C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_fluxlimit_impl_r.F,v 1.10 2016/10/05 18:43:36 jmc Exp $
C $Name: $
#include "GAD_OPTIONS.h"
CBOP
C !ROUTINE: GAD_FLUXLIMIT_IMPL_R
C !INTERFACE:
SUBROUTINE GAD_FLUXLIMIT_IMPL_R(
I bi,bj,k, iMin,iMax,jMin,jMax,
I deltaTarg, rTrans, recip_hFac, tFld,
O a3d, b3d, c3d,
I myThid )
C !DESCRIPTION:
C Compute matrix element to solve vertical advection implicitly
C using flux--limiter advection scheme.
C Method:
C contribution of vertical transport at interface k is added
C to matrix lines k and k-1.
C !USES:
IMPLICIT NONE
C == Global variables ===
#include "SIZE.h"
#include "GRID.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
C !INPUT/OUTPUT PARAMETERS:
C == Routine Arguments ==
C bi,bj :: tile indices
C k :: vertical level
C iMin,iMax :: computation domain
C jMin,jMax :: computation domain
C deltaTarg :: time step
C rTrans :: vertical volume transport
C recip_hFac :: inverse of cell open-depth factor
C tFld :: tracer field
C a3d :: lower diagonal of the tridiagonal matrix
C b3d :: main diagonal of the tridiagonal matrix
C c3d :: upper diagonal of the tridiagonal matrix
C myThid :: thread number
INTEGER bi,bj,k
INTEGER iMin,iMax,jMin,jMax
_RL deltaTarg(Nr)
_RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RS recip_hFac(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
_RL tFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
_RL a3d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
_RL b3d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
_RL c3d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
INTEGER myThid
C == Local Variables ==
C i,j :: loop indices
C kp1 :: =min( k+1 , Nr )
C km1 :: =max( k-1 , 1 )
C km2 :: =max( k-2 , 1 )
C Cr :: slope ratio
C Rjm,Rj,Rjp :: differences at i-1,i,i+1
C w_CFL :: Courant-Friedrich-Levy number
C upwindFac :: upwind factor
C rCenter :: centered contribution
C rUpwind :: upwind contribution
INTEGER i,j,kp1,km1,km2
_RL Cr,Rjm,Rj,Rjp, w_CFL
_RL upwindFac(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL rCenter, rUpwind
_RL deltaTcfl
C Statement function provides Limiter(Cr)
#include "GAD_FLUX_LIMITER.h"
CEOP
km2=MAX(1,k-2)
km1=MAX(1,k-1)
kp1=MIN(Nr,k+1)
C-- process interior interface only:
IF ( k.GT.1 .AND. k.LE.Nr ) THEN
C-- Compute the upwind fraction:
deltaTcfl = deltaTarg(k)
DO j=jMin,jMax
DO i=iMin,iMax
w_CFL = deltaTcfl*rTrans(i,j)*recip_rA(i,j,bi,bj)*recip_drC(k)
& *recip_deepFac2F(k)*recip_rhoFacF(k)
Rjp=(tFld(i,j,kp1)-tFld(i,j,k) )*maskC(i,j,kp1,bi,bj)
Rj =(tFld(i,j,k) -tFld(i,j,km1))
Rjm=(tFld(i,j,km1)-tFld(i,j,km2))*maskC(i,j,km2,bi,bj)
IF ( Rj.NE.0. _d 0) THEN
IF (rTrans(i,j).LT.0. _d 0) THEN
Cr=Rjm/Rj
ELSE
Cr=Rjp/Rj
ENDIF
upwindFac(i,j) = 1. _d 0
& - Limiter(Cr) * ( 1. _d 0 + ABS(w_CFL) )
upwindFac(i,j) = MAX( -1. _d 0, upwindFac(i,j) )
ELSE
upwindFac(i,j) = 0. _d 0
ENDIF
ENDDO
ENDDO
C-- Add centered & upwind contributions
DO j=jMin,jMax
DO i=iMin,iMax
rCenter = 0.5 _d 0 *rTrans(i,j)*recip_rA(i,j,bi,bj)*rkSign
rUpwind = ABS(rCenter)*upwindFac(i,j)
a3d(i,j,k) = a3d(i,j,k)
& - (rCenter+rUpwind)*deltaTarg(k)
& *recip_hFac(i,j,k)*recip_drF(k)
& *recip_deepFac2C(k)*recip_rhoFacC(k)
b3d(i,j,k) = b3d(i,j,k)
& - (rCenter-rUpwind)*deltaTarg(k)
& *recip_hFac(i,j,k)*recip_drF(k)
& *recip_deepFac2C(k)*recip_rhoFacC(k)
b3d(i,j,k-1) = b3d(i,j,k-1)
& + (rCenter+rUpwind)*deltaTarg(k-1)
& *recip_hFac(i,j,k-1)*recip_drF(k-1)
& *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
c3d(i,j,k-1) = c3d(i,j,k-1)
& + (rCenter-rUpwind)*deltaTarg(k-1)
& *recip_hFac(i,j,k-1)*recip_drF(k-1)
& *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
ENDDO
ENDDO
C-- process interior interface only: end
ENDIF
RETURN
END