C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vi_u_coriolis.F,v 1.8 2005/04/28 14:57:22 jmc Exp $
C $Name: $
#include "MOM_VECINV_OPTIONS.h"
SUBROUTINE MOM_VI_U_CORIOLIS(
I bi,bj,k,
I vFld,omega3,hFacZ,r_hFacZ,
O uCoriolisTerm,
I myThid)
IMPLICIT NONE
C *==========================================================*
C | S/R MOM_VI_U_CORIOLIS
C | o Calculate meridional flux of vorticity at U point
C *==========================================================*
C == Global variables ==
#include "SIZE.h"
#include "EEPARAMS.h"
#include "GRID.h"
#include "PARAMS.h"
C == Routine arguments ==
INTEGER bi,bj,K
_RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RS hFacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL uCoriolisTerm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
INTEGER myThid
C == Local variables ==
LOGICAL use_original_hFac
INTEGER I,J
_RL vBarXY,vort3u,Zp,Zm
_RS epsil
PARAMETER ( use_original_hFac=.FALSE. )
epsil = 1. _d -9
DO J=1-Oly,sNy+Oly-1
DO I=2-Olx,sNx+Olx
IF ( use_original_hFac ) THEN
vBarXY=0.25*(
& vFld( i , j )*dxG( i , j ,bi,bj)*hFacS( i , j ,k,bi,bj)
& +vFld( i ,j+1)*dxG( i ,j+1,bi,bj)*hFacS( i ,j+1,k,bi,bj)
& +vFld(i-1, j )*dxG(i-1, j ,bi,bj)*hFacS(i-1, j ,k,bi,bj)
& +vFld(i-1,j+1)*dxG(i-1,j+1,bi,bj)*hFacS(i-1,j+1,k,bi,bj))
IF (upwindVorticity) THEN
IF (vBarXY.GT.0.) THEN
vort3u=omega3(I,J)*r_hFacZ(i,j)
ELSE
vort3u=omega3(I,J+1)*r_hFacZ(i,j+1)
ENDIF
ELSE
vort3u=0.5*(omega3(i,j)*r_hFacZ(i,j)
& +omega3(i,j+1)*r_hFacZ(i,j+1))
ENDIF
ELSEIF ( SadournyCoriolis ) THEN
Zm=0.5*(
& vFld( i , j )*dxG( i , j ,bi,bj)*hFacS( i , j ,k,bi,bj)
& +vFld(i-1, j )*dxG(i-1, j ,bi,bj)*hFacS(i-1, j ,k,bi,bj) )
Zp=0.5*(
& vFld( i ,j+1)*dxG( i ,j+1,bi,bj)*hFacS( i ,j+1,k,bi,bj)
& +vFld(i-1,j+1)*dxG(i-1,j+1,bi,bj)*hFacS(i-1,j+1,k,bi,bj) )
IF (upwindVorticity) THEN
IF ( (Zm+Zp) .GT.0.) THEN
vort3u=Zm*r_hFacZ(i, j )*omega3(i, j )
ELSE
vort3u=Zp*r_hFacZ(i,j+1)*omega3(i,j+1)
ENDIF
ELSE
Zm=Zm*r_hFacZ(i, j )*omega3(i, j )
Zp=Zp*r_hFacZ(i,j+1)*omega3(i,j+1)
vort3u=0.5*( Zm + Zp )
ENDIF
vBarXY=1.
ELSE
c-- test a different formulation (relatively to hFac)
vBarXY=0.5*(
& vFld( i , j )*dxG( i , j ,bi,bj)*hFacZ(i,j)
& +vFld(i-1, j )*dxG(i-1, j ,bi,bj)*hFacZ(i,j)
& +vFld( i ,j+1)*dxG( i ,j+1,bi,bj)*hFacZ(i,j+1)
& +vFld(i-1,j+1)*dxG(i-1,j+1,bi,bj)*hFacZ(i,j+1)
& )/MAX( epsil, hFacZ(i,j)+hFacZ(i,j+1) )
IF (upwindVorticity) THEN
IF (vBarXY.GT.0.) THEN
vort3u=omega3(i,j)
ELSE
vort3u=omega3(i,j+1)
ENDIF
ELSE
vort3u=0.5*(omega3(i,j)+omega3(i,j+1))
ENDIF
ENDIF
IF (useJamartMomAdv)
& vBarXY = vBarXY * 4. _d 0 * hFacW(i,j,k,bi,bj)
& / MAX( epsil, hFacS( i , j ,k,bi,bj)+hFacS(i-1, j ,k,bi,bj)
& +hFacS( j ,i+1,k,bi,bj)+hFacS(i-1,j+1,k,bi,bj) )
uCoriolisTerm(i,j)=
& +vort3u*vBarXY*recip_dxC(i,j,bi,bj)*_maskW(i,j,k,bi,bj)
cph *note* put these comments after end of continued line
cph to ensure TAMC compatibility
C high order vorticity advection term
c & ...
C linear Coriolis term
c & +0.5*(fCoriG(I,J,bi,bj)+fCoriG(I,J+1,bi,bj))*vBarXY
C full nonlinear Coriolis term
c & +0.5*(omega3(I,J)+omega3(I,J+1))*vBarXY
C correct energy conserving form of Coriolis term
c & +0.5*( fCori(I ,J,bi,bj)*vBarY(I ,J,K,bi,bj) +
c & fCori(I-1,J,bi,bj)*vBarY(I-1,J,K,bi,bj) )
C original form of Coriolis term (copied from calc_mom_rhs)
c & +0.5*(fCori(i,j,bi,bj)+fCori(i-1,j,bi,bj))*vBarXY
ENDDO
ENDDO
RETURN
END