2004 Ocean SciencesCite abstracts as Eos Trans. AGU, 84(52),MeetingOcean Sci. Meet. Suppl., Abstract xxxxx-xx,Search Results2003

Your query was: ecco

HR: 0830h
AN: OS31E-13
TE Maintaining an up-to-date efficient adjoint for
ocean state estimation in the the ongoing MIT general
circulation model development.
AU: * Heimbach, P
EM: heimbach@mit.edu
AF: MIT/EAPS, Room 54-1518, Cambridge, MA 02139 United States
AU: Adcroft, A
EM: adcroft@mit.edu
AF: MIT/EAPS, Room 54-1518, Cambridge, MA 02139 United States
AU: Campin, J
EM: jmc@ocean.mit.edu
AF: MIT/EAPS, Room 54-1518, Cambridge, MA 02139 United States
AU: Giering, R
EM: ralf.giering@fastopt.de
AF: FastOpt, Schanzenstr. 36, Hamburg, Germany
AU: Hill, C
EM: cnh@mit.edu
AF: MIT/EAPS, Room 54-1518, Cambridge, MA 02139 United States
AU: Koeni, A
EM: Koenl@ucsd.edu
AF: SIU/UCSD, PORD, Nierenberg Hall 8810 Shell Back Way, La Jolla,
All Menementis D
FM: menemenlis@inl.nasa.gov
AE: IPL/CalTech_MS_300-323_4800_Oak_Grove_Dr_Pasadena_CA
United States
AB: Recent results by the ECCO consortium (Stammer et al., Lee
et al.) have demonstrated the power of the adjoint (Lagrange
Multiplier) method for use in model vs. data synthesis, referred to as
state estimation / data assimilation. The computational technology
that underpins these efforts is generation of the adjoint and tangent
linear of the parallel MIT general circulation model (MITgcm) by
means of automatic differentiation (AD). Here, we describe a
systematic basis in which AD plays a key role for maintaing an up-to-
date differentiable general circulation modeling system. The context is
that of rapid algorithmic evolution of the underlying modeling system
such as improvement of MIIgcm's dynamical kernel, its adaptation to
new grids, in particular the horizonal expanded spherical cube, the
improvement and addition of new parameterization schemes which
are crucial for improving the state estimation system and may enable
the inclusion of new data types. This approach has enabled US to
incorporate various new packages into the derivative code, and

http://www.agu.org/cgi-bin/SFgate/SFgate?language=English&verbose=0&listenv=table&... 1/20/2004

Newly differentiated packages include the Gent/McWilliams

extend its application to a variety of configurations and applications.

parameterization, a bulk formula parameterization and a new sea ice model which is coupled to the MITgcm. Among the new configurations are those which take advantage MITgcm's recently acquired capacity of simulating the atmospheric dynamics, such as a Held-Suarez type calculation. A setup for the expanded spherical cube enables adjoint calculations in a truly global configuration.

UR: http://mitgcm.org

- DE: 4532 General circulation
- DE: 4599 General or miscellaneous
- SC: OS
- MN: 2004 Ocean Sciences Meeting

New Search

