MiTgcm Development HOWTO

Ed Hill 1l
eh3@mit.edu

Revision History

Revision 0.01 2003-08-07 Revised by: eh3

Initial version.
Revision 0.02 2010-01-21 Revised by: jmc

Update links.

Revision 0.03 2010-04-25 Revised by: jmc

Add subsection "Developer settings" (under CVS Repository).
Revision 0.04 2011-04-24 Revised by: jmc

Update subsection "The verification suite”.

This document describes how to develop software for the MITgem project.

Table of Contents

1. Introduction 3
1.1. New Versions of ThiS DOCUMENL.......cccuieiuiiiiieiieeiieeitieeieeie et e steeteereesteessbeebeebeesssessseesseesssessseesseesssesseensses 3

1.2. Feedback and COITECHIONSccveeuieitieiieeiteerieestteeiteesteestreeteeseesseeasseesseesseasssaasseesseesssassseenseesssesssessessssensesnnses 3

2. Background 3
2.1, USET IMIANUALtiiiieeiii ettt ettt et et e st e st eebe e beesebeesseesseessaeasseessaessseasseesseensaesssassseensaenssesssesnsennseenseean 3

2.2 PIOTEQUISILES ..ccuvetteutentiettetieteete sttt ettt ettt ettt s h e et e sb e e et et e eb e e st e eb e e st e st e eb e et e e bt es s et e ebeentesbeemtenbeebeenbenbeeneenbeeae 3

3. CVS Repository 3
T I 17 £ L SO OO OSSPSR 3

3.2 BIANCRES ..ottt ettt b e bt a e s bbbt ettt e b et bt e s bt et b et et eae 4

3.3, DEVEIOPET SELLINES ..c.eveeurieiieriieeieertieniteeteeteesttesteeteebeessteesseesteessseassesnseessaesssesnseenseenssessseensaesseesssesnseenseenseenn 4

3.4, Main COAE AEVEIOPIMENLeevuviiiieiieriieeieeiterite ettt et e stteete et e s ttesabeeabeesbaesabessseenbeesstesssesnsaesasesssesnseenseenseens 5

4. Coding for MITgcm 6
4.1 BUILA TOOLS ..ottt ettt ettt ettt et eat et sae et bt e s et ebe et sa e entenaesaeesnenbeas 7
4.1.1. The genmake2 UHILY ...ccccoeiiiiiieiiieteese ettt ettt sttt e st et e e bt e sbtesabeebeesbeesasesseenne 7

4.1.2. USING the MAKE E1 L .tiruierieriieriieniiestiesttesite sttt eteesttesteesabeesteesbeesate e bt esbeesateenbeebeesstesnseenseessaessesseenne 9

4.2, The VETIfICAtION SUILE......eiiuiiiiiiiiertie ittt ettt et e sb e st eat e e bt e s bt e sate s bt e bt e satesabeebeesbtesabeenseenseesas 10
4.2.1. Test-experiment Directory CONLENLc..cecveviirieriiririenienieteeeeee ettt ene e e eee 10

4.2.2. The testreport ULLY ...t 12

4.2.3. The do_tSt_2+42 ULIILY c.eeieiieieieeeeesee ettt sttt e e st et s ae et e seeseenseeneenes 14

4.3. Creating MITZCm PaCKAZEScceoouiriiiiiiiiieieeee ettt st 14

5. Chris’s Notes... 14

6. Editing the Documentation 19
6.1. Getting the DOCS and COAE..........eoiuiiiiiiiiiiiieiieeteee ettt sttt et e sttt e et e s bt e sabeebe e beesatesaseenbes 19
6.2. Editing the DOCUMENTATION.c..c.eiitiiiiiieiirieiceceteee ettt sttt ettt e st s n e aeeseesaeennen 19

6.3. Building the DOCUMENTALIONc..cooueiiiiiiiieiiceteieeeteee ettt sttt ettt e n e e e ennes 20

1. Introduction

The purpose of this document is to help new developers get "up to speed" with MITgcm development.

1.1. New Versions of This Document

You can obtain the latest version of this document online (http://mitgcm.org/public/docs.html) in various formats.

1.2. Feedback and corrections

If you have questions or comments about this document, please feel free to contact the authors (mailto:MITgcm-
support@mitgcm.org).

2. Background

2.1. User Manual

Before jumping into development, please familiarize yourself with the MITgem user manual
(http://mitgcm.org/public/docs.html). This document contains volumes of useful information and is included here by
reference.

2.2. Prerequisites

To develop for MITgcem project you will need a UNIX or UNIX-like set of build tools including the following:
CVS client, make or (preferably) GNU make, FORTRAN compiler, C compiler, [ba]sh and [t]csh shells, PERL, LaTeX and
LaTeX2HTML

Essentially all of the work described here has been tested on recent versions of Red Hat Linux (eg. 7.3 through 9).
Except where noted, all shell commands will be provided using bash syntax.

3. CVS Repository

3.1. Layout

non

Unlike many open source projects, the MITgem CVS tree does not follow a simple "src", "docs", "share", and "test" di-
rectory layout. Instead, there are multiple higher-level directories that each, to some extent, depend upon the presence
of the others. The tree currently resembles:

gcmpack/
CVSROOT ~hidden-

MITgcm Development HOWTO

MITgcm code
bin empty
doc basic developpment documentation
eesupp execution environment support code (wrapper)
exe empty
jobs runtime shell scripts for
various platforms (not maintained)
lsopt line search
model main dynamics (core)
optim line search interface
pkg alternate and optional numerics, etc.
tools scripts to build (and test)
utils pre/post processing tools (matlab, ..)
verification standard regression tests + examples
+ documented examples (tutorials)
tutorial_examples (only in releasel branch)
MITgcm_contrib contributed code
acesgrid.org build acesgrid web site
development experimental stuff
gfd_1lab -7-
manual source of MITgcm documentation
mitgcm.org build web site
old_develop old and early development source
misc —-?-
models -7-
packages —-?-
preprocess —-?-
pdfs some pdfs
planetinabottle.org unfinished web site
WWW.E&CCO—group.org build ecco web site ?

3.2. Branches

As shown in the online ViewCVS-generated tree (http://mitgcm.org/viewvc/MITgem/MITgem/model/src/forward_step.F?view=graph),
the MITgcm codebase is split into branches or "lines" under which development proceeds. The main line of
development is referred to as the "MAIN" version of the code.

Periodically, a "Release" branch is formed from the "MAIN" development branch. This is done in order to create
a relatively stable reference point for both users and developers. The intent is that once a release branch has been
created, only bug-fixes will be added to it. Meanwhile, development (which might "break" or otherwise render invalid
the documentation, tutorials, and/or examples contained within a release branch) is allowed to continue along the
MAIN line.

MITgcm Development HOWTO

3.3. Developer settings

CVS is a convenient tool to keep up-to-date a personal copy of the MITgem code (see: using CVS
(http://mitgcm.org/public/using_cvs.html)). The same tool is used by developers to incorporate any change into the
repository. However, this later function requires specific settings, as detailed here after

1. You will need an account (login access) to the server "mitgcm.org" (curently: mitgcmcvs.mit.edu) with the
proper group setting (e.g., group "gecmctrb" to add/modify code into MITgem_contrib). This kind of account is
granted only upon well motivated request (we recommend to ask your senior MITgcm-collaborator to send such
request to marshall-admin at techsquare.com with Cc to Chris Hill for approval).

The access to the server mitgcm. org is through ssh-key authorization which will need to be set properly on both
side (on your local machine and on your server account). You need to be able to ssh to mitgcm.org (or ssh
MY_USER_NAME@mitgcm.org in case of different user-name on both sides) to proceed further.

2. You need to register to the mitgcm-cvs (http://mailman.mitgcm.org/mailman/listinfo/mitgcm-cvs) mailing list.
This ensures that other developers will receive email notification when you make changes; you will also receive
such email when others make changes to the repository.

3.1t is highly recommended that you register also to the mitgcm-devel
(http://mailman.mitgcm.org/mailman/listinfo/mitgcm-devel) mailing list (expect a short
delay for this request to be processed). This list is intended for developer discussions.

4. The standard CVS-anonymous mode (using "cvsanon", as mentionned here
(http://mitgcm.org/public/source_code.html)) does not provide check-in ("cvs commit") permission. Instead,
you will need to set our CVS environment as follow:

$ export CVS_RSH=ssh
$ export CVSROOT=':ext:MY_USER_NAME@mitgcm.org:/u/gcmpack’

The reason for such limitation is that when downloading a directory, e.g.: myCopy, from the CVS repository (e.g.,
MITgcm_contrib/thisPart) using the command:

$ cvs co -P -d myCopy MITgcm_contrib/thisPart

the type of CVS environment which has been used is stored in the file myCopy/CVS/Root. This prevent to re-use,
for cvs-commit purpose, a cvs local copy (myCopy) which was obtained using the CVS anonymous mode.

5. At this stage, you should be able to send your modified source file (e.g., src_£ile) from your local copy directory
(myCopy) to the CVS repository (MITgcm_contrib/thisPart) using the command "cvs commit":

$ cd myCopy

$ cvs -n update (optional; check if new changes have been made)
S cvs diff src_file (optional; list your changes)

$ cvs commit src_file

It is essential that you provide a short description of the changes you made to src_file as you check-in this file
(the "cvs commit" command automatically opens your standard editor for this purpose).

Note: Please ignore the following warnings that the "cvs commit" command produces if you are not part of the
"gcmpack" group:
cvs commit: failed to create lock directory for ‘/u/gcmpack/CVSROOT’
(/u/gcmpack/CVSROOT/#cvs.history.lock): Permission denied
cvs commit: failed to obtain history lock in repository ‘/u/gcmpack’
These warnings are not affecting the changes you made to the CVS repository.

MITgcm Development HOWTO

3.4. Main code development

(formerly named "Tagging" ; this section needs an update)

The intent of tagging is to create "known-good" checkpoints that developers can use as references. Traditionally,
MITgem tagging has maintained the following conventions:

1. Developer checks out code into a local CVS-managed directory, makes various changes/additions, tests these
edits, and eventually reaches a point where (s)he is satisfied that the changes form a new "useful" point in the
evolution of the code.

2. The developer then runs the testreport (http://mitgem.org/viewve/MITgem/MITgem/verification/testreport) shell
script to see if any problems are introduced. While not intended to be exhaustive, the test cases within the verifi-
cation directory do provide some indication whether gross errors have been introduced.

3. Having satisfied him- or herself that the changes are ready to be committed to the CVS repository, the developer
then:

a. adds a "checkpointXY_pre" comment (where X is a checkpoint number and Y is a letter) to the tag-index
(http://mitgem.org/viewve/MITgem/MITgem/doc/tag-index) file and checks it into the CVS repository

b. submits the set of changes to the CVS repository and adds comments to tag-index describing what the
changes are along with a matching "checkpointXY_post" entry

The result of this tagging procedure is a sequence of development checkpoints with comments which resembles:

checkpoint50e_post

o make KPP work with PTRACERS

- fix gad_calc_rhs to call new routine kpp_transport_ptr, which is
nearly a copy of kpp_transport_s

— there is no analogue to SurfaceTendencyS, so I have to use

gPtr (of the surface layer) instead

o add a new platform SunFire+mpi (SunFire 15000) to genmake

checkpoint50e_pre

checkpoint50d_post

o change kpp output from multiple-record state files to single-record state
files analogous to write_state.F

o reduce the output frequency of cg3d-related stuff to the monitor frequency,
analogous to the cg2d-related output.

o fix small problem with in ptracers_write_checkpoint.F: len(suff)=512,
so that writing to internal file fn (with length 512) fails.

checkpoint50d_pre

This information can be used to refer to various stages of the code development. For example, bugs can be traced to
individual sets of CVS checkins based upon their first appearance when comparing the results from different check-
points.

MITgcm Development HOWTO

4. Coding for MiITgcm

4.1. Build Tools

Many Open Source projects use the "GNU Autotools" to help streamline the build process for various Unix and Unix-
like architectures. For a user, the result is the common "configure" (that is, "./configure && make && make
install") commands. For MITgcm, the process is similar. Typical commands are:

$ genmake2 -mods=../code
$ make depend
$ make

The following sections describe the individual steps in the build process.

4.1.1. The genmake2 Utility
(Note: the older genmake has been replaced by genmake2)

The first step in any MITgcm build is to create a Unix-style Makefile which will be parsed by make to specify how
to compile the MITgem source files. For more detailed descriptions of what the make tools are and how they are used,
please see:

« http://www.gnu.org/software/make/make.html (http://www.gnu.org/software/make/make.html)
+ http://www.oreilly.com/catalog/make?2/ (http://www.oreilly.com/catalog/make2/)

Genmake can often be invoked successfully with a command line as simple as:
$ genmake2 -mods=../code

However, some systems (particularly commercial Unixes that lack a more modern "/bin/sh" implementation or that
have shells installed in odd locations) may require an explicit shell invocation such as one of the following:

$ /usr/bin/sh genmake2 -make=gmake -mods=../code
$ /opt/gnu/bin/bash genmake2 -ieee -make=/usr/local/bin/gmake -mods=../code

The genmake?2 code has been written in a Bourne and BASH (v1) compatible syntax so it should work with most "sh"
and all recent "bash" implementations.

As the name implies, genmake?2 generates a Makefile. It does so by first parsing the information supplied from the
following sources

1. a gemake_local file in the current directory
2. directly from command-line options
3. an "options file" as specified by the command-line option —opt file=’FILENAME’

4. a packages.conf file (in the current directory or in one of the "MODS" directories, see below) which contains
the specific list of packages to compile

MITgcm Development HOWTO

then checking certain dependency rules (the package dependencies), and finally writing a Makefile based upon the
source code that it finds. For convenience within various Unix shells, genmake2 supports both "long"- and "short"-
style options. A complete list of the available options can be obtained from:

$ genmake2 -help

The most important options for genmake?2 are:

——optfile=/PATH/FILENAME

This specifies the "options file" that should be used for a particular build. The options file is a convenient and
machine-indepenent way of specifying parameters such as the FORTRAN compiler (Fc=), FORTRAN com-
piler optimization flags (FFLAGS=), and the locations of various platform- and/or machine-specific tools (eg.
MAKEDEPEND=). As with genmake?2, all options files should be written to be compatible with Bourne--shell ("sh"
or "BASH v1") syntax. Examples of various options files can be found in SROOTDIR/tools/build_options.

If no "optfile" is specified (either through the command lin or the environment variable), genmake2 will try to
make a reasonable guess from the list provided in $ROOTDIR/tools/build_options. The method used for
making this guess is to first determine the combination of operating system and hardware (eg. "linux_ia32")
and then find a working Fortran compiler within the user’s path. When these three items have been identified,
genmake?2 will try to find an optfile that has a matching name.

Everyone is encouraged to submit their options files to the MITgcm project for inclusion (please send to
<MITgcm-support@mitgcm.org>). We are particularly grateful for options files tested on new or unique
platforms!

—adof=/path/to/file
—adoptfile=/path/to/file

This option specifies the "adjoint" or automatic differentiation options file to be used. The file is analogous to
the "optfile" defined above but it specifies information for the AD build process. The default file is located in

$ROOTDIR/tools/adjoint_options/adjoint_default and it defines the "TAF" and "TAMC" compil-
ers. An alternate version is also available at $ROOTDIR/tools/adjoint_options/adjoint_staf that
selects the newer "STAF" compiler. As with any compilers, it is helpful to have their directories listed in your
$PATH environment variable.

-mods=DIR
-mods='DIR1 [DIR2 ...]’

This option specifies a list of directories containing "modifications". These directories contain files with names
that may (or may not) exist in the main MITgcm source tree but will be overridden by any identically-named
sources within the "MODS" directories. The order of precedence for this "name-hiding" is as follows:

+ "MODS" directories (in the order given)
« Packages either explicitly specified or provided by default (in the order given)
« Packages included due to package dependencies (in the order that that package dependencies are parsed)

+ The "standard dirs" (which may have been specified by the "-standarddirs" option)

MITgcm Development HOWTO

-pgroups=/PATH/FILENAME

This option specifies the file where package groups are defined. If not set, the package-groups definition will be
read from $ROOTDIR/pkg/pkg_groups.

It also contains the default list of packages (defined as the group "default_pkg_list™) which is used when
no specific package list (file: packages.conf) is found in current directory or in any "MODS" directory.

-pdepend=/PATH/FILENAME

This specifies the dependency file used for packages. If not specified, the default dependency file is
SROOTDIR/pkg/pkg_depend. The syntax for this file is parsed on a line-by-line basis where each line
containes either a comment ("#") or a simple "PKGNAMEI (+-)PKGNAME?2" pairwise rule where the "+" or
"-" symbol specifies a "must be used with" or a "must not be used with" relationship, respectively. If no rule is
specified, then it is assumed that the two packages are compatible and will function either with or without each

other.

-make=/path/to/gmake

Due to the poor handling of soft-links and other bugs common with the make versions provided by commercial
Unix vendors, GNU make (sometimes called gmake) should be preferred. This option provides a means for
specifying the make program to be used.

A successful run of genmake?2 will produce a Makefile, a PACKAGES_CONFIG.h file, and various convenience files
used for the automatic differentiation process.

In general, it is best to use genmake2 on a "clean" directory that is free of all source (*.[F,f],*.[F,f]90) and header
(*.h,*.inc) files. Generally, this can be accomplished in an "un-clean" directory by running "make Clean" followed by
"make makefile".

4.1.2. Using the Makefile

Once aMakefile has been created using genmake2, one can build a "standard" (forward simulator) executable using:

$ make Clean
$ make depend
$ make

The "make Clean" step will remove any stale source files, include files, and links. It is strongly recommended for
"un-clean" directories which may contain the (perhaps partial) results of previous builds. Such "debris" can interfere
with the next stage of the build. A more agressive cleaning option, "make CLEAN", can be used to also remove the
executable and output files from a previous run.

The "make depend" step will create a large number of symbolic links from the local directory to the source file
locations. It also parses these files and creates an extensive list of dependencies within the Makefile itself. The links
that exist at this stage are mostly "large F" files (*.F and *.F90) that need to be processed by a C preprocessor ("CPP").
Since "make depend" edits the Makefile, it is important not to skip this step!

The final "make" invokes the C preprocessor to produce the "little " files (*.f and *.f90) and then compiles them
to object code using the specified FORTRAN compiler and options. An intermediate script is often used during this
stage to further process (usually, make simple substitutions) custom definitions such as variable types within the source
files. This additional stage is necessary in order to overcome some of the inconsistencies in the sizes of objects (bytes)
between different compilers. The result of the build process is an executable with the name mitgcmuv.

MITgcm Development HOWTO

In addition to the forward simulator described above, the Makefile also has a number of targets that can be used
to produce various adjoint and tangent-linear builds for optimization and other parameter-sensitivity problems. The
additional targets within the Makefile are:

make adall

This target produces an mitgcmuv_ad executable using the taf or staf adjoint compiler. See the genmake?2
"-adof" option for compiler selection.

make ftlall
Similar to make adall above, this produces...

Please report any compilation failures or other build problems to the <MITgcm-support@mitgcm.org> list.

4.2. The Verification Suite

The MITgem CVS tree (within the SROOTDIR/verification/ directory) includes many (> 90) examples
intended for regression testing. Each one of these test-experiment directories contains "known-good" output files
along with all the input (including both code and data files) required for their re-calculation. Also included in
$ROOTDIR/verification/ is the shell script testreport to perform regression tests.

4.2.1. Test-experiment Directory Content

Each test-experiment directory (TESTDIR) contains several standard subdirectories and files which testreport rec-
ognizes and uses when running a regression test. The directories/files that test report uses are different for a forward
test and an adjoint test (testreport —adm) and some test-experiments are set-up for only one type of regression test
whereas others allow both types of tests (forward and adjoint).

Also some test-experiment allows, using the same MITgcm executable, to perform multiple tests using
different parameters and input files, with a primary input set-up (input/ or input_ad/) and corresponding
results (results/output.txt oOr results/output_adm.txt) and with one or several secondary inputs
(input .OTHER/ oOr input_ad.OTHER/) and corresponding results (results/output.OTHER.txt oOr
results/output_adm.OTHER. txt).

directory TESTDIR/results/

contains reference standard output wused for test comparison. results/output.txt and
results/output_adm.txt correspond respectively to primary forward and adjoint test run on the reference
platform (currently baudelaire.csail.mit.edu) on one processor (no MPI, single thread) using the
reference compiler (curently the GNU fortran compiler gfortran). The presence of these files determines
whether or not testreport is testing or skipping this test-experiment. Reference standard output for secondary
tests (results/output .OTHER.txt Or results/output_adm.OTHER. txt) are also expected here.

The test comparison involves few model variables output, which are, by default and for a forward test, the 2-D
solver initial residual (cg2d_init_res) and 3-D state variables (T,S,U,V) monitor output, and, by default and
for an adjoint test, the cost-function and gradient-check. However, some test-experiments use some package-
specific variable/monitor output according to the file TESTDIR/input [_ad] [.OTHER] /tr_checklist spec-
ification.

10

MITgcm Development HOWTO

directory TESTDIR/build/

initially empty directory where testreport will build the MITgcm executable for forward and adjoint test. It
might contains an experiment specific genmake_1local file (see Section 4.1.1).

Note that the original code[_ad]/SIZE.h_mpi is not directly used as "SIZE.h" to build an MPI-executable ;
instead, a local copy build/SIZE.h.mpi is derived from code[_ad]/SIZE.h_mpi by adjusting the number
of processors (nPx,nPy) according to NUMBER_OF_PROCS (see Section 4.2.2, testreport -MPI) ; then it is
linked to "SIZE.h" (1n -s SIZE.h.mpi SIZE.h) before building the MPI-executable.

directory TESTDIR/code/

contains the test-experiment specific source code used to build the MITgcm executable (mitgcmuv) for forward-
test (using genmake2 -mods=../code).

It can also contain specific source files with the suffix "_mpi" to be used in place of the corresponding file
(without suffix) for an MPI test (see Section 4.2.2). The presence or absence of STZE.h_mpi determines whether
or not an MPI test on this test-experiment is performed or skipped.

directory TESTDIR/code_ad/
contains the test-experiment specific source code used to build the MITgcm executable (mitgcmuv_ad) for
adjoint-test (using genmake2 -mods=../code_ad). It can also contain specific source files with the suffix
"_mpi" (see above).

directory TESTDIR/input/
contains the input and parameter files used to run the primary forward test of this test-experiment.

It can also contain specific parameter files with the suffix ".mpi" to be used in place of the corresponding file
(without suffix) for MPI test, or with suffix ".mth" to be used for multi-threaded test (see Section 4.2.2). The
presence or absence of eedata.mth determines whether or not a multi-threaded test on this test-experiment is
performed or skipped.

To save disk space and reduce downloading time, multiple copies of the same input file is avoided by using a
shell script prepare_run. When such a script is found in TESTDIR/input/ , testreport run this script in
directory TESTDIR/run/ after linking all the input file from TESTDIR/input/ .
directory TESTDIR/input_ad/
contains the input and parameter files used to run the primary adjoint test of this test-experiment. It can also
contain specific parameter files with the suffix ".mpi" and shell script prepare_run as described above.
directory TESTDIR/input.OTHER/

contains the input and parameter files used to run the secondary OTHER forward test of this test-experiment.
It can also contain specific parameter files with suffix ".mpi" or ".mth" and shell script prepare_run (see
above).

The presence or absence the file eedata.mth determines whether or not a secondary multi-threaded test on this
test-experiment is performed or skipped.
directory TESTDIR/input_ad.OTHER/

contains the input and parameter files used to run the secondary OTHER adjoint test of this test-experiment. It
can also contain specific parameter files with the suffix " . mpi" and shell script prepare_run (see above).

11

MITgcm Development HOWTO

directory TESTDIR/run/

initially empty directory where testreport will run the MITgcm executable for primary forward and adjoint
test.

Symbolic links (using command "1n -s") are made for input and parameter files (from ../input/ or from
../input_ad/) and for MITgcm executable (from . ./build/) before the run proceeds. The sequence of
links (function 1inkdata within shell script test report) for a forward test is:

* link+rename or remove links

to special files with suffix ".mpi" or ".mth" from ../input/
* link files from ../input/
* execute ../input/prepare_run (if it exists)

The sequence for an ajoint test is similar, with . . /input_ad/ replacing ../input/ .

directory TESTDIR/tr_run.OTHER/

directory created by testreport to run the MITgem executable for secondary "OTHER" forward or adjoint
test.

The sequence of links for a forward secondary test is:

% link+rename or remove links
to special files with suffix ".mpi" or ".mth" from ../input.OTHER/
«+ link files from ../input.OTHER/
* execute ../input.OTHER/prepare_run (if it exists)
%+ link files from ../input/
* execute ../input/prepare_run (if it exists)

The sequence for an ajoint test is similar, with ../input_ad.OTHER/ and ../input_ad/ replacing
../input .OTHER/ and ../input/ .

4.2.2. The testreport Utility

The shell script testreport (in SROOTDIR/verification/), which was written to work with genmake?2, can be
used to build different versions of the MITgcm code, run the various examples, compare the output, and (if specified)
email the results of each one of these tests to a central repository.

On some systems, the testreport script can be run with a command line as simple as:

$ cd verification
$./testreport

However, some systems (those lacking or wiht a broken "/bin/sh") may require an explicit shell invocation such as:

$ sh ./testreport -t ’'exp2 expd’
$ /some/path/to/bash ./testreport -t ’ideal_2D_oce lab_sea natl_box’

The testreport script accepts a number of command-line options which can be listed using the ~he1p option. The
most important ones are:

—ieee (default) / -noieee

If allowed by the compiler (as defined in the "optfile"), use IEEE arithmetic (genmake2 -ieee). This option,
along with the gfortran / gcc compiler, is how the standard results are produced.

12

MITgcm Development HOWTO

—optfile=/PATH/FILENAME
-optfile ’/PATH/F1 [/PATH/F2 ...]’

This specifies a list of "options files" that will be passed to genmake2. If multiple options files are used (say,
to test different compilers or different sets of options for the same compiler), then each options file will be used
with each of the test directories.

—tdir TESTDIR
—tdir /TDIR1 TDIR2 [...]'

This option specifies the test directory or list of test directories that should be used. Each of these entries should
exactly (note: they are case sensitive!) match the names of directories in SROOTDIR/verification/. If this
option is omitted, then all directories that are properly formatted (that is, containing an input sub-directory and
aresults/output.txt file) will be used.

—addr EMAIL
-addr 'EMAIL1 EMAIL2 [...]'

Send the results (namely, output .txt, genmake_local, genmake_state, and Makefile) to the specified
email addresses. The results are gzipped, placed in a tar file, MIME encoded, and sent to the specified address.
If no email addresses are specified, no mail is sent.

-MPI NUMBER_OF_PROCS

-mpi

If the necessary file (TESTDIR/code/SIZE.h_mpi) exists, then use it (and all TESTDIR/code/»_mpi files)
for an MPI--enabled run. The new option (-MPI followed by the maximum number of processors) enable
to build and run each test-experiment using variable number of MPI processors (multiple of nPx+nPy from
TESTDIR/code/SIZE.h_mpi and not larger than NUMBER_OF_PROCS). The short option ("-mpi") can only be
used to build and run on 2 MPI processors (equivalent to "-MPI 2").

Note that the use of MPI typically requires a special command option (see "-command" below) to invoke the
MPI executable. Examples of PBS scripts using testreport with MPI can be found in the tools/example_scripts
directory (http://mitgcm.org/viewvce/MITgem/MITgem/tools/example_scripts/).

—command="some command to run’

-mf

For some tests, particularly MPI runs, a specific command might be needed to run the executable.
This option allows a more general command (or shell script) to be invoked. Examples of
PBS scripts using testreport with MPI can be found in the tools/example_scripts directory
(http://mitgcm.org/viewve/MITgem/MITgem/tools/example_scripts/).

For the case where the number of MPI processors varies according to each test-experiment, some key-words
within the command-to-run argument will be replaced by their effective value:

TR_NPROC will be replaced by the actual number of MPI processors needed to run the current test-experiment.
TR_MFILE will be replaced by the name of local-file that testreport creates from the full list of machines which
"testreport -mf MACHINE_FILE" provides, but truncated to the exact number of machines.
MACHINE_FILE

To use with -MPI NUMBER_OF_PROCS option, to specify the file containing the full list of NUMBER_OF_PROCS
machines to use for the MPI runs.

13

MITgcm Development HOWTO

-mth
compile (with genmake2 -omp) and run with multiple threads (using eedata.mth).

The testreport script will create an output directory tr NAME_DATE_N/ , with hostname as default NAME,
DATE the current date followed by a suffix number "N" to distinguish from previous testreport output direc-
tories. testreport writes progress to the screen (stdout) and reports into the ouput directory as it runs. In par-
ticular, one can find, in the ouput directory, the summary.txt file that contains a brief comparison of the cur-
rent output with the "known-good" output. At the end of the testing process, the tr_out.txt file is generated in
SROOTDIR/verification/ asacompact version of summry.txt file.

4.2.3. The do_tst_2+2 Utility

The shell script do_tst_2+2 (in $SROOTDIR/tools/) can be used to check the accuracy of the restart procedure.

4.3. Creating MITgcm Packages

Optional parts of code have been separated from the MITgcmUYV core driver code and organised into packages. The
packaging structure provides a mechanism for maintaining suites of code, specific to particular classes of problems,
in a way that is cleanly separated from the generic fluid dynamical engine.

The MITgecmUYV packaging structure is described below using generic package names ${pkg}. A concrete examples
of a package is the code for implementing GM/Redi mixing. This code uses the package name

5. Chris’s Notes...

MITgcmUV Packages

Optional parts of code are separated from
the MITgcmUV core driver code and organised into
packages. The packaging structure provides a mechanism for
maintaining suites of code, specific to particular
classes of problem, in a way that is cleanly
separated from the generic fluid dynamical engine.

The MITgcmUV packaging structure is describe
below using generic package names ${pkg}.
A concrete examples of a package is the code
for implementing GM/Redi mixing. This code uses
the package name

% ${PKG} = GMREDI

* ${pkg}
* ${Pkg}

gmredi

gmRedi

Package states

14

MITgcm Development HOWTO

Packages can be any one of four states, included,
excluded, enabled, disabled as follows:

included (excluded) compile time state which
includes (excludes) package
code and routine calls from
compilation/linking etc...

enabled (disabled) run—-time state which
enables (disables) package code
execution.

Every call to a ${pkg}_... routine from outside the package
should be placed within both a

#ifdef ALLOW_S{PKG} ... block and a

if (use${Pkg}) ... then block.

Package states are generally not expected to change during
a model run.

Package structure

o Each package gets its runtime configuration
parameters from a file named "data.${pkg}"
Package runtime config. options are imported
into a common block held in a header file
called "${PKG}.h".
Note: In some packages, the header file "${PKG}.h" is splitted
into "${PKG}_PARAMS.h" that contains the package parameters and
S{PKG}_VARS.h" for the field arrays.

o The core driver part of the model can check
for runtime enabling or disabling of individual packages
through logical flags use${Pkg}.
The information is loaded from a
global package setup file called "data.pkg".
The use${Pkg} flags are not used within
individual packages.

o Included in "${PKG}.h" is a logical flag
called ${Pkg}IsOn. The "${PKG}.h" header file can be imported
by other packages to check dependencies and requirements
from other packages (see "Package Boot Sequence" section).
NOTE: This procedure is not presently implemented,
77777 neither for kpp nor for gmRedi.

CPP Flags

1. Within the core driver code flags of the form
ALLOW_S${PKG} are used to include or exclude
whole packages. The ALLOW_S${PKG} flags are included

15

from a PACKAGES_CONFIG.h file that is automatically
generated by genmake2 (see genmake2 section).
held in-line in the CPP_OPTIONS.h header file.

e.g.
Core model code

#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"

#ifdef ALLOW_S{PKG}

if (use${Pkg}) CALL ${PKG}_DO_SOMETHING(...)

#endif

Within an individual package a header file,
"S{PKG}_OPTIONS.h", is used to set CPP flags
specific to that package. It also includes
"PACKAGES_CONFIG.h" and "CPP_OPTIONS.h".

Package Boot Sequence

Calls to package routines within the core code timestepping
loop can vary. However, all packages follow a required

"boot" sequence outlined here:

1.

2.

3.

4.

S/R PACKAGES_BOOT ()

CALL OPEN_COPY_DATA_FILE(’'data.pkg’, ’PACKAGES_BOOT’,

S/R PACKAGES_READPARMS ()

#ifdef ALLOW_${PKG}
if (use${Pkg})
CALL ${PKG}_READPARMS (retCode)
#endif

S/R PACKAGES_INIT_FIXED ()

#ifdef ALLOW_${PKG}
if (use${Pkg})
CALL ${PKG} INIT FIXED(retCode)
#endif

S/R PACKAGES_CHECK ()

#ifdef ALLOW_S{PKG}
if (use${Pkg})
CALL S${PKG}_CHECK(retCode)
#else

MITgcm Development HOWTO

16

MITgcm Development HOWTO

if (use${Pkg})
& CALL PACKAGES_CHECK_ERROR (' ${PKG}’)
fendif

5. S/R PACKAGES_INIT_VARIABLES ()
#ifdef ALLOW_S${PKG}
if (use${Pkg})
& CALL S{PKG}_INIT_VARIA()

#endif

Package Output

6. S/R DO_THE_MODEL_IO

#ifdef ALLOW_S{PKG}
if (use${Pkg})
& CALL ${PKG}_OUTPUT ()
#endif

7. S/R PACKAGES_WRITE_PICKUP ()

#ifdef ALLOW_S{PKG}
if (use${Pkg})
& CALL S${PKG}_WRITE_PICKUP ()
#endif

Description

-~ ${PKG}_READPARMS ()
is responsible for reading
in the package parameters file data.${pkg}, and storing
the package parameters in "${PKG}.h" (or in "S${PKG}_PARAMS.h").
-> called from INITIALISE_FIXED in PACKAGES_READPARMS

- ${PKG}_INIT_FIXED()
is responsible for completing the internal setup of a package.
-> called from INITIALISE_FIXED in PACKAGES_INIT_FIXED
note: 1) some pkg use instead:
CALL S${PKG}_INITIALISE (or the old form CALL ${PKG}_INIT)
2) for simple pkg setup, this part is done inside ${PKG}_READPARMS

- ${PKG}_CHECK ()

is responsible for validating
basic package setup and inter-package dependencies.
${PKG}_CHECK can import other package parameters it may
need to check. This is done through header files "${PKG}.h".
It is assumed that parameters owned by other packages
will not be reset during ${PKG}_CHECK() .

-> called from INITIALISE_FIXED in PACKAGES_CHECK

- S${PKG}_INIT_VARIA()

17

MITgcm Development HOWTO

is responsible for fill-in all package variables with an initial value.

Contains eventually a

call to S${PKG}_READ_PICKUP that will read

from a pickup file the package variables required to restart the model.
This routine is called after the core model state has been completely
initialised but before the core model timestepping starts.

-> called from INITIALISE_VARIA in PACKAGES_INIT_VARIABLES

note: the name ${PKG}_INIT_VARIA is not yet standard and some pkg

use for e.g. ${PKG}_
form ${PKG}_INIT

- S${PKG}_OUTPUT()
is responsible for w
(but the cumulating
Can also contain oth
and write snap-shot
temporary fields are
NOTE: 1) the S/R old

INI_VARS, ${PKG}_INIT_VARIABLES, or the old

riting time-average fields to output files

step is done within the package main S/R).

er diagnostics (.e.g. CALL ${PKG}_MONITOR)
fields that are hold in common blocks. Other
directly dump to file where they are available.
name ${PKG}_DIAGS is used in some packages

but is beeing replaced by ${PKG}_OUTPUT
to avoid confusion with pkg/diagnostics functionality.
2) the output part is not yet in a standard form and might still

evolve a lo
-> called within DO_T

- ${PKG}_WRITE_PICKU
is responsible for w
a restart. (found al
-> called from FORWAR

Summary

* ALLOW_S {PKG}

— FORTRAN logical:

* use${Pkg}

* ${Pkg}IsOn

- header files
* S{PKG}_OPTIONS.h
* ${PKG}.h
or ${PKG}_PARAMS.h
and ${PKG}_VARS.h

— FORTRAN source files

* ${pkg}_readparms.F

t.
HE_MODEL_TIO

P()

riting a package pickup file when necessary for

so the old name: ${PKG}_WRITE_CHECKPOINT)

D_STEP and THE_MODEL_MAIN in PACKAGES_WRITE_PICKUP

include/exclude package for compilation

enable package for execution at runtime
-> declared in PARAMS.h

for package cross—-dependency check

-> declared in ${PKG}.h

N.B.: Not presently used!

has further package-specific CPP options
package-specific common block variables, fields
package-specific common block parameters
package-specific common block fields

reads parameters from file data.${pkg}

18

MITgcm Development HOWTO

* ${pkg}_init_fixed.F complete the package setup

* ${pkg}_check.F checks package dependencies and consistencies
* ${pkg}_init_varia.F initialises package-related fields

* ${pkg}_... .F package source code

* ${pkg}_output.F write output to file.

* ${pkg}_write_pickup.F write a package pickup file to restart the model

New: Subroutine in one package (pkgA) that only contains code which
is connected to a 2nd package (pkgB) (e.g.: gmredi_diagnostics_init.F)
will be named: pkgA_pkgB_something.F

- parameter file

* data.${pkg} parameter file

6. Editing the Documentation

6.1. Getting the Docs and Code

The first step towards editing the documentation is to checkout a copy of code, docs, and build scripts from the CVS
server using:

export CVS_RSH=ssh
export CVSROOT=':ext:NAMEQ@mitgcm.org:/u/gcmpack’
mkdir scratch

v W

cvs co —-P MITgcm manual mitgcm.org

These commands extract the necessary information from the CVS server and create a temporary (called scratch)
directory for the storage of the HTML and other files that will be created. Please note that you must either create
scratch as shown or edit the various Makefiles and scripts used to create the documentation.

6.2. Editing the Documentation

The documentation is contained in the manual directory in a raw LaTeX format. The main document is manual . tex
and it uses \input{}s to include the chapters and subsections.

Since the same LaTeX source is used to produce PostScript, PDF, and HTML output, care should be taken to follow
certain conventions. Two of the most important are the usage of the \filelink{}{} and \varlink{}{} commands. Both of
these commands have been defined to simplify the connection between the automatically generated ("code browser")
HTML and the HTML version of the manual produced by LaTeX2HTML. They each take two arguments (corre-
sponding to the contents of the two sets of curly braces) which are the text that the author wishes to be "wrapped"
within the link, and a specially formatted link thats relative to the MITgcm directory within the CVS tree.

The result is a command that resembles either

1. a reference to a variable or subroutine name such as \varlink{tRef}{tRef}, or

19

MITgcm Development HOWTO
2. areference to a file such as \varlink{tRef}{path-to-the-file_name.F} where the absolute path to the file is of the
form /foo/MITgcm/path/to/the/file_name.F

(please note how the leading "/foo/MITgcm" component of the path is dropped leaving the path relative to the
head of the code directory and each directory separator "/" is turned into a "-")

6.3. Building the Documentation

Given the directory structure of Section 6.1, the entire documentation for the web site can be built using:

$ cd mitgcm.org/devel/buildweb
$ make All

Which builds the PDF from the LaTeX source, creates the HTML output from the LaTeX source, parses the FOR-
TRAN code base to produce a hyperlinked HTML version of the source, and then determines the cross-linking be-
tween the various HTML components.

If there are no errors, the result of the build process (which can take 30+ minutes on a P4/2.5Ghz) will be contained
within a single directory called scratch/dev_docs. This is a freshly built version of the entire on-line users manual.
If you have the correct permissions, it can be directly copied to the web server area:

$ mv scratch/dev_docs /u/u0/httpd/html

and the update is complete.

20

	Table of Contents
	1. Introduction
	1.1. New Versions of This Document
	1.2. Feedback and corrections

	2. Background
	2.1. User Manual
	2.2. Prerequisites

	3. CVS Repository
	3.1. Layout
	3.2. Branches
	3.3. Developer settings
	3.4. Main code development

	4. Coding for MITgcm
	4.1. Build Tools
	4.1.1. The genmake2 Utility
	4.1.2. Using the Makefile

	4.2. The Verification Suite
	4.2.1. Testexperiment Directory Content
	4.2.2. The testreport Utility
	4.2.3. The dotst2+2 Utility

	4.3. Creating MITgcm Packages

	5. Chris's Notes...
	6. Editing the Documentation
	6.1. Getting the Docs and Code
	6.2. Editing the Documentation
	6.3. Building the Documentation

