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Abstract

We describe computational aspects of automatic differentiation ap-
plied to global ocean circulation modeling and state estimation. The task
of minimizing a cost function measuring the ocean simulation vs. obser-
vation misfit is achieved through efficient calculation of the cost gradient
w.r.t. a set of controls via the adjoint technique. The adjoint code of the
parallel MIT general circulation model is generated using TAMC or its
successor TAF. To achieve a tractable problem in both CPU and memory
requirements, in the light of control flow reversal, the adjoint code relies
heavily on the balancing of storing vs. recomputation via the checkpoint-
ing method. Further savings are achieved by exploiting self-adjointedness
of part of the computation. To retain scalability of domain decomposition
based parallelism, hand-written adjoint routines are provided. These com-
plement routines of the parallel support package to perform corresponding
operations in reverse mode. The unique feature of the TAF tool which
enables to dump the adjoint state and restart the adjoint integration is
exploited to overcome batch execution limitations on HPC machines for
large-scale ocean and climate simulations. The size of a typical adjoint
application is illustrated for the global ocean state estimation problem.
Results are given by way of example.
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1 Introduction

In one of the most complex Earth science inverse modeling initiatives, the
Estimation of the Circulation and Climate of the Ocean (ECCO) project
is developing greatly improved estimates of the three-dimensional, time-
evolving state of the global oceans [1, 2]. To this end, the project is apply-
ing advanced, mathematically rigorous, inverse techniques [3] to constrain
a state-of-the-art parallel general circulation model, MITgcm [4, 5, 6], with
a diverse mix of observations. What emerges from the ECCO project goals
is an optimization problem that must be solved to estimate and monitor
the state or “climate” of the ocean. Ocean climate is characterized by
patterns of planetary scale ocean circulation, the Gulf Stream current
for example, and by large scale distributions of temperature and salinity.
These quantities can be observed, but only partially, using satellites and
oceanographic instruments. Combining, through a formal optimization
procedure, the fragmentary observations with a numerical model, which
is an a priori expression of the laws of physics and fluid mechanics that
govern the ocean behavior, produces a more complete picture of the ocean
climate. The ECCO optimization problem proceeds by expressing the dif-
ference between a numerical model trajectory and observation from the
actual ocean in terms of a scalar cost, J , thus,

J =
n�

i=1

(Mi − Oi)Wi(Mi − Oi) (1)

where Mi refers to a simulated quantity projected onto the ith obser-
vational data point Oi, with Wi the associated a priori error estimate.
Denoting certain model parameters and state variables (initial/boundary
values) as adjustable ”controls” C, the simulated state M(C), can be
optimized to minimize J over the n observation points. The optimized
controls, Copt, render a numerically simulated ocean state, M(Copt), that
is spatially and temporally complete, and consistent with observations
within their estimated errors.

1.1 Problem size

The size of the ECCO optimization problem is formidable. In recent years,
with increasing observational and computational capabilities, prominent
patterns of naturally occuring intrinsic oceanic and coupled atmosphere-
ocean-cryosphere variability have become widely appreciated, operating
on many time-scales, from days (barotropic motion, e.g. [7]), months
(mesoscale eddies, e.g. [8]), years, (e.g. the El Niño–Southern Oscillation,
ENSO, [9]), decades, (e.g. the North Atlantic Oscillation, NAO, [10]),
to centuries and millennia (thermohaline circulation, THC, e.g. [11]).
Ideally, the optimization must, therefore, encompass processes spanning
decades to centuries, on global scales, simulating them at spatial and
temporal resolutions sufficient to yield state estimates with skill.

Our “smallest” current configuration is characterised by a cost function
that spans nine-years of planetary scale ocean simulation and observation,
operating on 108 elements, and optimized by corrections to a control vec-
tor, C, of size 1.5 × 108. Major observational ingredients include global,
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continuous sea surface height (SSH) data obtained from radar altimeters
on board the TOPEX/Poseidon [12] and the European Remote Sensing
Satellites ERS-1/2 [13] which achieve an accuracy at the 2- to 3-cm level
on many spatial scales [14]. In addition, a variety of hydrographic data
from the World Ocean Circulation Experiment (WOCE) [15] are used to
constrain the model. Currently, the newly available data from the Jason-
1 [16] altimetric mission, and depth profiles of temperature and salinity
from a series of presently 300 (and potentially up to 3000 by the year
2005) autonomous seagoing floats [17] are being added.

The full Jacobian, ∂J

∂C
, for this system contains more than 1016 ele-

ments (108 ·1.5×108) which, even allowing for some sparsity, is fundamen-
tally impractical. Therefore, the reverse mode of automatic differentiation
(AD), which allows the computation of the product of the Jacobian and a
vector without explicitly representing the Jacobian, plays a central role.

1.2 Role of the adjoint and AD

Minimising J , under the side condition of fulfilling the model equations,
leads to a constrained optimization problem for which the gradient ~∇CJ
is used to reduce J iteratively,

min
C

J (C) ⇒ ~∇C J (C, M(C)) = 0 (2)

The constrained problem may be transformed into an unconstrained one
by incorporating the model equations into the cost function (1) via the
method of Lagrange multipliers. Alternatively and equivalently, the gra-
dient may be obtained through rigorous application of the chain rule to
equation (1).

AD [18] exploits this fact in a rigorous manner to produce, from a
given model code, its corresponding tangent linear (forward mode) or
adjoint (reverse mode) model (see e.g. [19]). The adjoint model enables
the gradient (2) to be computed in a single integration. The reverse mode
approach is extremely efficient for scalar-valued cost functions for which
it is matrix free. The full Jacobian is never explicitly calculated and so
the computational cost becomes tractable. In practical terms, we are able
to develop a system that can numerically evaluate (2), for any scalar J ,
in roughly four times the compute cost of evaluating J . At this cost,
reverse mode AD provides a powerful tool that is being increasingly used
for oceanographic and other geophysical fluids applications.

1.3 Paper organization

The results that are emerging from the application of reverse mode AD to
the ocean circulation problem are of immense scientific value. However,
here our focus is on the techniques that we employ to render a compu-
tationally viable system, and on providing examples of the calculations
that are made possible with a competitive, automatic system for adjoint
model development and integration.

The MITgcm algorithm, applications and the models software imple-
mentation in a parallel computing environment are described in section 2.
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INITIALIZE. Define geometry, initial flow and tracer distributions
FOR each time step n DO

PS

Active I/O.

Step forward state. vn = vn−1 + ∆t(G
n− 1

2
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Get time derivatives. G
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END FOR

Figure 1: The MITgcm algorithm iterates over a loop, with two blocks, PS and DS.

A simulation may entail millions of iterations. In PS, time tendencies (G terms) are

calculated from the state at previous time levels (n,n−1, · · · ). DS involves finding a

two-dimensional pressure field ps ensuring the flow v at the next time level satisfies

the continuity. G term calculations for θ (temperature) and S (salinity) have been left

out. These have a similar form to the gv() function and yield the buoyancy, b.

Section 3 discusses the implications for an AD tool and the requirements
of an efficient, scalable reverse mode on a variety of parallel architectures
for rendering the calculation computationally tractable. Applications are
presented in section 4 with an emphasis on computational aspects, rather
than implications for oceanography or climate. An outlook is given in sec-
tion 5. Further discussion of the scientific aspects of this work, is available,
along with extensive data sets at the ECCO website [20]).

2 The MIT General Circulation Model

The M.I.T General Circulation Model (MITgcm) is rooted in a gen-
eral purpose grid-point algorithm that solves the Boussinesq form of the
Navier-Stokes equations for an incompressible fluid, hydrostatic or fully
non-hydrostatic, in a curvilinear framework. The algorithm is described
in [5, 6] (for online documentation and access to the model code, see [21]).

2.1 Prognostic and diagnostic computational phases

The work presented here uses the model’s hydrostatic mode, to integrate
forward equations for, θ (potential temperature), S (salinity), v (velocity
vector) and p (pressure) of the ocean using a two phase approach at each
time-step.

A skeletal outline of the iterative time-stepping procedure that is used
to step forward the simulated fluid state is illustrated in Figure 1. The
two phases PS and DS within each timestep are both implemented using
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(a) (b)

Figure 2: Panel (a) shows a hypothetical domain of total size NxNyNz. The do-
main is decomposed in two-dimensions along the Nx and Ny directions. When-
ever a processor wishes to transfer data between tiles or communicate with other
processors it calls a special function in a WRAPPER support layer. Three per-
formance critical parallel primitives are provided by the WRAPPER (b) By
maintaing transpose forms of these primitives we can efficiently accomodate
parallel adjoint computations.

a finite volume approach. Discrete forms of the continuous equations
are deduced by integrating over the volumes and making use of Gauss’s
theorem. The terms in PS are computed explicitly from information
within a local region. DS terms involve iteration for which an iterative
preconditioned conjugate gradient scheme is used.

2.2 Parallelism

Finite-volumes provide a natural model for parallelism. Figure 2a shows
schematically a decomposition into sub-domains that can be computed
on concurrently. The implementation of the MITgcm code is such that
the PS phase for a single timestep can be computed entirely by local,
on processor operations. At the end of PS communication operations
are performed which update the halo regions. This communication and
DS must complete before the next time-step PS can start. The over-
computations in the halo ensure theat the PS phase can be extended to a
maximum fraction of a full timestep. The implicit step, DS, tightly mixes
computation and communication. Performance critical communications in
MITgcm employ a commuication layer in a custom software library called
WRAPPER [22]. The performance critical primitives in the WRAPPER
communication layer are illustrated in Figure 2b. Significantly, for AD,
the WRAPPER operations are all linear combination and permutations
of distributed data.
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3 The Adjoint of MITgcm

The MITgcm has been adapted for use with the Tangent linear and Ad-
joint Model Compiler (TAMC), and recently its successor TAF (Transfor-
mation of Algorithms in Fortan) developed by Ralf Giering [19], [23], [24].
TAMC is a source-to-source transformation tool. It exploits the chain rule
for computing the derivative of a function with respect to a set of input
variables. Treating a given forward code as a composition of operations –
each line representing a compositional element, the chain rule is rigorously
applied to the code, line by line. The resulting tangent linear (forward
mode) or adjoint code (reverse mode), then, may be thought of as the
composition in forward or reverse order, respectively, of the Jacobian ma-
trices of the full code’s compositional elements. The processed MITgcm
code has about 40k lines and the adjoint code about 37k lines without
comments. TAF and TAMC produce code of the same performance, but
code generation time by TAF is improved by a factor of approximately 5.

While the reverse mode is theroretically extremely efficient in com-
puting gradients with respect to a scalar cost function, a major challenge
is the fact that the control flow of the original code has to be reversed.
In the following we discuss some computational implications of the flow
reversal, as well as issues regarding the generation of efficient, scalable
adjoint code on a variety of parallel architectures.

3.1 Storing vs. Recomputation in Reverse Mode

This is a central issue upon which hinges the overall feasibility of the ad-
joint approach in the present context of large-scale simulation optimiza-
tion and sensitivity studies. The combination of four related elements,

• the reverse nature of the adjoint calculation,

• the local character of the gradient evaluations (tangent at a point),
on which the adjoint operations are performed, for this class of time
evolving problem.

• the nonlinear character of the model equations (such as the equation
of state, the momentum advection, the parametrization schemes)

• conditional code execution involving active variables (IF ... ELSE

IF ... END IF expressions)

require the intermediate model state to be available in reverse sequence.
In principle this could be achieved by either storing the intermediate states
of the computation or by successive recomputing of the forward trajec-
tory throughout the reverse sequence computation. Either approach, in
its pure form, would be prohibitive; storing of the full trajectory is lim-
ited by available fast-access, storage media, recomputation is limited by
CPU resource requirements which scale as the square of the number of
intermediate steps.
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3.1.1 Example: zonal advective flux of meridional momen-

tum

As an example of a nonlinear expression, consider the along x-axis advec-
tive flux of y-component velocity, one element of one term in the momen-
tum equation (at a given vertical level):

F x = U
j

yvi
x (3)

where U
j

y is the advecting volume transport in m3s−1 averaged along the
y axis, and vi

x is the y-component velocity in ms−1, advected along the x-
axis. On the staggered Arakawa C-grid used here [25], the corresponding
code is of the form

AdvectFluxUV(i,j) = 0.25 * [ uTrans(i,j) + uTrans(i,j-1) ]

* [ vVel(i,j) + vVel(i-1,j) ]

The derivative code requires both uTrans(i,j) and vVel(i,j):

aduTrans(i,j) = aduTrans(i,j) + 0.25 * adAdvectFluxUV(i,j)

* [ vVel(i,j) + vVel(i-1,j) ]

advVel(i,j) = advVel(i,j) + 0.25 * adAdvectFluxUV(i,j)

* [ uTrans(i,j) + uTrans(i,j-1) ]

adAdvectFluxUV(i,j) = 0.

(the adjoint code for aduTrans(i,j-1) and advVel(i-1,j) reads similarly
and is omitted here). In the present case, the velocity fields uVel and
vVel are stored prior to computing the momentum equation, whereas the
momentum transports uTrans and vTrans may be readily re-computed
from the available velocity fields.

3.1.2 Handling of storing vs. recomputation by TAMC

TAMC provides two crucial features to balance the amount of recom-
putation vs. storage requirements. First, TAMC generates recomputa-
tions of intermediate values by the Efficient Recomputation Algorithm
(ERA,[26]). Secondly, TAMC generates code to store and read intermedi-
ate values, if appropiate directives have been inserted into the code. This
enables the user to choose between storing and recomputation at every
code level in a very flexible way. In the above example, storing of the
velocity fields is activated by the user through insertion of appropriate
TAMC directives. In contrast, ERA recognizes the efficient recomputa-
tion of the volume flux fields from the given velocity fields and inserts the
corresponding code.

3.1.3 Checkpointing

At the time-stepping level the directives allow for checkpointing that hi-
erarchically splits the time-stepping loop. (cf. also [27], [28]). For the
MITgcm, a three-level checkpointing scheme, ilustrated in Figure 3, has
been adopted
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Figure 3: Schematic view of intermediate dump and restart for 3-level check-
pointing.

lev3 The model trajectory is first subdivided into nlev3 subsections. The
model is then integrated along the full trajectory, and the state
stored at every klev3

i -th timestep .

lev2 In a second step, each “lev3” subsection is divided into nlev2 sub-
sections. The model picks up the last “lev3” saved state vklev3

n−1
and

is integrated forward along the last lev2-subsection, now storing the
state at every klev2

i -th timestep.

lev1 Finally, the model picks up at the last intermediate saved state vklev2
n−1

and is integrated forward in time along the last lev1-subsection.
Within this subsection only, the model state is stored at every timestep.
Thus, the final state vn = vklev1

n
is reached and the model state of all

preceding timesteps along the last “lev1” subsection are available.
Thus, the adjoint can be computed back to subsection klev2

n−1.

This procedure is repeated consecutively for each previous subsection car-
rying the adjoint computation back to initial time klev3

1 .
The 3-level checkpointing requires a total of 3 forward and one adjoint

integration, with the latter taking about 2.5 times a forward integration.
Thus a forward/adjoint sweep requires a total of roughly 5.5 times a for-
ward integration. For a given decomposition of the total number of time
steps ntimeSteps = 77, 760 (corresponding to a 9 year integration at an
hourly timestep) into a hierarchy of 3 levels of sub-intervals n1 = 24,
n2 = 30, n3 = 108 with ntimeSteps = n1 · n2 · n3, the storing amount is
drastically reduced. Pure recomputation would inccur a computation cost
of ntimeSteps = 77, 7602.

The full model state of the two outer loops are stored to disk using an
explicit TAMC directive, corresponding to a storing factor of n2+n3 = 138
times the dimension of the model state. The state here is defined as the set
of quantities required to pick up the model integration at an intermediate
timestep. The procedure for the innermost checkpointing loop differs from
those of the two outer loops. First, required fields are stored to memory
rather than to file to avoid I/O in this phase of computation. Second,
insertions of store directives at the innermost loop are more intricate and
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level3, level2 (file)

basic model state 14
INCLUDE CD CODE 7
EXACT CONSERV 2
INCLUDE EXTERNAL FORCING PACKAGE 18

level1 (common)

model 41

calc phi hyd 2
convective adjustment 6
dynamics 7
thermodynamics 26

KPP 21

kppmix 8
bldepth 6
blmix 2
dynamics 1
thermodynamics 4

GM/Redi 29

gmredi calc tensor 6
gmredi slope limit 13
gmredi xtransport 2
gmredi ytransport 2
dynamics -
thermodynamics 6

EXF 22

exf mapfields 4
the main loop 18

Table 1: Number of fields stored to disk (level3, level2) and held in main memory
(level1) for the basic model and additional packages.

require detailed knowledge of the code. Rather than storing the model
state at each timestep, only those variables are stored, which appear in
nonlinear expressions or state-dependent conditions. Furthermore, storing
is invoked only if recomputation of these variables is expensive (uVel, vVel
in the above example), otherwise they are recomputed (uTrans, vTrans).
Note that this approach is more efficient than a storing of all input vari-
ables at the subroutine level. In most cases, only one specific variable at a
specific place is needed rather than the full subroutine input fields. Note
also, that multiple storing of the same variable within a subroutine may
be necessary if this variable appears in several nonlinear expressions and
changes its value in between. Storing efficiency relies crucially on identify-
ing the right variable and the right place to store. Finally, directives may
have to be accompanied (or may be avoided), occasionally, by additional
measures to break data dependency flows. For instance, a DO-loop which
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contains multiple nonlinear state-dependent assignments of a variable may
be broken into several loops, to enable intermediate results to be stored
before further state-dependent calculations are performed [19].

Table 1 gives a summary of the number of arrays stored at the different
checkpointing levels.

3.2 Adjoint dump and restart

Most high performance computing (HPC) centres require the use of batch
jobs for code execution. Limits in maximum available CPU time and mem-
ory may prevent the adjoint code execution from fitting into any of the
available queues. The MITgcm itself enables the split of the total model
integration into sub-intervals through standard dump/restart of/from the
full model state. For a similar procedure to run in reverse mode, the
adjoint model requires, in addition to the model state, the adjoint model
state, i.e. all variables with derivative information, and which are needed
in an adjoint restart. For this to work in conjunction with automatic
differentiation, an AD tool needs to perform the following tasks:

1. identify an adjoint state, i.e. those sensitivities whose accumulation
is interrupted by a dump/restart and which influence the outcome
of the gradient. Ideally, this state consists of

• the adjoint of the model state,

• the adjoint of other intermediate results (such as control vari-
ables, cost function contributions, etc.)

• bookkeeping indices (such as loop indices, etc.)

2. generate code for storing and reading adjoint state variables

3. generate code for bookkeeping , i.e. maintaining a file with index
information

4. generate a suitable adjoint loop to propagate adjoint values for dump/restart
with a minimum overhad of adjoint intermediate values.

TAF is presently unique among existing AD tools to provide these capabil-
ities. Through a simple TAF directive it generates code for divided adjont
execution. Taking advantage of its checkpointing algorithm, the outer-
most checkpoints are also defined as dump/restart points for the adjoint
state. Thus, forward/adjoint code execution can be limited to one segment
of the length of the outermost checkpointing interval ∆ = klev3

i − klev3
i−1 . In

addition to dumping the model state vklev3
i

and the adjoint state advklev3
i

,

the bookkeeping indices of the outermost checkpoint loop is saved to file
for the start and the end of the interval.

In a consecutive adjoint code execution, the model state is recomputed
from vklev3

i−1
over one outer checkpoint interval to klev3

i . Then the adjoint

state advklev3
i

is read, and the accumulation of adjoint sensitivities resumes

up to klev3
i−1 , at which place advklev3

i−1
is dumped.

The divided adjoint capability is of crucial practical importance, since
it allows to run large scale adjoint ocean and climate models on HPC
machines despite their strict batch execution limitations.
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3.3 Exploiting formal self-adjointness

The character of the DS computational phase has important implications
for adjoint computations. The equation solved in DS, is self-adjoint. Ex-
ploiting this fact in reverse mode, no derivative code needs to be generated.
Instead the original, optimized code is invoked by providing a TAMC di-
rective, thus saving substantial computing cost. Note that an iterative
conjugate gradient method is implemented for the 2-dimensional, global
elliptic problem. An explicit adjoint of this routine would have required
substantial storing of required variables for each intermediate solver iter-
ation (typically 50 to 200).

3.4 Parallel Implementation

In the following we discuss in more detail issues related to the scalability
of the model and its adjoint. The approach chosen to generate efficient
scalable adjoint code consists of retaining the parallel design of the forward
code for the adjoint.

3.4.1 Adjoints of parallel support routines

In order to do so, substantial intervention into the original code was re-
quired to enable correct adjoint code generation. Table 2 summarizes the
main parallel support primitives and their corresponding adjoint.

3.4.1.1 Exchanges between neighboring tiles Domain decom-
position is at the heart of the MITgcm’s parallel implementation. Each
compositional unit (tile) representing a virtual processor consists of an
interior domain, truly owned by the tile and a halo region, owned by a
neighboring tile, but needed for the computational stencil within a given
computational phase. By means of overcomputing in the halo region the
PS computational phase within which no communication is required can
be extended to a large fraction of the full timestep phase. Following
the PS phase, a communication intensive DS phase ensues during which
processors will make calls to WRAPPER functions which can use MPI,
OpenMP, or combination of both to communicate data between tiles (so-
called exchanges) in order to keep the halo regions up-to-date. Further-
more, a global elliptic problem is solved which invokes global sum opera-
tions. The separation into extensive, uninterrupted computational phases
and minimum communication phases controlled by the WRAPPER is an
important design feature for efficient parallel adjoint code generation. The
adjoint code maintains the separation between communication-intensive
PS phase and communictation-intensive DS phase (but in reverse order,
and with appropriately modified function semantics). In addition, the use
of WRAPPER functions is maintained by providing to each function a
corresponding hand-written adjoint WRAPPER function. TAMC recog-
nizes when and where to include these routines by means of directives
provided by the user.

12



operation/primitive forward reverse
• communication (MPI,...): send & assign ←→ receive & accumulate
• arithmetic (global sum,...): gather ←→ scatter
• active parallel I/O: read & assign ←→ write & accumulate

Table 2: Summary of parallel support primitives and their hand-written adjoint.

3.4.1.2 Global arithmetric primitives Operations within the
DS communication phase, for which a processor requires data outside
of the overlap region of neighboring processors, communication libraries
must be used, such as MPI or OpenMP. So far, all global operations could
be decomposed into arithmetic elements involving the global sum as the
only global operation (major applications in the context of the MITgcm
involve the elliptic solver, and global averages e.g. when accumulating a
sum over least square cost function). WRAPPER routines exist, which
adapt the specific form of the global sum primitive to a given platform.
Corresponding adjoint routines were written ’by hand’, and directives to
use these routines are provided to TAMC.

3.4.1.3 Active file handling on parallel architectures Fig-
ure 1 also shows an isolated I/O phase that deals with external data inputs
that affect the calculation of J and ∂J

∂C
. This isolation of “active” I/O

simplifies AD code transformations. Read and write operations in forward
mode are acompanied by corresponding write and read operations (plus
variable reset), respectively, in adjoint mode required for active variables.
The MITgcm possesses a sophisticated I/O handling package to enable a
suite of global or local (tile- or processor based) I/O operations consistent
with its parallel implementation. Adjoint support routines were written
to retain compatibility in adjoint mode with both distributed memory and
shared memory parallel operation, as implemented in the I/O package of
the WRAPPER.

3.4.2 Analysis of model and adjoint scaling

By considering the algorithm and the details of the scalable formulation
described above we can make some estimates of likely scaling for the
different problem sizes as a function of key computational parameters.

3.4.2.1 PS phase: We first consider the prognostic phase. If we
assume that the time to update the halo regions is proportional to their
size and that the compute time is proportional to the effective domain
size. Then we can write an approximate formula 1 for the time, TPS, to

1The formula will only be approximate because there are second order effects that mean
that updating large halo regions is more efficient than updating small regions and similarly
computing efficiency can vary with tile size and aspect ratio. Nevertheless the formula em-
ployed does give reasonable insights into scalability.
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complete a PS cycle

TPS = τ̄flopsNPSopsNrNh� ��� �
TPScomp

+ τPSexchNPSexchNrOhaloLhalo� ��� �
TPSexch

(4)

where

τ̄flops per grid point single arithmetic operation time
τ̄flops = n̄ τflops

NPSops number of lines of arithmetic operations
NPSops ∼ 2000

n̄ average number of flops per code line
Nr number of vertical layers
Nh number of points in horizontal tile, including halo

Nh =
�

Ñx

Px
+ 2Ohalo � �

Ñy

Py
+ 2Ohalo �

τPSexch time of per grid point exchange operation
NPSexch number of exchanged fields during PS

Ohalo width of halo region
Lhalo tile edge length, including halo

Lhalo = 2
�

Ñx

Px
+ 2Ohalo � + 2

�
Ñy

Py
+ 2Ohalo �

In essence, TPS is determined by the computational phase TPScomp and
the ensueing communication phase TPSexch. The former is obtained by
estimating the number of lines containing arithmetic operations NPSops,
the average number of flops per line, and the field dimension NrNh. The
latter is obtained through the number of exchanges NPSexch times the
dimension of the exchanged fields and their overlaps (see the online doc-
umentation [21] for more details).

3.4.2.2 The DS phase: For DS, the diagnostic phase a similar
estimation model can be made. This time however we need to account for
additional global operations which sum up a scalar over all processors to
calculate a dot product needed as part of the conjugate gradient solution
procedure. The preconditioned conjugate gradient algorithm is a common
procedure in codes designed for parallel computation. In ocean modeling
it is widely used to solve for the surface pressure/height field. Accounting
for the fact that is global connection established through a dot product
and adjusting for the fact that the hydrostatic case we are considering
only entails a two-dimensional Laplacian, yields formulae for the timing
and scaling of the DS stage:

TDS = NDSiter · [ τ̄flopsNDSopsNh� ��� �
TDScomp

+ τDSexchNDSexchOhaloLhalo� ��� �
TDSexch

+ τDSsumNDSsumlog2(Np) ]� ��� �
TDSsum

(5)

In essence, the estimate is obtained as the sum of computations TDScomp,
exchanges TDSexch, and global sums TDSsum for evaluating a dot product
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for each iteration of the conjugate gradient solver times the number of
iterations required for convergence NDSiter.

3.4.2.3 Adjoint model: The scaling of the adjoint model is to be
compared to the total time

T = TPS + TDS

We limit our analysis to the innermost checkpointing loop. We already
discussed the occurence of a factor of N incurred by the N -level check-
pointing scheme, in our case N = 3 (an additional term comes through
the I/O of the model state from/to disk by the outer checkpointing loops).
Crucially, the adjoint code maintains

• domain decomposition

• the separation between PS and DS phase,

The timing for the adjoint code may thus again be split into

adT = adTPS + adTDS

We note that in view of the self-adjointness of the elliptic solver, the
estimate for adTDS is identical to that of TDS. We can thus limit our
analysis to the term adTPS. It is difficult to give some generally valid
precise estimate that would be based on forward code parameters only.
This is because the complexity of the adjoint statement depends on the
operations involved in the forward code statement. An upper bound of
achievable scaling for an efficient adjoint may, nevertheless, be given. We
first propose an equation and then discuss the contributions:

ad TPS = TPScomp · { 1 + γaccum + γreset + γrecomp + γnonlin }

+ Tstore + TPSexch

(6)

The 3 major contributions thus come from (i) TPScomp itself which is aug-
mented by a sum of factors � i

γi, (ii) Tstore, a new term for the storing
required for nonlinear and active variable-dependent conditional expres-
sions, and (iii) TPSexch, which remains unchanged, since the exchange
pattern is unaltered and thus does not need to be discussed (we neglect
here the slight difference in the number of FLOPs between, e.g. a gather
vs. scatter, or a send vs. receive expression).

We first consider the term Tstore. In keeping with the previous ap-
proach, an estimate may be given by

Tstore = 2τflopsNstoreNrNh

The number of required storing per timestep in the innermost checkpoint-
ing loop can be inferred from Table 1 for the basic model and enhanced
versions using different parameterization packages.

We next consider the factors γ which contribute to the adjoint com-
putation in excess of the model computation (a comprehensive collection
of adjoint code for various operations may be found in [19])
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γaccum In many cases, the accumulative character of the adjoint operation
leads to an increase of the number of FLOPs of the adjoint statement
as compared to the original statement. Two examples illustrate this:

(a) The following operation adds a FLOP to the adjoint statement:

original y = c x , c passive
adjoint adx = adx + c ady

(b) The following operation generates 2 lines of adjoint code:

original y(i, j) = c1 x(i, j) + c2 x(i, j + 1)
adjoint adx(i, j + 1) = adx(i, j + 1) + c2 ady(i, j)

adx(i, j) = adx(i, j) + c1 ady(i, j)

It should, however, be noted that arithmetic statements which
involve passive variables only, can be discarded altogether in
the adjoint calculation. In summary, an upper bound would be
γaccum = 2, but a more realistic estimate would be somewhat
less than 1.

γreset All expressions, except those of recursive form x = f(x, y, . . .), re-
quire the adjoint of the original l.h.s. variable to be reset (new
assignments break dependency flow). Thus, in the above example
(b), the adjoint statements have to be followed by a reset

ady(i, j) = 0.

Again, only a fraction of the number of arithmetic operations in
the code will need this statement. Furthermore, for each line of
arithmetic operations which comprises an average of n̄ FLOPs the
resetting consists of only one operation. Thus, an upper bound
would be γreset = 1/n̄, but a number less than this is likely.

γrecomp This factor refers to efficient recomputations. An example is the
volume transport uTrans introduced in Section 3.1.1, where it was
needed in an adjoint operation. Since the variable uVel is avail-
abe (through store/restore), uTrans can be readily computed as
the product of the velocity field and its areal element, uTrans =

uvel*xa. We estimate γrecomp to be of the order of 0.2. Note that
in the absence of appropriate storing/restoring, this factor could,
in the best case go up to Nstore ∼ 40 to 100 or, in the worst case,
when recomputations occur within loops over the domain, to N 2

h ∼
(Nx · Ny)2.

γnonlin For nonlinear expressions, the product rule is invoked, increasing the
number of arithmetic operation compared to the original code (see
Section 3.1.1). If Nnonlin refers to the number of lines involving non-
linear expressions and Nops the total number of lines of arithmetic
operations, a very rough estimate for γnonlin would be Nnonlin/Nops.
With Nnonlin being on the order of the number of required store
directives in the innermost checkpointing loop, Nnonlin ∼ Nstore,
which is between 40 and 100, we obtain γnonlin ∼ 1/20
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Figure 4: Mean changes in heat flux relative to the NCEP first guess fields
(taken from [1]).

4 Applications

4.1 Global Ocean State Estimation

The model state of the underlying global estimation problem consists of 17
3-D and 2-D fields at a 1◦×1◦ horizontal resolution and 23 vertical layers,
yielding a model state of 5,659,200 elements which are updated at each
time step (note, that a truly eddy-resolving setup would require a much
higher horizontal resolution of about 1/10◦ × 1/10◦). The model is run
over a nine-year period between 1992 and 2000 at an hourly timestep. It is
forced twice daily with realistic air-sea surface fluxes of momentum, heat
and freshwater, provided by the National Centers for Environmental Pre-
diction (NCEP) [29]. The inverse method iteratively reduces the model
vs. data misfit (1), by successive modification to the controls, C, which
consist of 3-dimensional initial temperature and salinity distributions, as
well as time-varying surface forcing fields. To infer the update in the con-
trol variables, the cost gradient (2), is subject to a quasi-Newton variable
storage line search algorithm [30]. The updated control variables serve as
improved intial and boundary conditions in a consecutive forward/adjoint
calculation. Thus, ~∇CJ , the outcome of the adjoint calculation, is a cen-
tral ingredient for the optimization problem. By way of example, Figure
4, taken from [1], depicts the surface heat flux correction estimated from
the optimization. The mean changes of the flux relative to the NCEP
input fields are large over the area of the Gulf Stream and in the Eastern
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Figure 5: The sensitivity, ∂J
∂θ

, of the annual mean North Atlantic heat transport
at 29◦N, J , to changes in temperature, θ, at the ocean surface. At point
“a” a persistent change in θ of +1◦ will produce a 1.2 · 1012 Watt increase in
annual mean poleward heat transport. The same change at point “b” produces
a 0.8 · 1012 Watt decrease (taken from [31]).

tropical Pacific. The heat flux corrections inferred here were shown to
agree with independent studies of the NCEP heat flux analyses.

4.2 Sensitvity Analysis

Complementary to the estimation problems, the first adjoint sensitivity
studies with a full general circulation model have been performed with
the MITgcm [31], aiming at interpreting the adjoint or dual solution of
the model state. As an example, Figure 5 depicts the sensitivity of the
North Atlantic annual mean heat transport at 29◦N to changes in surface
temperature over a 1 year integration period, starting January 1, 1993.

The kinematic effect of advection of temperature anomalies in the
western boundary current is readily apparent from the large upstream
sensitivity pattern. Over the 1 year integration period a temperature
anomaly can be carried by a 10 cm/s zonal velocity field over a 3000 km
distance. Explaining the sensitivities in the interior ocean and off the
African coast is more subtle, requiring the consideration of the dynamical
effect of temperature and salinity anomalies on the density field and the
corresponding changes in sea level.
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5 Summary and Outlook

Reverse mode AD applications emerge as a powerful tool to address a suite
of ocean science issues. Crucial features are efficient recomputation algo-
rithms and checkpointing. Scalability of the adjoint code, maintained by
hand-written adjoint functions, complements parallel support functions
of the forward code. These features render computationally tractable ad-
joint code, despite the flow reversal in adjoint mode. Applied to the global
time-dependent ocean circulation estimation problem, the code has been
successfully used to solve a gigantic optimization problem. Complemen-
tary, a host of physical quantities can be efficiently and rigorously investi-
gated in terms of their sensitivities by means of the dual solution provided
by the cost gradient, thus providing novel insight into kinematical and dy-
namical mechanisms. Further reverse mode applications play a an equally
important role in oceanographic research, and are being pursued using the
MITgcm and its adjoint. They include optimal perturbation/singluar vec-
tor analyses in the context of investigating atmosphere-ocean coupling. A
natural extension of the state estimation problem is the inclusion of es-
timates of the errors of the optimal controls. The computation of the
full error covariance remains prohibitive, but dominant structures may
well be extracted from the Hessian matrix. As ambitions grow the ECCO
group has recently switched to the TAF tool, the successor of TAMC
which has enhanced features. Furthermore, ECCO supports efforts of the
Adjoint Compiler Technology & Standards (ACTS) project to increase
accessibility to and development of AD algorithms by a larger community
through the definition of a common intermediate algorithmic platform,
within which AD algorithms can be easily shared among different devel-
opers and tools.
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