C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_dst3fl_adv_x.F,v 1.6 2004/09/24 16:53:45 jmc Exp $
C $Name: $
#include "GAD_OPTIONS.h"
SUBROUTINE GAD_DST3FL_ADV_X(
I bi,bj,k,deltaT,
I uTrans, uVel,
I maskLocW, tracer,
O uT,
I myThid )
C /==========================================================\
C | SUBROUTINE GAD_DST3FL_ADV_X |
C | o Compute Zonal advective Flux of Tracer using |
C | 3rd Order DST Sceheme with flux limiting |
C |==========================================================|
IMPLICIT NONE
C == GLobal variables ==
#include "SIZE.h"
#include "GRID.h"
#include "GAD.h"
C == Routine arguments ==
INTEGER bi,bj,k
_RL deltaT
_RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL uVel(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
_RS maskLocW(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL uT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
INTEGER myThid
C == Local variables ==
C uFld :: velocity [m/s], zonal component
INTEGER i,j
_RL Rjm,Rj,Rjp,cfl,d0,d1,psiP,psiM,thetaP,thetaM
_RL uFld
DO j=1-Oly,sNy+Oly
uT(1-Olx,j)=0.D0
uT(2-Olx,j)=0.D0
uT(sNx+Olx,j)=0.D0
DO i=1-Olx+2,sNx+Olx-1
Rjp=(tracer(i+1,j)-tracer( i ,j))*maskLocW(i+1,j)
Rj =(tracer( i ,j)-tracer(i-1,j))*maskLocW( i ,j)
Rjm=(tracer(i-1,j)-tracer(i-2,j))*maskLocW(i-1,j)
c uFld = uVel(i,j,k,bi,bj)
uFld = uTrans(i,j)*recip_dyG(i,j,bi,bj)
& *recip_drF(k)*recip_hFacW(i,j,k,bi,bj)
cfl=abs(uFld*deltaT*recip_dxC(i,j,bi,bj))
d0=(2.D0-cfl)*(1.D0-cfl)*oneSixth
d1=(1.D0-cfl*cfl)*oneSixth
c thetaP=0.D0
c IF (Rj.NE.0.D0) thetaP=Rjm/Rj
thetaP=Rjm/(1.D-20+Rj)
psiP=d0+d1*thetaP
psiP=max(0.D0, min(min(1.D0,psiP),
& (1.D0-cfl)/(1.D-20+cfl)*thetaP))
thetaM=Rjp/(1.D-20+Rj)
c thetaM=0.D0
c IF (Rj.NE.0.D0) thetaM=Rjp/Rj
psiM=d0+d1*thetaM
psiM=max(0.D0, min(min(1.D0,psiM),
& (1.D0-cfl)/(1.D-20+cfl)*thetaM))
uT(i,j)=
& 0.5*(uTrans(i,j)+abs(uTrans(i,j)))
& *( Tracer(i-1,j) + psiP*Rj )
& +0.5*(uTrans(i,j)-abs(uTrans(i,j)))
& *( Tracer( i ,j) - psiM*Rj )
ENDDO
ENDDO
RETURN
END