, P. M., S. Slingo, R. Woolnough, B. Neale, and V. Pope, Organization of tropical convection in a
gcm with verying vertical resolution; implications for the simulation of the madden-julian oscillation.,
Climate Dyn., 17, 777–794, 2001.

Jackett, D. R., and T. J. McDougall, Minimal adjustment of hydrographic profiles to achieve static
stability, J. Atmos. Ocean. Technol., 12(4), 381–389, 1995.

Jenkins, A., H. H. Hellmer, and D. M. Holland, The role of meltwater advection in the formulation of
conservative boundary conditions at an ice-ocean interface, J. Phys. Oceanogr., 31, 285–296, 2001.

Jiang, S., P. H. Stone, and P. Malanotte-Rizzoli, An assessment of the Geophysical Fluid Dynamics
Laboratory ocean model with coarse resolution: Annual-mean climatology, J. Geophys. Res., 104(C11),
25,623–25,645, 1999.

Kalnay, E., et al., The NMC/NCAR 40-year reanalysis project, Bull. Am. Met. Soc., 77, 437–471, 1996.

Kimmritz, M., S. Danilov, and M. Losch, On the convergence of the modified elastic-viscous-
plastic method of solving for sea-ice dynamics, J. Comput. Phys., 296, 90–100, 2015.
doi:10.1016/j.jcp.2015.04.051.

Kimmritz, M., S. Danilov, and M. Losch, The adaptive EVP method for solv-
ing the sea ice momentum equation, Ocean Modelling, 2016. Available from:
http://mitgcm.org/~mlosch/adaptiveEVP_accepted.pdf.

Klymak, J. M., and S. M. Legg, A simple mixing scheme for models that resolve breaking internal waves,
Ocean Modelling, 33, 224–234, 2010. doi:10.1016/j.ocemod.2010.02.005.

Knoll, D., and D. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications,
J. Comput. Phys., 193, 357–397, 2004. doi:10.1016/j.jcp.2003.08.010.

Kondo, J., Air-sea bulk transfer coefficients in diabatic conditions., Bound. Layer Meteorol., 9, 91–112,
1975.

Koster, R. D., and M. J. Suarez, A simplified treatment of sib’s land surface albedo parameterization.,
NASA Technical Memorandum 104538, National Aeronautics and Space Administration, NASA; God-
dard Space Flight Center; Greenbelt (MD), 20771; USA, http://www.gmao.nasa.gov/, 1991.

Koster, R. D., and M. J. Suarez, Modeling the land surface boundary in climate models as a composite
of independent vegetation stands., J. Geophys. Res., 97, 2697–2715, 1992.

Lacis, A. A., and J. E. Hansen, A parameterization for the absorption of solar radiation in the earth’s
atmosphere., J. Atmos. Sci., 31, 118–133, 1974.

Large, W., J. McWilliams, and S. Doney, Oceanic vertical mixing: A review and a model with nonlocal
boundary layer parameterization, Rev. Geophys., 32, 363–403, 1994.

Large, W. G., and S. Pond, Open ocean momentum flux measurements in moderate to strong winds.,
J. Phys. Oceanogr., 11, 324–336, 1981.

http://dx.doi.org/10.1016/0168-9274(94)90009-4
http://dx.doi.org/10.1006/jcph.2001.6710
http://dx.doi.org/10.1016/S1463-5003(03)00040-4
http://dx.doi.org/10.1016/j.jcp.2015.04.051
http://mitgcm.org/~mlosch/adaptiveEVP_accepted.pdf
http://dx.doi.org/10.1016/j.ocemod.2010.02.005
http://dx.doi.org/10.1016/j.jcp.2003.08.010

482 BIBLIOGRAPHY

Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, Sensitivity to surface forcing and
boundary layer mixing in a global ocean model: Annual-mean climatology, J. Phys. Oceanogr., 27(11),
2418–2447, 1997.

Leith, C. E., Large eddy simulation of complex engineering and geophysical flows, Physics of Fluids, 10,
1409–1416, 1968.

Leith, C. E., Stochastic models of chaotic systems, Physica D., 98, 481–491, 1996.

Lemieux, J.-F., and B. Tremblay, Numerical convergence of viscous-plastic sea ice models, J. Geo-
phys. Res., 114(C05009), 2009. doi:10.1029/2008JC005017.

Lemieux, J.-F., B. Tremblay, J. Sedláček, P. Tupper, S. Thomas, D. Huard, and J.-P. Auclair, Improving
the numerical convergence of viscous-plastic sea ice models with the Jacobian-free Newton-Krylov
method, J. Comput. Phys., 229, 2840–2852, 2010. doi:10.1016/j.jcp.2009.12.011c.

Lemieux, J.-F., D. Knoll, B. Tremblay, D. M. Holland, and M. Losch, A comparison of the Jacobian-
free Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a
viscous-plastic formulation: a serial algorithm study, J. Comput. Phys., 231(17), 5926–5944, 2012.
doi:10.1016/j.jcp.2012.05.024.

Leppäranta, M., A growth model for black ice, snow ican and snow thickness in subarctic basins, Nordic
Hydrology, 14, 59–70, 1983.

Levitus, S., and T.P.Boyer, World Ocean Atlas 1994 Volume 3: Salinity, Tech. rep., NOAA Atlas NESDIS
3, 1994a.

Levitus, S., and T.P.Boyer, World Ocean Atlas 1994 Volume 4: Temperature, Tech. rep., NOAA Atlas
NESDIS 4, 1994b.

Losch, M., Modeling ice shelf cavities in a z-coordinate ocean general circulation model, J. Geophys. Res.,
113(C08043), 2008. doi:10.1029/2007JC004368.

Losch, M., D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill, On the formulation of sea-ice models.
Part 1: Effects of different solver implementations and parameterizations, Ocean Modelling, 33(1–2),
129–144, 2010. doi:10.1016/j.ocemod.2009.12.008.

Losch, M., A. Fuchs, J.-F. Lemieux, and A. Vanselow, A parallel Jacobian-free Newton-Krylov solver for a
coupled sea ice-ocean model, J. Comput. Phys., 257(A), 901–910, 2014. doi:10.1016/j.jcp.2013.09.026.

Manabe, S., K. Bryan, and M. J. Spelman, A global ocean-atmosphere climate model with seasonal
variation for future studies of climate sensitivity, Dyn. Atmos. Oceans, 3(393–426), 1979.

Marotzke, J., R. Giering, K. Zhang, D. Stammer, C. Hill, and T. Lee, Construction of the adjoint mit
ocean general circulation model and application to atlantic heat transport variability, J. Geophys. Res.,
104, C12, 29,529–29,547, 1999.

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finite-volume, incompressible navier
stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102(C3), 5753–5766,
1997a. Available from: http://mitgcm.org/pdfs/96JC02776.pdf.

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, Hydrostatic, quasi-hydrostatic, and non-
hydrostatic ocean modeling, J. Geophys. Res., 102(C3), 5733–5752, 1997b. Available from:
http://mitgcm.org/pdfs/96JC02775.pdf.

Marshall, J., H. Jones, and C. Hill, Efficient ocean modeling using non-
hydrostatic algorithms, J. Mar. Sys., 18, 115–134, 1998. Avail-
able from: http://mitgcm.org/pdfs/journal_of_marine_systems_1998.pdf,
doi:10.1016/S0924-7963%2898%2900008-6.

Marshall, J., A. Adcroft, J.-M. Campin, C. Hill, and A. White, Atmosphere-ocean model-
ing exploiting fluid isomorphisms, Mon. Wea. Rev., 132, 2882–2894, 2004. Available from:
http://mitgcm.org/pdfs/a_o_iso.pdf, doi:10.1175/MWR2835.1.

http://dx.doi.org/10.1029/2008JC005017
http://dx.doi.org/10.1016/j.jcp.2009.12.011c
http://dx.doi.org/10.1016/j.jcp.2012.05.024
http://dx.doi.org/10.1029/2007JC004368
http://dx.doi.org/10.1016/j.ocemod.2009.12.008
http://dx.doi.org/10.1016/j.jcp.2013.09.026
http://mitgcm.org/pdfs/96JC02776.pdf
http://mitgcm.org/pdfs/96JC02775.pdf
http://mitgcm.org/pdfs/journal_of_marine_systems_1998.pdf
http://dx.doi.org/10.1016/S0924-7963%2898%2900008-6
http://mitgcm.org/pdfs/a_o_iso.pdf
http://dx.doi.org/10.1175/MWR2835.1

BIBLIOGRAPHY 483

Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, Estimates and implications of surface eddy diffusivity
in the southern ocean derived from tracer transport, J. Phys. Oceanogr., 36, 1806–1821, 2006.

McDougall, T. J., D. R. Jackett, D. G. Wright, and R. Feistel, Accurate and computationally efficient
algorithms for potential temperature and density of seawater, J. Atmos. Ocean. Technol., 2003.

McKinley, G., M. J. Follows, and J. C. Marshall, Mechanisms of air-sea co2 flux variability in the equa-
torial pacific and the north atlantic, Global Biogeochemical Cycles, 18(doi:10.1029/2003GB002179),
2004.

Mellor, G., and T. Yamada, Development of turbulence closure model for geophysical fluid problems.,
Rev. Geophys. Space Phys., 20(4), 851–875, 1982.

Menemenlis, D., et al., NASA supercomputer improves prospects for ocean climate research, Eos Trans.
AGU, 86(9), 89, 95–96, 2005.

Message Passing Interface Forum, MPI: A message-passing interface standard (version 2.0), Tech. rep.,
mpi-forum.org, 1998.

Molod, A., Running GCM physics and dynamics on different grids: algorithm and tests, Tellus, 61A,
381–393, 2009.

Molteni, F., Atmospheric simulations using a GCM with simplified physical parametrization, I: Model
climatology and variability in multidecadal experiments, Clim. Dynamics, 20, 175–191, 2003.

Moorthi, S., and M. J. Suarez, Relaxed arakawa schubert: A parameterization of moist convection for
general circulation models., Mon. Wea. Rev., 120, 978–1002, 1992.

Moum, J., Energy-containing scales of turbulence in the ocean thermocline, J. Geophys. Res., 101 (C3),
14095–14109, 1996.

Naumann, U., J. Utke, P. Heimbach, C. Hill, D. Ozyurt, C. Wunsch, M. Fagan, N. Tallent, and M. Strout,
Adjoint code by source transformation with openad/f, in European Conference on Computational Fluid
Dynamics ECCOMAS CFD 2006, edited by P. Wesseling, E. O nate and J. Periaux, p. . TU Delft,
2006.

Orlanski, I., A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys., 21, 251–269,
1976.

Pacanowski, R., and S. Philander, Parameterization of vertical mixing in numerical models of tropical
oceans, J. Phys. Ocean., 11, 1443–1451, 1981.

Paluszkiewicz, T., and R. Romea, A one-dimensional model for the parameterization of deep convection
in the ocean, Dyn. Atmos. Oceans, 26, 95–130, 1997.

Panofsky, H. A., Tower micrometeorology., in Workshop on Micrometeorology, edited by D. A. Haugen.
American Meteorological Society, 1973.

Parkinson, C. L., and W. M. Washington, A Large-Scale Numerical Model of Sea Ice, J. Geophys. Res.,
84(C1), 311–337, 1979.

Redi, M. H., Oceanic isopycnal mixing by coordinate rotation, Journal of Physical Oceanography, 12,
1154–1158, 1982.

Restrepo, J., G. Leaf, and A. Griewank, Circumventing storage limitations in variational data assimilation
studies, SIAM J. Sci. Comput., 19, 1586–1605, 1998.

Rew, R. K., G. P. Davis, S. Emmerson, and H. Davies, NetCDF User’s Guide for C, FORTRAN 77,
and FORTRAN 90, an interface for data access, version 3, Report, Unidata Program Center, Boulder,
Colorado, http://www.unidata.ucar.edu/packages/netcdf/, 1997.

Roe, P., Some contributions to the modelling of discontinuous flows, in Large-Scale Computations in
Fluid Mechanics, edited by B. Engquist, S. Osher, and R. Somerville, vol. 22 of Lectures in Applied
Mathematics, pp. 163–193. American Mathematical Society, Providence, RI, 1985.

484 BIBLIOGRAPHY

Rosenfield, J. E., M. R. Schoeberl, and M. A. Geller, A computation of the stratospheric diabatic circu-
lation using an accurate radiative transfer model, J. Atmos. Sci., 44, 859–876, 1987.

Saad, Y., A flexible inner-outer preconditioned GMRES method, SIAM J. Sci. Comput., 14(2), 461–469,
1993.

Seim, H. E., and M. C. Gregg, Detailed observations of a naturally occurring shear instability, J. Geo-
phys. Res., 99 (C5), 10049–10073, 1994.

Semtner, Jr., A. J., A model for the thermodynamic growth of sea ice in numerical investigations of
climate, J. Phys. Oceanogr., 6, 379–389, 1976.

Shapiro, R., Smoothing, filtering, and boundary effects, Reviews of Geophysics and Space Physics, 8(2),
359–387, 1970.

Smagorinsky, J., General circulation experiments with the primitive equations I: The basic experiment,
Monthly Weather Review, 91(3), 99–164, 1963.

Smagorinsky, J., Large eddy simulation of complex engineering and geophysical flows, in Evolution of
Physical Oceanography, edited by B. Galperin, and S. A. Orszag, pp. 3–36. Cambridge University Press,
1993.

Stammer, D., C. Wunsch, R. Giering, Q. Zhang, J. Marotzke, J. Marshall, and C. Hill, The global
ocean circulation estimated from topex/poseidon altimetry and a general circulation model, Technical
Report 49, Center for Global Change Science, Massachusetts Institute of Technology, Cambridge (MA),
USA, 1997.

Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. Hill,
and J. Marshall, The global ocean circulation and transports during 1992 – 1997, estimated from
ocean observations and a general circulation model., J. Geophys. Res., 107(C9), 3118, 2002a.
doi:10.1029/2001JC000888.

Stevens, D. P., On open boundary conditions for three dimensional primitive equation ocean circulation
models, Geophys. Astrophys. Fl. Dyn., 51, 103–133, 1990.

Stommel, H., The western intensification of wind-driven ocean currents, Trans. Am. Geophys. Union, 29,
206, 1948.

Sud, Y. C., and A. Molod, The roles of dry convection, cloud-radiation feedback processes and the
influence of recent improvements in the parameterization of convection in the gla gcm., Mon. Wea. Rev.,
116, 2366–2387, 1988.

Takacs, L. L., and M. Suarez, Dynamical aspects of climate simulations using the geos general circulation
model, NASA Technical Memorandum 104606 Volume 10, National Aeronautics and Space Administra-
tion, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, http://www.gmao.nasa.gov/,
1996.

Thorpe, S., Turbulence and mixing in a scottish loch, Phil. Trans. R. Soc. Lond., 286, 125–181, 1977.

Trenberth, K., J. Olson, and W. Large, A global wind stress climatology based on ecmwf analyses, Tech.
Rep. NCAR/TN-338+STR, NCAR, Boulder, CO, 1989.

Trenberth, K. M., J. Olson, and W. G. Large, The mean annual cycle in Global Ocean wind stress,
J. Phys. Oceanogr., 20, 1742–1760, 1990.

Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, D. Ozyurt, and C. Wunsch,
Openad/f: A modular open source tool for automatic differentiation of fortran codes, ACM Transac-
tions on Mathematical Software, 34(4), , 2008.

Visbeck, M., J. Marshall, T. Haine, and M. Spall, Specification of eddy transfer coefficients in coarse-
resolution ocean circulation models, J. Phys. Oceanogr., 27(3), 381–402, 1997.

http://dx.doi.org/10.1029/2001JC000888

BIBLIOGRAPHY 485

Wajsowicz, R., A consistent formulation of the anisotropic stress tensor for use in models of the large-scale
ocean circulation, J. Comput. Phys., 105(2), 333–338, 1993.

Wanninkhof, R., Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res.,
97, 7373–7382, 1992.

Wesson, J. C., and M. C. Gregg, Mixing at camarinal sill in the strait of gibraltar, J. Geophys. Res., 99
(C5), 9847–9878, 1994.

Williamson, D., and J. Olsen, A comparison of semi-langrangian and eulerian polar climate simulations.,
Mon. Wea. Rev., 126, 991–1000, 1998.

Winton, M., A reformulated three-layer sea ice model, J. Atmos. Ocean. Technol., 17, 525–531, 2000.

Yaglom, A. M., and B. A. Kader, Heat and mass transfer between a rough wall and turbulent fluid flow
at high reynolds and peclet numbers., J. Fluid Mech., 62, 601–623, 1974.

Yamada, T., A numerical experiment on pollutant dispersion in a horizontally-homogenious atmospheric
boundary layer., Atmos. Environ., 11, 1015–1024, 1977.

Zhang, J., and W. D. Hibler, III, On an efficient numerical method for modeling sea ice dynamics,
J. Geophys. Res., 102(C4), 8691–8702, 1997.

Zhang, J., W. D. Hibler, III, M. Steele, and D. A. Rothrock, Arctic ice-ocean modeling with and without
climate restoring, J. Phys. Oceanogr., 28, 191–217, 1998.

Zhou, J., Y. Sud, and K.-M. Lau, Impact of orographically induced gravity wave drag in the gla gcm,
Q. J. R. Meteorol. Soc., 122, 903–927, 1995.

	Overview of MITgcm
	Introduction
	Illustrations of the model in action
	Global atmosphere: `Held-Suarez' benchmark
	Ocean gyres
	Global ocean circulation
	Convection and mixing over topography
	Boundary forced internal waves
	Parameter sensitivity using the adjoint of MITgcm
	Global state estimation of the ocean
	Ocean biogeochemical cycles
	Simulations of laboratory experiments

	Continuous equations in `r' coordinates
	Kinematic Boundary conditions
	Atmosphere
	Ocean
	Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms
	Solution strategy
	Finding the pressure field
	Forcing/dissipation
	Vector invariant form
	Adjoint

	Appendix ATMOSPHERE
	Hydrostatic Primitive Equations for the Atmosphere in pressure coordinates

	Appendix OCEAN
	Equations of motion for the ocean

	Appendix:OPERATORS
	Coordinate systems

	Discretization and Algorithm
	Notation
	Time-stepping
	Pressure method with rigid-lid
	Pressure method with implicit linear free-surface
	Explicit time-stepping: Adams-Bashforth
	Implicit time-stepping: backward method
	Synchronous time-stepping: variables co-located in time
	Staggered baroclinic time-stepping
	Non-hydrostatic formulation
	Variants on the Free Surface
	Crank-Nicolson barotropic time stepping
	Non-linear free-surface

	Spatial discretization of the dynamical equations
	The finite volume method: finite volumes versus finite difference
	C grid staggering of variables
	Grid initialization and data
	Horizontal grid
	Vertical grid
	Topography: partially filled cells

	Continuity and horizontal pressure gradient terms
	Hydrostatic balance
	Flux-form momentum equations
	Advection of momentum
	Coriolis terms
	Curvature metric terms
	Non-hydrostatic metric terms
	Lateral dissipation
	Vertical dissipation
	Derivation of discrete energy conservation
	Mom Diagnostics

	Vector invariant momentum equations
	Relative vorticity
	Kinetic energy
	Coriolis terms
	Shear terms
	Gradient of Bernoulli function
	Horizontal divergence
	Horizontal dissipation
	Vertical dissipation

	Tracer equations
	Time-stepping of tracers: ABII

	Linear advection schemes
	Centered second order advection-diffusion
	Third order upwind bias advection
	Centered fourth order advection
	First order upwind advection

	Non-linear advection schemes
	Second order flux limiters
	Third order direct space time
	Third order direct space time with flux limiting
	Multi-dimensional advection

	Comparison of advection schemes
	Shapiro Filter
	SHAP Diagnostics

	Nonlinear Viscosities for Large Eddy Simulation
	Eddy Viscosity
	Mercator, Nondimensional Equations

	Getting Started with MITgcm
	Where to find information
	Obtaining the code
	Method 1 - Checkout from CVS
	Method 2 - Tar file download

	Model and directory structure
	Building MITgcm
	Building/compiling the code elsewhere
	Using genmake2
	Building with MPI

	Running MITgcm
	Output files
	Looking at the output

	Customizing MITgcm
	Parameters: Computational domain, geometry and time-discretization
	Parameters: Equation of state
	Parameters: Momentum equations
	Parameters: Tracer equations
	Parameters: Simulation controls

	Testing
	Using testreport
	Automated testing

	MITgcm Example Experiments
	Full list of model examples
	Directory structure of model examples

	Barotropic Gyre MITgcm Example
	Equations Solved
	Discrete Numerical Configuration
	Code Configuration

	Baroclinic Gyre MITgcm Example
	Overview
	Equations solved
	Discrete Numerical Configuration
	Code Configuration
	Running The Example

	Gyre Advection Example
	Advection and tracer transport
	Introducing a tracer into the flow
	Selecting an advection scheme
	Comparison of different advection schemes
	Code and Parameters files for this tutorial

	Global Ocean MITgcm Example
	Overview
	Discrete Numerical Configuration
	Experiment Configuration

	P coordinate Global Ocean MITgcm Example
	Overview
	Discrete Numerical Configuration
	Experiment Configuration

	Held-Suarez Atmosphere MITgcm Example
	Overview
	Forcing
	Set-up description
	Experiment Configuration

	Surface Driven Convection
	Overview
	Equations solved
	Discrete numerical configuration
	Numerical stability criteria and other considerations
	Experiment configuration
	Running the example

	Gravity Plume On a Continental Slope
	Configuration
	Binary input data
	Code configuration
	Model parameters
	Build and run the model

	Biogeochemistry Tutorial
	Overview
	Equations Solved
	Code configuration
	Running the example

	Global Ocean State Estimation Example
	Overview
	Implementation of the control variable and the cost function
	Code Configuration
	Compiling
	Running the estimation

	Sensitivity of Air-Sea Exchange to Tracer Injection Site
	Overview of the experiment
	Code configuration
	Compiling the model and its adjoint

	Offline Example
	Overview
	Time-stepping of tracers
	Code Configuration
	Running The Example
	A more complicated example

	A Rotating Tank in Cylindrical Coordinates
	Overview
	Equations Solved
	Discrete Numerical Configuration
	Code Configuration

	Software Architecture
	Overall architectural goals
	WRAPPER
	Target hardware
	Supporting hardware neutrality
	WRAPPER machine model
	Machine model parallelism
	Communication mechanisms
	Shared memory communication
	Distributed memory communication
	Communication primitives
	Memory architecture
	Summary

	Using the WRAPPER
	Specifying a domain decomposition
	Starting the code
	Controlling communication

	MITgcm execution under WRAPPER
	Annotated call tree for MITgcm and WRAPPER
	Measuring and Characterizing Performance
	Estimating Resource Requirements

	Automatic Differentiation
	Some basic algebra
	Forward or direct sensitivity
	Reverse or adjoint sensitivity
	Storing vs. recomputation in reverse mode

	TLM and ADM generation in general
	General setup
	Building the AD code using TAF
	The AD build process in detail
	The cost function (dependent variable)
	The control variables (independent variables)

	The gradient check package
	Code description
	Code configuration

	Adjoint dump & restart -- divided adjoint (DIVA)
	Introduction
	Recipe 1: single processor
	Recipe 2: multi processor (MPI)

	Adjoint code generation using OpenAD
	Introduction
	Downloading and installing OpenAD
	Building MITgcm adjoint with OpenAD

	Physical Parameterizations - Packages I
	Using MITgcm Packages
	Package Inclusion/Exclusion
	Package Activation
	Package Coding Standards

	Packages Related to Hydrodynamical Kernel
	Generic Advection/Diffusion
	Shapiro Filter
	FFT Filtering Code
	exch2: Extended Cubed Sphere Topology
	Gridalt - Alternate Grid Package

	General purpose numerical infrastructure packages
	OBCS: Open boundary conditions for regional modeling
	RBCS Package
	PTRACERS Package

	Ocean Packages
	GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization
	KPP: Nonlocal K-Profile Parameterization for Vertical Mixing
	GGL90: a TKE vertical mixing scheme
	OPPS: Ocean Penetrative Plume Scheme
	KL10: Vertical Mixing Due to Breaking Internal Waves
	BULK_FORCE: Bulk Formula Package
	EXF: The external forcing package
	CAL: The calendar package

	Atmosphere Packages
	Atmospheric Intermediate Physics: AIM
	Land package
	Fizhi: High-end Atmospheric Physics

	Sea Ice Packages
	THSICE: The Thermodynamic Sea Ice Package
	SEAICE Package
	SHELFICE Package
	STREAMICE Package

	Packages Related to Coupled Model
	Coupling interface for Atmospheric Intermediate code
	Coupler for mapping between Atmosphere and ocean
	Toolkit for building couplers

	Biogeochemistry Packages
	GCHEM Package
	DIC Package

	Diagnostics and I/O - Packages II, and Post--Processing Utilities
	Diagnostics--A Flexible Infrastructure
	Introduction
	Equations
	Key Subroutines and Parameters
	Usage Notes
	Dos and Donts
	Diagnostics Reference

	NetCDF I/O: MNC
	Using MNC
	MNC Troubleshooting
	MNC Internals

	Fortran Native I/O: MDSIO and RW
	MDSIO
	RW Basic binary I/O utilities

	Monitor: Simulation state monitoring toolkit
	Introduction
	Using Monitor

	Grid Generation
	Using SPGrid
	Example Grids

	Pre-- and Post--Processing Scripts and Utilities
	Utilities supplied with the model
	Pre-processing software

	Potential vorticity Matlab Toolbox
	Introduction
	Equations
	Key routines
	Technical details
	Notes on the flux form of the PV equation and vertical PV fluxes

	Ocean State Estimation Packages
	ECCO: model-data comparisons using gridded data sets
	Generic Cost Function
	Generic Integral Function
	Custom Cost Functions
	Key Routines
	Compile Options

	PROFILES: model-data comparisons at observed locations
	CTRL: Model Parameter Adjustment Capability
	SMOOTH: Smoothing And Covariance Model
	The line search optimisation algorithm
	General features
	The online vs. offline version
	Number of iterations vs. number of simulations

	Under development
	Other Time-stepping Options
	Adams-Bashforth III
	Time-extrapolation of tracer (rather than tendency)

	Previous Applications of MITgcm
	BIBLIOGRAPHY

