C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_u3_adv_r.F,v 1.5 2014/08/18 12:22:46 jmc Exp $ C $Name: $ #include "GAD_OPTIONS.h" CBOP C !ROUTINE: GAD_U3_ADV_R C !INTERFACE: ========================================================== SUBROUTINE GAD_U3_ADV_R( I bi, bj, k, I rTrans, I tracer, O wT, I myThid ) C !DESCRIPTION: C Calculates the area integrated vertical flux due to advection of a tracer C using upwind biased third-order interpolation (or the $\kappa=1/3$ scheme): C \begin{equation*} C F^r_{adv} = W \overline{ \theta - \frac{1}{6} \delta_{kk} \theta }^k C + \frac{1}{12} |W| \delta_{kkk} \theta C \end{equation*} C Near boundaries, mask all the gradients ==> still 3rd O. C !USES: =============================================================== IMPLICIT NONE #include "SIZE.h" #include "GRID.h" #include "GAD.h" C !INPUT PARAMETERS: =================================================== C bi,bj :: tile indices C k :: vertical level C rTrans :: vertical volume transport C tracer :: tracer field C myThid :: thread number INTEGER bi,bj,k _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) INTEGER myThid C !OUTPUT PARAMETERS: ================================================== C wT :: vertical advective flux _RL wT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) C !LOCAL VARIABLES: ==================================================== C i,j :: loop indices C kp1 :: =min( k+1 , Nr ) C km1 :: =max( k-1 , 1 ) C km2 :: =max( k-2 , 1 ) C Rjm,Rj,Rjp :: differences at i-1,i,i+1 C Rjjm,Rjjp :: second differences at i-1,i INTEGER i,j,kp1,km1,km2 _RL Rjm,Rj,Rjp,Rjjm,Rjjp CEOP km2=MAX(1,k-2) km1=MAX(1,k-1) kp1=MIN(Nr,k+1) IF ( k.EQ.1 .OR. k.GT.Nr ) THEN DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx wT(i,j) = 0. ENDDO ENDDO ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx Rjp = (tracer(i,j,kp1)-tracer(i,j, k ))*maskC(i,j,kp1,bi,bj) Rj = (tracer(i,j, k )-tracer(i,j,km1)) Rjm = (tracer(i,j,km1)-tracer(i,j,km2))*maskC(i,j,km2,bi,bj) Rjjp = Rjp-Rj Rjjm = Rj-Rjm wT(i,j) = maskC(i,j,km1,bi,bj)*( & rTrans(i,j)*( (tracer(i,j,k)+tracer(i,j,km1))*0.5 _d 0 & -oneSixth*(Rjjm+Rjjp)*0.5 _d 0 ) & +ABS(rTrans(i,j))* & oneSixth*(Rjjm-Rjjp)*0.5 _d 0 & ) ENDDO ENDDO ENDIF RETURN END