C $Header: /u/gcmpack/MITgcm/pkg/fizhi/update_earth_exports.F,v 1.31 2012/03/21 21:08:12 jmc Exp $
C $Name: $
#include "FIZHI_OPTIONS.h"
C-- File update_earth_exports.F:
C-- Contents
C-- o UPDATE_EARTH_EXPORTS
C-- o SIBALB
C-- o GETLGR
C-- o GETALB
C-- o GETEMISS
C-- o EMISSIVITY
C-- o GET_LANDFRAC
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
SUBROUTINE UPDATE_EARTH_EXPORTS (myTime, myIter, myThid)
C----------------------------------------------------------------------
C Subroutine update_earth_exports - 'Wrapper' routine to update
C the fields related to the earth surface that are needed
C by fizhi.
C
C Call: getlgr (Set the leaf area index and surface greenness,
C based on veg type and month)
C getalb (Set the 4 albedos based on veg type, snow and time)
C getemiss (Set the surface emissivity based on the veg type
C and the snow depth)
C-----------------------------------------------------------------------
IMPLICIT NONE
#include "SIZE.h"
#include "GRID.h"
#include "fizhi_land_SIZE.h"
#include "fizhi_SIZE.h"
#include "fizhi_coms.h"
#include "chronos.h"
#include "gridalt_mapping.h"
#include "fizhi_land_coms.h"
#include "fizhi_earth_coms.h"
#include "fizhi_ocean_coms.h"
#include "EEPARAMS.h"
INTEGER myIter, myThid
_RL myTime
LOGICAL alarm
EXTERNAL
_RL lats(sNx,sNy), lons(sNx,sNy), cosz(sNx,sNy)
_RL fraci(sNx,sNy), fracl(sNx,sNy)
_RL ficetile(nchp)
_RL radius
_RL tmpij(sNx,sNy)
_RL tmpchp(nchp)
INTEGER i, j, n, bi, bj
INTEGER im1, im2, jm1, jm2, idim1, idim2, jdim1, jdim2
INTEGER sec, day, month
INTEGER nmonf,ndayf,nsecf
nsecf(n) = n/10000*3600 + mod(n,10000)/100* 60 + mod(n,100)
nmonf(n) = mod(n,10000)/100
ndayf(n) = mod(n,100)
idim1 = 1-OLx
idim2 = sNx+OLx
jdim1 = 1-OLy
jdim2 = sNy+OLy
im1 = 1
im2 = sNx
jm1 = 1
jm2 = sNy
month = nmonf(nymd)
day = ndayf(nymd)
sec = nsecf(nhms)
do bj = myByLo(myThid), myByHi(myThid)
do bi = myBxLo(myThid), myBxHi(myThid)
do j = jm1,jm2
do i = im1,im2
lons(i,j) = xC(i,j,bi,bj)
lats(i,j) = yC(i,j,bi,bj)
enddo
enddo
call GET_LANDFRAC(im2,jm2,nSx,nSy,bi,bj,maxtyp,surftype,tilefrac,
& fracl)
do j = jm1,jm2
do i = im1,im2
if(sice(i,j,bi,bj).gt.0.) then
fraci(i,j) = 1.
else
fraci(i,j) = 0.
endif
enddo
enddo
C***********************************************************************
C* Get Leaf-Area-Index and Greenness Index *
C***********************************************************************
if( alarm('turb') .or. alarm('radsw') ) then
call GETLGR (sec,month,day,chlt,ityp,nchpland(bi,bj),
& nchp,nSx,nSy,bi,bj,alai,agrn )
endif
C **********************************************************************
C Compute Surface Albedo
C **********************************************************************
if( alarm('radsw') ) then
#ifdef FIZHI_USE_FIXED_DAY
call ASTRO(20040321,nhms,lats,lons,im2*jm2,cosz,radius)
#else
call ASTRO(nymd,nhms,lats,lons,im2*jm2,cosz,radius)
#endif
call GETALB(sec,month,day,cosz,snodep,fraci,fracl,im2,jm2,nchp,
& nchptot(bi,bj),nchpland(bi,bj),nSx,nSy,bi,bj,igrd,ityp,
& chfr,chlt,alai,agrn,
& albvisdr,albvisdf,albnirdr,albnirdf )
endif
C **********************************************************************
C Compute Surface Emissivity
C **********************************************************************
if( alarm('radlw') ) then
call GRD2MSC(fraci,im2,jm2,igrd(1,bi,bj),ficetile,
& nchp,nchptot(bi,bj))
call GETEMISS(fracl,im2,jm2,nchp,nchptot(bi,bj),nSx,nSy,bi,bj,
& igrd,ityp,chfr,snodep,ficetile,emiss)
endif
C*********************************************************************
C Ground Temperature Over Ocean is from SST array,
C Over land is from tcanopy
C*********************************************************************
do j = jm1,jm2
do i = im1,im2
tmpij(i,j) = 0.
enddo
enddo
do i = 1,nchptot(bi,bj)
tmpchp(i) = tcanopy(i,bi,bj)
enddo
call MSC2GRD(igrd(1,bi,bj),chfr(1,bi,bj),tmpchp,
& nchp,nchptot(bi,bj),fracl,tmpij,im2,jm2)
do j = jm1,jm2
do i = im1,im2
tgz(i,j,bi,bj) = tmpij(i,j)
if(fracl(i,j).lt.0.3.and.sice(i,j,bi,bj).eq.0.0)
& tgz(i,j,bi,bj) = sst(i,j,bi,bj)
enddo
enddo
enddo
enddo
return
end
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
SUBROUTINE SIBALB ( AVISDR, ANIRDR, AVISDF, ANIRDF,
& VLAI, VGRN, ZTH, SNW, ITYP, IRUN )
C*********************************************************************
C The input list is as follows:
C VLAI: the leaf area index.
C VGRN: the greenness index.
C ZTH: The cosine of the solar zenith angle.
C SNW: Snow cover in meters water equivalent.
C ITYP: The surface type (grass, bare soil, etc.)
C IRUN: Number of tiles (same as used for SUBROUTINE TILE).
C
C The output list is as follows:
C
C AVISDR: visible, direct albedo.
C ANIRDR: near infra-red, direct albedo.
C AVISDF: visible, diffuse albedo.
C ANIRDF: near infra-red, diffuse albedo.
C*******************************************************************
IMPLICIT NONE
INTEGER IRUN
_RL AVISDR (IRUN), ANIRDR (IRUN), AVISDF (IRUN), ANIRDF (IRUN)
_RL VLAI(IRUN),VGRN (IRUN), SNW(IRUN)
_RL ZTH(IRUN)
INTEGER ITYP (IRUN)
_RL ALVDRS, ALIDRS
_RL ALVDRDL, ALIDRDL
_RL ALVDRDD, ALIDRDD
_RL ALVDRI, ALIDRI
_RL minval
EXTERNAL minval
C Albedo of soil for visible direct solar radiation.
PARAMETER ( ALVDRS = 0.100 )
C Albedo of soil for infra-red direct solar radiation.
PARAMETER ( ALIDRS = 0.200 )
C Albedo of light desert for visible direct solar radiation.
PARAMETER ( ALVDRDL = 0.300 )
C Albedo of light desert for infra-red direct solar radiation.
PARAMETER ( ALIDRDL = 0.350 )
C Albedo of dark desert for visible direct solar radiation.
PARAMETER ( ALVDRDD = 0.250 )
C Albedo of dark desert for infra-red direct solar radiation.
PARAMETER ( ALIDRDD = 0.300 )
C Albedo of ice for visible direct solar radiation.
PARAMETER ( ALVDRI = 0.800 )
C Albedo of ice for infra-red direct solar radiation.
PARAMETER ( ALIDRI = 0.800 )
* ----------------------------------------------------------------------
INTEGER NTYPS
INTEGER NLAI
_RL ZERO, ONE
_RL EPSLN, BLAI, DLAI
_RL ALATRM
PARAMETER (NLAI = 14 )
PARAMETER (EPSLN = 1.E-6)
PARAMETER (BLAI = 0.5)
PARAMETER (DLAI = 0.5)
PARAMETER (ZERO=0., ONE=1.0)
PARAMETER (ALATRM = BLAI + (NLAI - 1) * DLAI - EPSLN)
PARAMETER (NTYPS=10)
C ITYP: Vegetation type as follows:
C 1: BROADLEAF EVERGREEN TREES
C 2: BROADLEAF DECIDUOUS TREES
C 3: NEEDLELEAF TREES
C 4: GROUND COVER
C 5: BROADLEAF SHRUBS
C 6: DWARF TREES (TUNDRA)
C 7: BARE SOIL
C 8: LIGHT DESERT
C 9: GLACIER
C 10: DARK DESERT
C
INTEGER I, LAI
_RL FAC,GAMMA,BETA,ALPHA,DX,DY,ALA,GRN (2),SNWALB(4,NTYPS)
_RL COEFF
_RL ALVDR (NLAI, 2, NTYPS)
_RL BTVDR (NLAI, 2, NTYPS)
_RL GMVDR (NLAI, 2, NTYPS)
_RL ALIDR (NLAI, 2, NTYPS)
_RL BTIDR (NLAI, 2, NTYPS)
_RL GMIDR (NLAI, 2, NTYPS)
C (Data statements for ALVDR described in full; data statements for
C other constants follow same framework.)
C BROADLEAF EVERGREEN (ITYP=4); GREEN=0.33; LAI: .5-7
DATA (ALVDR (I, 1, 1), I = 1, 14)
& /0.0808, 0.0796, 0.0792, 0.0790, 10*0.0789/
C BROADLEAF EVERGREEN (ITYP=4); GREEN=0.67; LAI: .5-7
DATA (ALVDR (I, 2, 1), I = 1, 14)
& /0.0788, 0.0775, 0.0771, 0.0769, 10*0.0768/
C BROADLEAF DECIDUOUS (ITYP=1); GREEN=0.33; LAI: .5-7
DATA (ALVDR (I, 1, 2), I = 1, 14)
& /0.0803, 0.0790, 0.0785, 0.0784, 3*0.0783, 7*0.0782/
C BROADLEAF DECIDUOUS (ITYP=1); GREEN=0.67; LAI: .5-7
DATA (ALVDR (I, 2, 2), I = 1, 14)
& /0.0782, 0.0770, 0.0765, 0.0763, 10*0.0762/
C NEEDLELEAF (ITYP=3); GREEN=0.33; LAI=.5-7
DATA (ALVDR (I, 1, 3), I = 1, 14)
& /0.0758, 0.0746, 0.0742, 0.0740, 10*0.0739/
C NEEDLELEAF (ITYP=3); GREEN=0.67; LAI=.5-7
DATA (ALVDR (I, 2, 3), I = 1, 14)
& /0.0683, 0.0672, 0.0667, 2*0.0665, 9*0.0664/
C GROUNDCOVER (ITYP=2); GREEN=0.33; LAI=.5-7
DATA (ALVDR (I, 1, 4), I = 1, 14)
& /0.2436, 0.2470, 0.2486, 0.2494, 0.2498, 0.2500, 2*0.2501,
& 6*0.2502
& /
C GROUNDCOVER (ITYP=2); GREEN=0.67; LAI=.5-7
DATA (ALVDR (I, 2, 4), I = 1, 14) /14*0.1637/
C BROADLEAF SHRUBS (ITYP=5); GREEN=0.33,LAI=.5-7
DATA (ALVDR (I, 1, 5), I = 1, 14)
& /0.0807, 0.0798, 0.0794, 0.0792, 0.0792, 9*0.0791/
C BROADLEAF SHRUBS (ITYP=5); GREEN=0.67,LAI=.5-7
DATA (ALVDR (I, 2, 5), I = 1, 14)
& /0.0787, 0.0777, 0.0772, 0.0771, 10*0.0770/
C DWARF TREES, OR TUNDRA (ITYP=6); GREEN=0.33,LAI=.5-7
DATA (ALVDR (I, 1, 6), I = 1, 14)
& /0.0802, 0.0791, 0.0787, 0.0786, 10*0.0785/
C DWARF TREES, OR TUNDRA (ITYP=6); GREEN=0.67,LAI=.5-7
DATA (ALVDR (I, 2, 6), I = 1, 14)
& /0.0781, 0.0771, 0.0767, 0.0765, 0.0765, 9*0.0764/
C BARE SOIL
DATA (ALVDR (I, 1, 7), I = 1, 14) /14*ALVDRS/
DATA (ALVDR (I, 2, 7), I = 1, 14) /14*ALVDRS/
C LIGHT DESERT (SAHARA, EG)
DATA (ALVDR (I, 1, 8), I = 1, 14) /14*ALVDRDL/
DATA (ALVDR (I, 2, 8), I = 1, 14) /14*ALVDRDL/
C ICE
DATA (ALVDR (I, 1, 9), I = 1, 14) /14*ALVDRI/
DATA (ALVDR (I, 2, 9), I = 1, 14) /14*ALVDRI/
C DARK DESERT (AUSTRALIA, EG)
DATA (ALVDR (I, 1, 10), I = 1, 14) /14*ALVDRDD/
DATA (ALVDR (I, 2, 10), I = 1, 14) /14*ALVDRDD/
C**** -------------------------------------------------
DATA (BTVDR (I, 1, 1), I = 1, 14)
& /0.0153, 0.0372, 0.0506, 0.0587, 0.0630, 0.0652, 0.0663,
& 0.0668, 0.0671, 0.0672, 4*0.0673
& /
DATA (BTVDR (I, 2, 1), I = 1, 14)
& /0.0135, 0.0354, 0.0487, 0.0568, 0.0611, 0.0633, 0.0644,
& 0.0650, 0.0652, 0.0654, 0.0654, 3*0.0655
& /
DATA (BTVDR (I, 1, 2), I = 1, 14)
& /0.0148, 0.0357, 0.0462, 0.0524, 0.0554, 0.0569, 0.0576,
& 0.0579, 0.0580, 0.0581, 0.0581, 3*0.0582
& /
DATA (BTVDR (I, 2, 2), I = 1, 14)
& /0.0131, 0.0342, 0.0446, 0.0508, 0.0539, 0.0554, 0.0560,
& 0.0564, 0.0565, 5*0.0566
& /
DATA (BTVDR (I, 1, 3), I = 1, 14)
& /0.0108, 0.0334, 0.0478, 0.0571, 0.0624, 0.0652, 0.0666,
& 0.0673, 0.0677, 0.0679, 4*0.0680
& /
DATA (BTVDR (I, 2, 3), I = 1, 14)
& /0.0034, 0.0272, 0.0408, 0.0501, 0.0554, 0.0582, 0.0597,
& 0.0604, 0.0608, 0.0610, 4*0.0611
& /
DATA (BTVDR (I, 1, 4), I = 1, 14)
& /0.2050, 0.2524, 0.2799, 0.2947, 0.3022, 0.3059, 0.3076,
& 0.3085, 0.3088, 0.3090, 4*0.3091
& /
DATA (BTVDR (I, 2, 4), I = 1, 14)
& /0.1084, 0.1404, 0.1617, 0.1754, 0.1837, 0.1887, 0.1915,
& 0.1931, 0.1940, 0.1946, 0.1948, 0.1950, 2*0.1951
& /
DATA (BTVDR (I, 1, 5), I = 1, 14)
& /0.0203, 0.0406, 0.0548, 0.0632, 0.0679, 0.0703, 0.0716,
& 0.0722, 0.0726, 0.0727, 0.0728, 0.0728, 0.0728, 0.0729
& /
DATA (BTVDR (I, 2, 5), I = 1, 14)
& /0.0184, 0.0385, 0.0526, 0.0611, 0.0658, 0.0683, 0.0696,
& 0.0702, 0.0705, 0.0707, 4*0.0708
& /
DATA (BTVDR (I, 1, 6), I = 1, 14)
& /0.0199, 0.0388, 0.0494, 0.0554, 0.0584, 0.0599, 0.0606,
& 0.0609, 0.0611, 5*0.0612
& /
DATA (BTVDR (I, 2, 6), I = 1, 14)
& /0.0181, 0.0371, 0.0476, 0.0537, 0.0568, 0.0583, 0.0590,
& 0.0593, 0.0595, 0.0595, 4*0.0596
& /
DATA (BTVDR (I, 1, 7), I = 1, 14) /14*0./
DATA (BTVDR (I, 2, 7), I = 1, 14) /14*0./
DATA (BTVDR (I, 1, 8), I = 1, 14) /14*0./
DATA (BTVDR (I, 2, 8), I = 1, 14) /14*0./
DATA (BTVDR (I, 1, 9), I = 1, 14) /14*0./
DATA (BTVDR (I, 2, 9), I = 1, 14) /14*0./
DATA (BTVDR (I, 1, 10), I = 1, 14) /14*0./
DATA (BTVDR (I, 2, 10), I = 1, 14) /14*0./
C**** -----------------------------------------------------------
DATA (GMVDR (I, 1, 1), I = 1, 14)
& /0.0814, 0.1361, 0.2078, 0.2650, 0.2986, 0.3169, 0.3265,
& 0.3313, 0.3337, 0.3348, 0.3354, 0.3357, 2*0.3358
& /
DATA (GMVDR (I, 2, 1), I = 1, 14)
& /0.0760, 0.1336, 0.2034, 0.2622, 0.2969, 0.3159, 0.3259,
& 0.3309, 0.3333, 0.3346, 0.3352, 0.3354, 2*0.3356
& /
DATA (GMVDR (I, 1, 2), I = 1, 14)
& /0.0834, 0.1252, 0.1558, 0.1927, 0.2131, 0.2237, 0.2290,
& 0.2315, 0.2327, 0.2332, 0.2335, 2*0.2336, 0.2337
& /
DATA (GMVDR (I, 2, 2), I = 1, 14)
& /0.0789, 0.1235, 0.1531, 0.1912, 0.2122, 0.2232, 0.2286,
& 0.2312, 0.2324, 0.2330, 0.2333, 0.2334, 2*0.2335
& /
DATA (GMVDR (I, 1, 3), I = 1, 14)
& /0.0647, 0.1342, 0.2215, 0.2968, 0.3432, 0.3696, 0.3838,
& 0.3912, 0.3950, 0.3968, 0.3978, 0.3982, 0.3984, 0.3985
& /
DATA (GMVDR (I, 2, 3), I = 1, 14)
& /0.0258, 0.1227, 0.1999, 0.2825, 0.3339, 0.3634, 0.3794,
& 0.3877, 0.3919, 0.3940, 0.3950, 0.3956, 0.3958, 0.3959
& /
DATA (GMVDR (I, 1, 4), I = 1, 14)
& /0.3371, 0.5762, 0.7159, 0.7927, 0.8324, 0.8526, 0.8624,
& 0.8671, 0.8693, 0.8704, 0.8709, 0.8710, 2*0.8712
& /
DATA (GMVDR (I, 2, 4), I = 1, 14)
& /0.2634, 0.4375, 0.5532, 0.6291, 0.6763, 0.7048, 0.7213,
& 0.7310, 0.7363, 0.7395, 0.7411, 0.7420, 0.7426, 0.7428
& /
DATA (GMVDR (I, 1, 5), I = 1, 14)
& /0.0971, 0.1544, 0.2511, 0.3157, 0.3548, 0.3768, 0.3886,
& 0.3948, 0.3978, 0.3994, 0.4001, 0.4006, 0.4007, 0.4008
& /
DATA (GMVDR (I, 2, 5), I = 1, 14)
& /0.0924, 0.1470, 0.2458, 0.3123, 0.3527, 0.3756, 0.3877,
& 0.3942, 0.3974, 0.3990, 0.3998, 0.4002, 0.4004, 0.4005
& /
DATA (GMVDR (I, 1, 6), I = 1, 14)
& /0.0970, 0.1355, 0.1841, 0.2230, 0.2447, 0.2561, 0.2617,
& 0.2645, 0.2658, 0.2664, 0.2667, 3*0.2669
& /
DATA (GMVDR (I, 2, 6), I = 1, 14)
& /0.0934, 0.1337, 0.1812, 0.2213, 0.2437, 0.2554, 0.2613,
& 0.2642, 0.2656, 0.2662, 0.2665, 0.2667, 0.2667, 0.2668
& /
DATA (GMVDR (I, 1, 7), I = 1, 14) /14*1./
DATA (GMVDR (I, 2, 7), I = 1, 14) /14*1./
DATA (GMVDR (I, 1, 8), I = 1, 14) /14*1./
DATA (GMVDR (I, 2, 8), I = 1, 14) /14*1./
DATA (GMVDR (I, 1, 9), I = 1, 14) /14*1./
DATA (GMVDR (I, 2, 9), I = 1, 14) /14*1./
DATA (GMVDR (I, 1, 10), I = 1, 14) /14*1./
DATA (GMVDR (I, 2, 10), I = 1, 14) /14*1./
C**** -----------------------------------------------------------
DATA (ALIDR (I, 1, 1), I = 1, 14)
& /0.2867, 0.2840, 0.2828, 0.2822, 0.2819, 0.2818, 2*0.2817,
& 6*0.2816
& /
DATA (ALIDR (I, 2, 1), I = 1, 14)
& /0.3564, 0.3573, 0.3577, 0.3580, 2*0.3581, 8*0.3582/
DATA (ALIDR (I, 1, 2), I = 1, 14)
& /0.2848, 0.2819, 0.2804, 0.2798, 0.2795, 2*0.2793, 7*0.2792/
DATA (ALIDR (I, 2, 2), I = 1, 14)
& /0.3544, 0.3550, 0.3553, 2*0.3555, 9*0.3556/
DATA (ALIDR (I, 1, 3), I = 1, 14)
& /0.2350, 0.2311, 0.2293, 0.2285, 0.2281, 0.2280, 8*0.2279/
DATA (ALIDR (I, 2, 3), I = 1, 14)
& /0.2474, 0.2436, 0.2418, 0.2410, 0.2406, 0.2405, 3*0.2404,
& 5*0.2403
& /
DATA (ALIDR (I, 1, 4), I = 1, 14)
& /0.5816, 0.6157, 0.6391, 0.6556, 0.6673, 0.6758, 0.6820,
& 0.6866, 0.6899, 0.6924, 0.6943, 0.6956, 0.6966, 0.6974
& /
DATA (ALIDR (I, 2, 4), I = 1, 14)
& /0.5489, 0.5770, 0.5955, 0.6079, 0.6163, 0.6221, 0.6261,
& 0.6288, 0.6308, 0.6321, 0.6330, 0.6337, 0.6341, 0.6344
& /
DATA (ALIDR (I, 1, 5), I = 1, 14)
& /0.2845, 0.2837, 0.2832, 0.2831, 0.2830, 9*0.2829/
DATA (ALIDR (I, 2, 5), I = 1, 14)
& /0.3532, 0.3562, 0.3578, 0.3586, 0.3590, 0.3592, 0.3594,
& 0.3594, 0.3594, 5*0.3595
& /
DATA (ALIDR (I, 1, 6), I = 1, 14)
& /0.2825, 0.2812, 0.2806, 0.2803, 0.2802, 9*0.2801/
DATA (ALIDR (I, 2, 6), I = 1, 14)
& /0.3512, 0.3538, 0.3552, 0.3559, 0.3562, 0.3564, 0.3565,
& 0.3565, 6*0.3566
& /
DATA (ALIDR (I, 1, 7), I = 1, 14) /14*ALIDRS/
DATA (ALIDR (I, 2, 7), I = 1, 14) /14*ALIDRS/
DATA (ALIDR (I, 1, 8), I = 1, 14) /14*ALIDRDL/
DATA (ALIDR (I, 2, 8), I = 1, 14) /14*ALIDRDL/
DATA (ALIDR (I, 1, 9), I = 1, 14) /14*ALIDRI/
DATA (ALIDR (I, 2, 9), I = 1, 14) /14*ALIDRI/
DATA (ALIDR (I, 1, 10), I = 1, 14) /14*ALIDRDD/
DATA (ALIDR (I, 2, 10), I = 1, 14) /14*ALIDRDD/
C**** -----------------------------------------------------------
DATA (BTIDR (I, 1, 1), I = 1, 14)
& /0.1291, 0.1707, 0.1969, 0.2125, 0.2216, 0.2267, 0.2295,
& 0.2311, 0.2319, 0.2323, 0.2326, 2*0.2327, 0.2328
& /
DATA (BTIDR (I, 2, 1), I = 1, 14)
& /0.1939, 0.2357, 0.2598, 0.2735, 0.2810, 0.2851, 0.2874,
& 0.2885, 0.2892, 0.2895, 0.2897, 3*0.2898
& /
DATA (BTIDR (I, 1, 2), I = 1, 14)
& /0.1217, 0.1522, 0.1713, 0.1820, 0.1879, 0.1910, 0.1926,
& 0.1935, 0.1939, 0.1942, 2*0.1943, 2*0.1944
& /
DATA (BTIDR (I, 2, 2), I = 1, 14)
& /0.1781, 0.2067, 0.2221, 0.2301, 0.2342, 0.2363, 0.2374,
& 0.2379, 0.2382, 0.2383, 2*0.2384, 2*0.2385
& /
DATA (BTIDR (I, 1, 3), I = 1, 14)
& /0.0846, 0.1299, 0.1614, 0.1814, 0.1935, 0.2004, 0.2043,
& 0.2064, 0.2076, 0.2082, 0.2085, 2*0.2087, 0.2088
& /
DATA (BTIDR (I, 2, 3), I = 1, 14)
& /0.0950, 0.1410, 0.1722, 0.1921, 0.2042, 0.2111, 0.2151,
& 0.2172, 0.2184, 0.2191, 0.2194, 0.2196, 2*0.2197
& /
DATA (BTIDR (I, 1, 4), I = 1, 14)
& /0.5256, 0.7444, 0.9908, 1.2700, 1.5680, 1.8505, 2.0767,
& 2.2211, 2.2808, 2.2774, 2.2362, 2.1779, 2.1160, 2.0564
& /
DATA (BTIDR (I, 2, 4), I = 1, 14)
& /0.4843, 0.6714, 0.8577, 1.0335, 1.1812, 1.2858, 1.3458,
& 1.3688, 1.3685, 1.3546, 1.3360, 1.3168, 1.2989, 1.2838
& /
DATA (BTIDR (I, 1, 5), I = 1, 14)
& /0.1498, 0.1930, 0.2201, 0.2364, 0.2460, 0.2514, 0.2544,
& 0.2560, 0.2569, 0.2574, 0.2577, 0.2578, 0.2579, 0.2579
& /
DATA (BTIDR (I, 2, 5), I = 1, 14)
& /0.2184, 0.2656, 0.2927, 0.3078, 0.3159, 0.3202, 0.3224,
& 0.3235, 0.3241, 0.3244, 0.3245, 3*0.3246
& /
DATA (BTIDR (I, 1, 6), I = 1, 14)
& /0.1369, 0.1681, 0.1860, 0.1958, 0.2010, 0.2038, 0.2053,
& 0.2060, 0.2064, 0.2066, 0.2067, 3*0.2068
& /
DATA (BTIDR (I, 2, 6), I = 1, 14)
& /0.1969, 0.2268, 0.2416, 0.2488, 0.2521, 0.2537, 0.2544,
& 0.2547, 0.2548, 5*0.2549
& /
DATA (BTIDR (I, 1, 7), I = 1, 14) /14*0./
DATA (BTIDR (I, 2, 7), I = 1, 14) /14*0./
DATA (BTIDR (I, 1, 8), I = 1, 14) /14*0./
DATA (BTIDR (I, 2, 8), I = 1, 14) /14*0./
DATA (BTIDR (I, 1, 9), I = 1, 14) /14*0./
DATA (BTIDR (I, 2, 9), I = 1, 14) /14*0./
DATA (BTIDR (I, 1, 10), I = 1, 14) /14*0./
DATA (BTIDR (I, 2, 10), I = 1, 14) /14*0./
C**** --------------------------------------------------------------
DATA (GMIDR (I, 1, 1), I = 1, 14)
& /0.1582, 0.2581, 0.3227, 0.3635, 0.3882, 0.4026, 0.4108,
& 0.4154, 0.4179, 0.4193, 0.4200, 0.4204, 0.4206, 0.4207
& /
DATA (GMIDR (I, 2, 1), I = 1, 14)
& /0.1934, 0.3141, 0.3818, 0.4200, 0.4415, 0.4533, 0.4598,
& 0.4633, 0.4651, 0.4662, 0.4667, 0.4671, 2*0.4672
& /
DATA (GMIDR (I, 1, 2), I = 1, 14)
& /0.1347, 0.1871, 0.2277, 0.2515, 0.2651, 0.2727, 0.2768,
& 0.2790, 0.2801, 0.2808, 0.2811, 0.2812, 0.2813, 0.2814
& /
DATA (GMIDR (I, 2, 2), I = 1, 14)
& /0.1440, 0.2217, 0.2629, 0.2839, 0.2947, 0.3003, 0.3031,
& 0.3046, 0.3054, 0.3058, 0.3060, 2*0.3061, 0.3062
& /
DATA (GMIDR (I, 1, 3), I = 1, 14)
& /0.1372, 0.2368, 0.3235, 0.3839, 0.4229, 0.4465, 0.4602,
& 0.4679, 0.4722, 0.4745, 0.4758, 0.4764, 0.4768, 0.4770
& /
DATA (GMIDR (I, 2, 3), I = 1, 14)
& /0.1435, 0.2524, 0.3370, 0.3955, 0.4332, 0.4563, 0.4697,
& 0.4773, 0.4815, 0.4839, 0.4851, 0.4858, 0.4861, 0.4863
& /
DATA (GMIDR (I, 1, 4), I = 1, 14)
& /0.4298, 0.9651, 1.6189, 2.4084, 3.2992, 4.1928, 4.9611,
& 5.5095, 5.8085, 5.9069, 5.8726, 5.7674, 5.6346, 5.4944
& /
DATA (GMIDR (I, 2, 4), I = 1, 14)
& /0.4167, 0.8974, 1.4160, 1.9414, 2.4147, 2.7803, 3.0202,
& 3.1468, 3.1954, 3.1932, 3.1676, 3.1328, 3.0958, 3.0625
& /
DATA (GMIDR (I, 1, 5), I = 1, 14)
& /0.1959, 0.3203, 0.3985, 0.4472, 0.4766, 0.4937, 0.5034,
& 0.5088, 0.5117, 0.5134, 0.5143, 0.5147, 0.5150, 0.5152
& /
DATA (GMIDR (I, 2, 5), I = 1, 14)
& /0.2328, 0.3859, 0.4734, 0.5227, 0.5498, 0.5644, 0.5720,
& 0.5761, 0.5781, 0.5792, 0.5797, 0.5800, 0.5802, 0.5802
& /
DATA (GMIDR (I, 1, 6), I = 1, 14)
& /0.1447, 0.2244, 0.2698, 0.2953, 0.3094, 0.3170, 0.3211,
& 0.3233, 0.3244, 0.3250, 0.3253, 0.3255, 0.3256, 0.3256
& /
DATA (GMIDR (I, 2, 6), I = 1, 14)
& /0.1643, 0.2624, 0.3110, 0.3347, 0.3461, 0.3517, 0.3543,
& 0.3556, 0.3562, 0.3564, 0.3565, 0.3566, 0.3566, 0.3566
& /
DATA (GMIDR (I, 1, 7), I = 1, 14) /14*1./
DATA (GMIDR (I, 2, 7), I = 1, 14) /14*1./
DATA (GMIDR (I, 1, 8), I = 1, 14) /14*1./
DATA (GMIDR (I, 2, 8), I = 1, 14) /14*1./
DATA (GMIDR (I, 1, 9), I = 1, 14) /14*1./
DATA (GMIDR (I, 2, 9), I = 1, 14) /14*1./
DATA (GMIDR (I, 1, 10), I = 1, 14) /14*1./
DATA (GMIDR (I, 2, 10), I = 1, 14) /14*1./
C**** -----------------------------------------------------------
DATA GRN /0.33, 0.67/
#include "snwmid.h"
DATA SNWALB /.65, .38, .65, .38,
& .65, .38, .65, .38,
& .65, .38, .65, .38,
& .65, .38, .65, .38,
& .65, .38, .65, .38,
& .65, .38, .65, .38,
& .65, .38, .65, .38,
& .65, .38, .65, .38,
& .80, .60, .80, .60,
& .65, .38, .65, .38
& /
#ifdef CRAY
#ifdef f77
cfpp$ expand (coeff)
#endif
#endif
DO 100 I=1,IRUN
ALA = MIN (MAX (ZERO, VLAI(I)), ALATRM)
LAI = 1 + MAX(0, INT((ALA-BLAI)/DLAI) )
DX = (ALA - (BLAI+(LAI-1)*DLAI)) * (ONE/DLAI)
DY = (VGRN(I)- GRN(1)) * (ONE/(GRN(2) - GRN(1)))
ALPHA = COEFF (ALVDR (1, 1, ITYP (I)), NLAI, LAI ,DX, DY)
BETA = COEFF (BTVDR (1, 1, ITYP (I)), NLAI, LAI ,DX, DY)
GAMMA = COEFF (GMVDR (1, 1, ITYP (I)), NLAI, LAI ,DX, DY)
AVISDR(I) = ALPHA - ZTH(I)*BETA / (GAMMA+ZTH(I))
AVISDF(I) = ALPHA-BETA
& + 2.*BETA*GAMMA*(1.-GAMMA*LOG((1.+GAMMA)/GAMMA))
ALPHA = COEFF (ALIDR (1, 1, ITYP (I)), NLAI, LAI ,DX, DY)
BETA = COEFF (BTIDR (1, 1, ITYP (I)), NLAI, LAI ,DX, DY)
GAMMA = COEFF (GMIDR (1, 1, ITYP (I)), NLAI, LAI ,DX, DY)
ANIRDR(I) = ALPHA - ZTH(I)*BETA / (GAMMA+ZTH(I))
ANIRDF(I) = ALPHA-BETA
& + 2.*BETA*GAMMA*(1.-GAMMA*LOG((1.+GAMMA)/GAMMA))
IF (SNW (I) .GT. ZERO) THEN
FAC = SNW(I) / (SNW(I) + SNWMID(ITYP(I)))
AVISDR(I) = AVISDR(I) + (SNWALB(1,ITYP(I)) - AVISDR(I)) * FAC
ANIRDR(I) = ANIRDR(I) + (SNWALB(2,ITYP(I)) - ANIRDR(I)) * FAC
AVISDF(I) = AVISDF(I) + (SNWALB(3,ITYP(I)) - AVISDF(I)) * FAC
ANIRDF(I) = ANIRDF(I) + (SNWALB(4,ITYP(I)) - ANIRDF(I)) * FAC
ENDIF
100 CONTINUE
RETURN
END
FUNCTION COEFF(TABLE, NTABL, LAI ,DX, DY)
INTEGER NTABL, LAI
_RL coeff
_RL TABLE (NTABL, 2), DX, DY
COEFF = (TABLE(LAI, 1)
& + (TABLE(LAI ,2) - TABLE(LAI ,1)) * DY ) * (1.0-DX)
& + (TABLE(LAI+1,1)
& + (TABLE(LAI+1,2) - TABLE(LAI+1,1)) * DY ) * DX
RETURN
END
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
SUBROUTINE GETLGR(sec,IMON,IDAY,ALAT,ITYP,NCHPS,nchpdim,
& nSx,nSy,bi,bj,ALAI,AGRN)
C*********************************************************************
IMPLICIT NONE
INTEGER ntyps
_RL one,daylen
PARAMETER (NTYPS=10)
PARAMETER (one = 1.)
PARAMETER (daylen = 86400.)
INTEGER sec, imon, iday, nchps, nchpdim, nSx, nSy, bi, bj
_RL ALAI(nchpdim,nSx,nSy), AGRN(nchpdim,nSx,nSy)
_RL ALAT(nchpdim,nSx,nSy)
INTEGER ITYP(nchpdim,nSx,nSy)
INTEGER i,midmon,midm,midp,id,k1,k2,kk1,kk2
_RL fac
INTEGER DAYS(12)
DATA DAYS/31,28,31,30,31,30,31,31,30,31,30,31/
_RL VGLA(12,NTYPS), VGGR(12,NTYPS)
DATA VGLA /
1 5.117, 5.117, 5.117, 5.117, 5.117, 5.117, 5.117, 5.117,
1 5.117, 5.117, 5.117, 5.117,
2 0.520, 0.520, 0.867, 2.107, 4.507, 6.773, 7.173, 6.507,
2 5.040, 2.173, 0.867, 0.520,
3 8.760, 9.160, 9.827,10.093,10.360,10.760,10.493,10.227,
3 10.093, 9.827, 9.160, 8.760,
4 0.782, 0.893, 1.004, 1.116, 1.782, 3.671, 4.782, 4.227,
4 2.004, 1.227, 1.004, 0.893,
5 3.760, 3.760, 2.760, 1.760, 1.760, 1.760, 1.760, 5.760,
5 10.760, 7.760, 4.760, 3.760,
6 0.739, 0.739, 0.739, 0.739, 0.739, 1.072, 5.072, 5.739,
6 4.405, 0.739, 0.739, 0.739,
7 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
7 0.001, 0.001, 0.001, 0.001,
8 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
8 0.001, 0.001, 0.001, 0.001,
9 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
9 0.001, 0.001, 0.001, 0.001,
1 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
1 0.001, 0.001, 0.001, 0.001
& /
DATA VGGR
1 /0.905, 0.905, 0.905, 0.905, 0.905, 0.905, 0.905, 0.905,
1 0.905, 0.905, 0.905, 0.905,
2 0.026, 0.026, 0.415, 0.759, 0.888, 0.925, 0.836, 0.697,
2 0.331, 0.166, 0.015, 0.026,
3 0.913, 0.917, 0.923, 0.925, 0.927, 0.905, 0.902, 0.913,
3 0.898, 0.855, 0.873, 0.913,
4 0.568, 0.622, 0.664, 0.697, 0.810, 0.908, 0.813, 0.394,
4 0.443, 0.543, 0.553, 0.498,
5 0.798, 0.532, 0.362, 0.568, 0.568, 0.568, 0.568, 0.868,
5 0.651, 0.515, 0.630, 0.798,
6 0.451, 0.451, 0.451, 0.451, 0.451, 0.622, 0.920, 0.697,
6 0.076, 0.451, 0.451, 0.451,
7 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
7 0.001, 0.001, 0.001, 0.001,
8 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
8 0.001, 0.001, 0.001, 0.001,
9 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
9 0.001, 0.001, 0.001, 0.001,
1 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
1 0.001, 0.001, 0.001, 0.001
& /
MIDMON = DAYS(IMON)/2 + 1
IF (IDAY .LT. MIDMON) THEN
K2 = IMON
K1 = MOD(IMON+10,12) + 1
ELSE
K1 = IMON
K2 = MOD(IMON,12) + 1
ENDIF
IF (IDAY .LT. MIDMON) THEN
MIDM = DAYS(K1)/2 + 1
MIDP = DAYS(K1) + MIDMON
ID = IDAY + DAYS(K1)
ELSE
MIDM = MIDMON
MIDP = DAYS(K2)/2 + 1 + DAYS(K1)
ID = IDAY
ENDIF
FAC = (float(ID -MIDM)*DAYLEN + SEC) /
& (float(MIDP-MIDM)*DAYLEN )
DO 220 I=1,NCHPS
IF(ALAT(I,bi,bj).GT.0.) THEN
KK1 = K1
KK2 = K2
ELSE
KK1 = MOD(K1+5,12) + 1
KK2 = MOD(K2+5,12) + 1
ENDIF
ALAI(I,bi,bj) = VGLA(KK2,ITYP(I,bi,bj))*FAC+
& VGLA(KK1,ITYP(I,bi,bj))*(ONE-FAC)
AGRN(I,bi,bj) = VGGR(KK2,ITYP(I,bi,bj))*FAC+
& VGGR(KK1,ITYP(I,bi,bj))*(ONE-FAC)
220 CONTINUE
RETURN
END
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
SUBROUTINE GETALB(sec,month,day,cosz,snodep,fraci,fracg,im,jm,
& nchp,nchptot,nchpland,nSx,nSy,bi,bj,igrd,ityp,chfr,chlt,
& alai,agrn,albvr,albvf,albnr,albnf)
C***********************************************************************
C PURPOSE
C To act as an interface to routine sibalb, which calculates
C the four albedos for use by the shortwave radiation routine
C
C INPUT:
C sec - number of seconds into the day of current time
C month - month of the year of current time
C day - day of the month of current time
C cosz - local cosine of the zenith angle [im,jm]
C snodep - snow cover in meters [nchp,nSx,nSy]
C fraci - real array in grid space of total sea ice fraction [im,jm]
C fracg - real array in grid space of total land fraction [im,jm]
C im - model grid longitude dimension
C jm - model grid latitude dimension (number of lat. points)
C nchp - integer actual number of tiles in tile space
C nchpland - integer number of land tiles
C nSx - number of processors in x-direction
C nSy - number of processors in y-direction
C bi - processors index in x-direction
C bj - processors index in y-direction
C igrd - integer array in tile space of grid point number for each
C tile [nchp,nSx,nSy]
C ityp - integer array in tile space of land surface type for each
C tile [nchp,nSx,nSy]
C chfr - real array in tile space of land surface type fraction for
C each tile [nchp,nSx,nSy]
C chlt - real array in tile space of latitude value for each tile
C [nchp,nSx,nSy]
C
C OUTPUT:
C albvr - real array [im,jm] of visible direct beam albedo
C albvf - real array [im,jm] of visible diffuse beam albedo
C albnr - real array [im,jm] of near-ir direct beam albedo
C albnf - real array [im,jm] of near-ir diffuse beam albedo
C
C***********************************************************************
IMPLICIT NONE
INTEGER sec,month,day,im,jm,nchp,nchptot,nchpland,nSx,nSy,bi,bj
_RL cosz(im,jm),fraci(im,jm),fracg(im,jm)
_RL snodep(nchp,nSx,nSy),chfr(nchp,nSx,nSy),chlt(nchp,nSx,nSy)
INTEGER igrd(nchp,nSx,nSy),ityp(nchp,nSx,nSy)
_RL alai(nchp,nSx,nSy),agrn(nchp,nSx,nSy)
_RL albvr(im,jm,nSx,nSy),albvf(im,jm,nSx,nSy)
_RL albnr(im,jm,nSx,nSy),albnf(im,jm,nSx,nSy)
C- local variables:
_RL one,a0,a1,a2,a3,ocnalb,albsi
PARAMETER (one = 1.)
PARAMETER (A0= 0.40670980)
PARAMETER (A1=-1.2523634 )
PARAMETER (A2= 1.4224051 )
PARAMETER (A3=-0.55573341)
PARAMETER (OCNALB=0.08)
PARAMETER (ALBSI=0.7)
_RL alboc(im,jm)
_RL avisdr(nchp),anirdr(nchp),avisdf(nchp)
_RL anirdf(nchp)
_RL zenith(nchp)
_RL tmpij(im,jm)
INTEGER i,j
DO I=1,IM
DO J=1,JM
ALBOC(I,J) = A0 + (A1 + (A2 + A3*cosz(I,J))*cosz(I,J))*cosz(I,J)
ALBVR(I,J,bi,bj) = ALBSI*FRACI(I,J) + ALBOC(I,J)*(ONE-FRACI(I,J))
ALBNR(I,J,bi,bj) = ALBVR(I,J,bi,bj)
ALBVF(I,J,bi,bj) = ALBSI * FRACI(I,J) + OCNALB * (ONE-FRACI(I,J))
ALBNF(I,J,bi,bj) = ALBVF(I,J,bi,bj)
ENDDO
ENDDO
C and now some conversions from grid space to tile space before sibalb
call GRD2MSC(cosz,im,jm,igrd(1,bi,bj),zenith,nchp,nchpland)
C and now call sibalb
call SIBALB(avisdr,anirdr,avisdf,anirdf,alai(1,bi,bj),
& agrn(1,bi,bj),zenith,snodep(1,bi,bj),ityp(1,bi,bj),nchpland)
C finally some transformations back to grid space for albedos
DO I=1,IM
DO J=1,JM
tmpij(i,j) = albvr(i,j,bi,bj)
ENDDO
ENDDO
call MSC2GRD(igrd(1,bi,bj),chfr(1,bi,bj),avisdr,nchp,nchpland,
& fracg,tmpij,im,jm)
DO I=1,IM
DO J=1,JM
albvr(i,j,bi,bj) = tmpij(i,j)
ENDDO
ENDDO
DO I=1,IM
DO J=1,JM
tmpij(i,j) = albvf(i,j,bi,bj)
ENDDO
ENDDO
call MSC2GRD(igrd(1,bi,bj),chfr(1,bi,bj),avisdf,nchp,nchpland,
& fracg,tmpij,im,jm)
DO I=1,IM
DO J=1,JM
albvf(i,j,bi,bj) = tmpij(i,j)
ENDDO
ENDDO
DO I=1,IM
DO J=1,JM
tmpij(i,j) = albnr(i,j,bi,bj)
ENDDO
ENDDO
call MSC2GRD(igrd(1,bi,bj),chfr(1,bi,bj),anirdr,nchp,nchpland,
& fracg,tmpij,im,jm)
DO I=1,IM
DO J=1,JM
albnr(i,j,bi,bj) = tmpij(i,j)
ENDDO
ENDDO
DO I=1,IM
DO J=1,JM
tmpij(i,j) = albnf(i,j,bi,bj)
ENDDO
ENDDO
call MSC2GRD(igrd(1,bi,bj),chfr(1,bi,bj),anirdf,nchp,nchpland,
& fracg,tmpij,im,jm)
DO I=1,IM
DO J=1,JM
albnf(i,j,bi,bj) = tmpij(i,j)
ENDDO
ENDDO
return
end
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
SUBROUTINE GETEMISS(fracg,im,jm,nchp,nchptot,nSx,nSy,bi,bj,
& igrd,ityp,chfr,snowdep,fraci,emiss)
C***********************************************************************
C PURPOSE
C To act as an interface to routine to emissivity, which calculates
C ten bands of surface emissivities for use by the longwave radiation
C
C INPUT:
C fracg - real array in grid space of total land fraction [im,jm]
C im - model grid longitude dimension
C jm - model grid latitude dimension (number of lat. points)
C nchp - integer actual number of tiles in tile space
C nSx - number of processors in x-direction
C nSy - number of processors in y-direction
C bi - processors index in x-direction
C bj - processors index in y-direction
C igrd - integer array in tile space of grid point number for each
C tile [nchp]
C ityp - integer array in tile space of land surface type for each
C tile [nchp]
C chfr - real array in tile space of land surface type fraction for
C each tile [nchp]
C snowdep - real array in tile space of snow depth (liquid water equiv)
C in mm [nchp]
C fraci - real array in tile space of sea ice fraction [nchp]
C
C OUTPUT:
C emiss - real array [im,jm,10,nSx,nSy] - surface emissivity (frac)
C
C***********************************************************************
IMPLICIT NONE
INTEGER im,jm,nchp,nchptot,nSx,nSy,bi,bj
_RL fracg(im,jm)
_RL chfr(nchp,nSx,nSy)
INTEGER igrd(nchp,nSx,nSy), ityp(nchp,nSx,nSy)
_RL snowdep(nchp,nSx,nSy)
_RL fraci(nchp)
_RL emiss(im,jm,10,nSx,nSy)
_RL emisstile(nchp,10)
_RL tmpij(im,jm)
INTEGER i,j,k,n
do i = 1,10
do n = 1,nchptot
emisstile(n,i) = 1.
enddo
enddo
C call emissivity to get values in tile space
C -------------------------------------------
call EMISSIVITY(snowdep(1,bi,bj),fraci,nchp,nchptot,ityp(1,bi,bj),
& emisstile)
C transform back to grid space for emissivities
C ---------------------------------------------
do k = 1,10
do j = 1,jm
do i = 1,im
tmpij(i,j) = 0.0
enddo
enddo
call MSC2GRD(igrd(1,bi,bj),chfr(1,bi,bj),emisstile(1,k),nchp,
& nchptot,fracg,tmpij,im,jm)
do j = 1,jm
do i = 1,im
emiss(i,j,k,bi,bj) = tmpij(i,j)
enddo
enddo
enddo
return
end
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
SUBROUTINE EMISSIVITY (snowdepth,fraci,nchp,numpts,ityp,newemis)
IMPLICIT NONE
INTEGER nchp,numpts
INTEGER ityp(nchp)
_RL snowdepth(nchp)
_RL fraci(nchp)
_RL newemis(nchp,10)
_RL emis(12,11)
_RL fac
INTEGER i,j
C-----------------------------------------------------------------------
C NOTE: Emissivities were obtained for the following surface types:
C ( 1) evergreen needleleaf = conifer
C ( 2) evergreen broadleaf = conifer
C ( 3) deciduous needleleaf = deciduous
C ( 4) deciduous broadleaf = deciduous
C ( 5) mixed forests = 1/2 conifer + 1/2 deciduous = tree
C ( 6) closed shrublands = 3/4 tree + 1/4 quartz
C ( 7) open shrubland = 1/4 tree + 3/4 quartz
C ( 8) woody savannas = grass
C ( 9) savannas = grass
C (10) grasslands = grass
C (11) permanent wetlands = 1/2 grass + 1/2 water
C (12) croplands = grass
C (13) urban = black body
C (14) mosaic = 1/2 grass + 1/2 mixed forest
C (15) snow/ice
C (16) barren/sparsely vegetated = desert(quartz)
C (17) water
C (18) tundra = frost
C
C NOTE: Translation to Koster-Suarez surface types was as follows:
C ( 1) broadleaf evergreen FROM above type 1 (conifer)
C ( 2) broadleaf deciduous FROM above type 2 (deciduous)
C ( 3) needleleaf evergreen FROM above type 1 (conifer)
C ( 4) groundcover FROM above type 10 (grass)
C ( 5) broadleaf shrubs FROM above type 6 (closed shrublands)
C ( 6) dwarf trees (tundra) FROM above type 18 (tundra)
C ( 7) bare soil FROM above type 16 (desert)
C ( 8) light desert FROM above type 16 (desert)
C ( 9) glacier FROM above type 15 (snow/ice)
C ( 10) dark desert FROM above type 16 (desert)
C (100) ocean FROM above type 17 (water)
C
C NOTE: snow-covered ground uses interpolated emissivities based on snow depth
C =============================================================================
C -----------------------------------------------------------------------------
C Emmissivities for 12 bands in Fu/Liou
C band 1: 4.5 - 5.3 um
C band 2: 5.3 - 5.9 um
C band 3: 5.9 - 7.1 um
C band 4: 7.1 - 8.0 um
C band 5: 8.0 - 9.1 um
C band 6: 9.1 - 10.2 um
C band 7: 10.2 - 12.5 um
C band 8: 12.5 - 14.9 um
C band 9: 14.9 - 18.5 um
C band 10: 18.5 - 25.0 um
C band 11: 25.0 - 35.7 um
C band 12: 35.7 - oo um
C
C-------------------------------------------------------------------------
DATA ((emis(i,j),i=1,12),j=1,11) /
C evergreen needleleaf
& 0.9891, 0.9892, 0.9900, 0.9914, 0.9908, 0.9903,
& 0.9898, 0.9948, 1.0000, 1.0000, 1.0000, 1.0000,
C deciduous needleleaf
& 0.9849, 0.9856, 0.9841, 0.9831, 0.9789, 0.9805,
& 0.9733, 0.9869, 1.0000, 1.0000, 1.0000, 1.0000,
C evergreen needleleaf
& 0.9891, 0.9892, 0.9900, 0.9914, 0.9908, 0.9903,
& 0.9898, 0.9948, 1.0000, 1.0000, 1.0000, 1.0000,
C grasslands
& 0.9867, 0.9897, 0.9920, 0.9933, 0.9830, 0.9752,
& 0.9853, 0.9928, 1.0000, 1.0000, 1.0000, 1.0000,
C closed shrublands
& 0.9490, 0.9697, 0.9738, 0.9712, 0.9474, 0.9582,
& 0.9663, 0.9747, 0.9836, 0.9836, 0.9836, 0.9836,
C tundra
& 0.9469, 0.9670, 0.9883, 0.9795, 0.9751, 0.9767,
& 0.9920, 0.9888, 0.9888, 0.9888, 0.9888, 0.9888,
C barren
& 0.8353, 0.9163, 0.9342, 0.9229, 0.8354, 0.8766,
& 0.9210, 0.9262, 0.9345, 0.9345, 0.9345, 0.9345,
C barren
& 0.8353, 0.9163, 0.9342, 0.9229, 0.8354, 0.8766,
& 0.9210, 0.9262, 0.9345, 0.9345, 0.9345, 0.9345,
C snow/ice
& 0.9998, 0.9998, 0.9998, 0.9998, 0.9998, 0.9999,
& 0.9997, 0.9994, 0.9995, 0.9995, 0.9995, 0.9995,
C barren
& 0.8353, 0.9163, 0.9342, 0.9229, 0.8354, 0.8766,
& 0.9210, 0.9262, 0.9345, 0.9345, 0.9345, 0.9345,
C water
& 0.9788, 0.9833, 0.9819, 0.9820, 0.9835, 0.9865,
& 0.9886, 0.9719, 0.9719, 0.9719, 0.9719, 0.9719/
#include "snwmid.h"
C Convert to the 10 bands needed by Chou Radiation
C ------------------------------------------------
do i=1,numpts
C land points
C------------
if(ityp(i).le.10)then
newemis(i, 1) = (emis( 1,ityp(i))+emis(2,ityp(i)))/2.
newemis(i, 2) = (emis( 2,ityp(i))+emis(3,ityp(i)))/2.
newemis(i, 3) = (emis( 4,ityp(i))+emis(5,ityp(i)))/2.
newemis(i, 4) = emis( 6,ityp(i))
newemis(i, 5) = emis( 7,ityp(i))
newemis(i, 6) = emis( 8,ityp(i))
newemis(i, 7) = emis( 9,ityp(i))
newemis(i, 8) = (emis(10,ityp(i))+emis(11,ityp(i)))/2.
newemis(i, 9) = emis(12,ityp(i))
newemis(i,10) = emis( 4,ityp(i))
C modify emissivity for snow based on snow depth (like albedo)
C-------------------------------------------------------------
if(snowdepth (i).gt.0.) then
fac = snowdepth(i) / (snowdepth(i) + snwmid(ityp(i)))
newemis(i, 1) = newemis(i, 1) + (((emis( 1,9)+emis( 2,9))/2.)
& - newemis(i, 1)) * fac
newemis(i, 2) = newemis(i, 2) + (((emis( 2,9)+emis( 3,9))/2.)
& - newemis(i, 2)) * fac
newemis(i, 3) = newemis(i, 3) + (((emis( 4,9)+emis( 5,9))/2.)
& - newemis(i, 3)) * fac
newemis(i, 4) = newemis(i, 4) + (emis( 6,9)
& - newemis(i, 4)) * fac
newemis(i, 5) = newemis(i, 5) + (emis( 7,9)
& - newemis(i, 5)) * fac
newemis(i, 6) = newemis(i, 6) + (emis( 8,9)
& - newemis(i, 6)) * fac
newemis(i, 7) = newemis(i, 7) + (emis( 9,9)
& - newemis(i, 7)) * fac
newemis(i, 8) = newemis(i, 8) + (((emis(10,9)+emis(11,9))/2.)
& - newemis(i, 8)) * fac
newemis(i, 9) = newemis(i, 9) + (emis(12,9)
& - newemis(i, 9)) * fac
newemis(i,10) = newemis(i,10) + (emis( 4,9)
& - newemis(i,10)) * fac
endif
C open water
C-----------
else
if(fraci(i).eq.0.)then
newemis(i, 1) = (emis( 1,11)+emis(2,11))/2.
newemis(i, 2) = (emis( 2,11)+emis(3,11))/2.
newemis(i, 3) = (emis( 4,11)+emis(5,11))/2.
newemis(i, 4) = emis( 6,11)
newemis(i, 5) = emis( 7,11)
newemis(i, 6) = emis( 8,11)
newemis(i, 7) = emis( 9,11)
newemis(i, 8) = (emis(10,11)+emis(11,11))/2.
newemis(i, 9) = emis(12,11)
newemis(i,10) = emis( 4,11)
C sea ice (like glacier and snow)
C--------------------------------
else
newemis(i, 1) = (emis( 1,9)+emis(2,9))/2.
newemis(i, 2) = (emis( 2,9)+emis(3,9))/2.
newemis(i, 3) = (emis( 4,9)+emis(5,9))/2.
newemis(i, 4) = emis( 6,9)
newemis(i, 5) = emis( 7,9)
newemis(i, 6) = emis( 8,9)
newemis(i, 7) = emis( 9,9)
newemis(i, 8) = (emis(10,9)+emis(11,9))/2.
newemis(i, 9) = emis(12,9)
newemis(i,10) = emis( 4,9)
endif
endif
enddo
return
end
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
SUBROUTINE GET_LANDFRAC(im,jm,nSx,nSy,bi,bj,maxtyp,surftype,
& tilefrac,frac)
C***********************************************************************
C Purpose
C To compute the total fraction of land within a model grid-box
C
C***********************************************************************
IMPLICIT NONE
INTEGER im,jm,nSx,nSy,bi,bj,maxtyp
INTEGER surftype(im,jm,maxtyp,nSx,nSy)
_RL tilefrac(im,jm,maxtyp,nSx,nSy)
_RL frac(im,jm)
INTEGER i,j,k
do j=1,jm
do i=1,im
frac(i,j) = 0.0
enddo
enddo
do k=1,maxtyp
do j=1,jm
do i=1,im
if( (surftype(i,j,k,bi,bj).lt.100.).and.
& (tilefrac(i,j,k,bi,bj).gt.0.0))then
frac(i,j) = frac(i,j) + tilefrac(i,j,k,bi,bj)
endif
enddo
enddo
enddo
return
end