C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_pqm_adv_x.F,v 1.1 2016/03/13 01:44:03 jmc Exp $ C $Name: $ # include "GAD_OPTIONS.h" SUBROUTINE GAD_PQM_ADV_X(meth,bi,bj,kk, I calc_CFL,delT,uvel,ufac,fbar, O flux,myThid ) C |================================================================| C | PQM_ADV_X: evaluate grid-cell advective flux in X. | C | Lagrangian-type Piecewise Quartic Method (PQM). | C |================================================================| implicit none C =============================================== global variables # include "SIZE.h" # include "GRID.h" # include "GAD.h" C ================================================================ C meth :: advection method. C bi,bj :: tile indexing. C kk :: r-index. C calc_CFL :: TRUE to calc. CFL from vel. C delT :: time-step. C uvel :: vel.-comp in x-direction. C ufac :: vel.-flux in x-direction. C fbar :: grid-cell values. C flux :: adv.-flux in x-direction. C myThid :: thread number. C ================================================================ integer meth integer bi,bj,kk logical calc_CFL _RL delT _RL uvel(1-OLx:sNx+OLx, & 1-OLy:sNy+OLy) _RL ufac(1-OLx:sNx+OLx, & 1-OLy:sNy+OLy) _RL fbar(1-OLx:sNx+OLx, & 1-OLy:sNy+OLy) _RL flux(1-OLx:sNx+OLx, & 1-OLy:sNy+OLy) integer myThid C ================================================================ C ix,iy,ir :: grid indexing. C floc :: row of grid-cell values. C mloc :: row of grid-cell mask values. C fhat :: row of poly. coeff. C - FHAT(:,I) = PQM coeff. C edge :: row of edge-wise values/slopes. C - EDGE(1,:) = VALUE. C - EDGE(2,:) = DF/DY. C ohat :: row of oscl. coeff. C - OHAT(1,:) = D^1F/DS^1. C - OHAT(2,:) = D^2F/DS^2. C ================================================================ integer ix,iy _RL mloc(1-OLx:sNx+OLx) _RL floc(1-OLx:sNx+OLx) _RL fhat(1:5, & 1-OLx:sNx+OLx) _RL edge(1:2, & 1-OLx:sNx+OLx) _RL ohat(1:2, & 1-OLx:sNx+OLx) _RL vsum do iy = 1-OLy+0, sNy+OLy-0 C ==================== zero stencil "ghost" cells along boundaries flux( +1-OLx+0,iy) = 0. _d 0 flux( +1-OLx+1,iy) = 0. _d 0 flux( +1-OLx+2,iy) = 0. _d 0 flux( +1-OLx+3,iy) = 0. _d 0 flux(sNx+OLx-0,iy) = 0. _d 0 flux(sNx+OLx-1,iy) = 0. _d 0 flux(sNx+OLx-2,iy) = 0. _d 0 end
do C ================================================================ C (1): copy a single row of data onto contiguous storage, treat C as a set of one-dimensional problems. C (2): calc. "oscillation-indicators" for each grid-cell if ad- C vection scheme is WENO-class. C (3): calc. edge-centred values/slopes by high-order interpol- C ation. C (4): calc. cell-centred polynomial profiles with appropriate C slope-limiting. C (5): calc. fluxes using a local, semi-lagrangian integration. C ================================================================ do iy = 1-OLy+0, sNy+OLy-0 vsum = 0.0 _d 0 do ix = 1-OLx+0, sNx+OLx-0 C ================================== quick break on zero transport vsum = vsum & + abs(ufac(ix,iy)) C ================================== make local unit-stride copies floc(ix) = fbar (ix,iy) mloc(ix) = & maskC(ix,iy,kk,bi,bj) end
do if (vsum .gt. 0. _d 0) then C ==================== reconstruct derivatives for WENO indicators if (meth.eq.ENUM_PQM_WENO_LIMIT) then CALL GAD_OSC_HAT_X(bi,bj,kk,iy, & mloc,floc, & ohat,myThid) end
if C ==================== reconstruct 5th--order accurate edge values CALL GAD_PQM_P5E_X(bi,bj,kk,iy, & mloc,floc, & edge,myThid) C ==================== reconstruct coeff. for grid-cell poynomials CALL GAD_PQM_HAT_X(bi,bj,kk,iy, & meth, & mloc,floc, & edge,ohat, & fhat,myThid) C ==================== evaluate integral fluxes on grid-cell edges CALL GAD_PQM_FLX_X(bi,bj,kk,iy, & calc_CFL, & delT,uvel, & ufac,fhat, & flux,myThid) else do ix = 1-OLx+4, sNx+OLx-3 C ================================== "null" flux on zero transport flux(ix,iy) = 0.0 _d 0 end
do end
if end
do return c end subroutine GAD_PQM_ADV_X end