C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_dst3_adv_x.F,v 1.15 2012/07/04 20:22:26 jmc Exp $
C $Name: $
#include "GAD_OPTIONS.h"
CBOP
C !ROUTINE: GAD_DST3_ADV_X
C !INTERFACE: ==========================================================
SUBROUTINE GAD_DST3_ADV_X(
I bi,bj,k, calcCFL, deltaTloc,
I uTrans, uFld,
I maskLocW, tracer,
O uT,
I myThid )
C !DESCRIPTION:
C Calculates the area integrated zonal flux due to advection of a
C tracer using 3rd-order Direct Space and Time (DST-3) Advection Scheme
C !USES: ===============================================================
IMPLICIT NONE
C == GLobal variables ==
#include "SIZE.h"
#ifdef OLD_DST3_FORMULATION
#include "EEPARAMS.h"
#include "PARAMS.h"
#endif
#include "GRID.h"
#include "GAD.h"
C == Routine arguments ==
C !INPUT PARAMETERS: ===================================================
C bi,bj :: tile indices
C k :: vertical level
C calcCFL :: =T: calculate CFL number ; =F: take uFld as CFL.
C deltaTloc :: local time-step (s)
C uTrans :: zonal volume transport
C uFld :: zonal flow / CFL number
C tracer :: tracer field
C myThid :: thread number
INTEGER bi,bj,k
LOGICAL calcCFL
_RL deltaTloc
_RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RS maskLocW(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
INTEGER myThid
C !OUTPUT PARAMETERS: ==================================================
C uT :: zonal advective flux
_RL uT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
C == Local variables ==
C !LOCAL VARIABLES: ====================================================
C i,j :: loop indices
C uCFL :: Courant-Friedrich-Levy number
INTEGER i,j
_RL Rjm,Rj,Rjp,uCFL,d0,d1
#ifdef OLD_DST3_FORMULATION
_RL psiP,psiM,thetaP,thetaM
_RL smallNo
c _RL Rjjm,Rjjp
c IF (inAdMode) THEN
c smallNo = 1.0D-20
c ELSE
smallNo = 1.0D-20
c ENDIF
#endif
DO j=1-OLy,sNy+OLy
uT(1-OLx,j)=0.
uT(2-OLx,j)=0.
uT(sNx+OLx,j)=0.
ENDDO
DO j=1-OLy,sNy+OLy
DO i=1-OLx+2,sNx+OLx-1
Rjp=(tracer(i+1,j)-tracer( i ,j))*maskLocW(i+1,j)
Rj =(tracer( i ,j)-tracer(i-1,j))*maskLocW( i ,j)
Rjm=(tracer(i-1,j)-tracer(i-2,j))*maskLocW(i-1,j)
uCFL = uFld(i,j)
IF ( calcCFL ) uCFL = ABS( uFld(i,j)*deltaTloc
& *recip_dxC(i,j,bi,bj)*recip_deepFacC(k) )
d0=(2.-uCFL)*(1.-uCFL)*oneSixth
d1=(1.-uCFL*uCFL)*oneSixth
#ifdef OLD_DST3_FORMULATION
IF ( ABS(Rj).LT.smallNo .OR.
& ABS(Rjm).LT.smallNo ) THEN
thetaP=0.
psiP=0.
ELSE
thetaP=(Rjm+smallNo)/(smallNo+Rj)
psiP=d0+d1*thetaP
ENDIF
IF ( ABS(Rj).LT.smallNo .OR.
& ABS(Rjp).LT.smallNo ) THEN
thetaM=0.
psiM=0.
ELSE
thetaM=(Rjp+smallNo)/(smallNo+Rj)
psiM=d0+d1*thetaM
ENDIF
uT(i,j)=
& 0.5*(uTrans(i,j)+ABS(uTrans(i,j)))
& *( Tracer(i-1,j) + psiP*Rj )
& +0.5*(uTrans(i,j)-ABS(uTrans(i,j)))
& *( Tracer( i ,j) - psiM*Rj )
#else /* OLD_DST3_FORMULATION */
uT(i,j)=
& 0.5*(uTrans(i,j)+ABS(uTrans(i,j)))
& *( Tracer(i-1,j) + (d0*Rj+d1*Rjm) )
& +0.5*(uTrans(i,j)-ABS(uTrans(i,j)))
& *( Tracer( i ,j) - (d0*Rj+d1*Rjp) )
#endif /* OLD_DST3_FORMULATION */
ENDDO
ENDDO
RETURN
END