C $Header: /u/gcmpack/MITgcm/pkg/gridalt/dyn2phys.F,v 1.7 2012/07/07 00:08:08 jmc Exp $
C $Name: $
#include "GRIDALT_OPTIONS.h"
subroutine DYN2PHYS(qdyn,pedyn,im1,im2,jm1,jm2,lmdyn,Nsx,Nsy,
. idim1,idim2,jdim1,jdim2,bi,bj,windphy,pephy,Lbot,lmphy,nlperdyn,
. flg,qphy)
C***********************************************************************
C Purpose:
C To interpolate an arbitrary quantity from the 'dynamics' eta (pstar)
C grid to the higher resolution physics grid
C Algorithm:
C Routine works one layer (edge to edge pressure) at a time.
C Dynamics -> Physics retains the dynamics layer mean value,
C weights the field either with the profile of the physics grid
C wind speed (for U and V fields), or uniformly (T and Q)
C
C Input:
C qdyn..... [im,jm,lmdyn] Arbitrary Quantity on Input Grid
C pedyn.... [im,jm,lmdyn+1] Pressures at bottom edges of input levels
C im1,2 ... Limits for Longitude Dimension of Input
C jm1,2 ... Limits for Latitude Dimension of Input
C lmdyn.... Vertical Dimension of Input
C Nsx...... Number of processes in x-direction
C Nsy...... Number of processes in y-direction
C idim1,2.. Beginning and ending i-values to calculate
C jdim1,2.. Beginning and ending j-values to calculate
C bi....... Index of process number in x-direction
C bj....... Index of process number in x-direction
C windphy.. [im,jm,lmphy] Magnitude of the wind on the output levels
C pephy.... [im,jm,lmphy+1] Pressures at bottom edges of output levels
C lmphy.... Vertical Dimension of Output
C nlperdyn. [im,jm,lmdyn] Highest Physics level in each dynamics level
C flg...... Flag to indicate field type (0 for T or Q, 1 for U or V)
C
C Output:
C qphy..... [im,jm,lmphy] Quantity at output grid (physics grid)
C
C Notes:
C 1) This algorithm assumes that the output (physics) grid levels
C fit exactly into the input (dynamics) grid levels
C***********************************************************************
implicit none
integer im1, im2, jm1, jm2, lmdyn, lmphy, Nsx, Nsy, flg
integer idim1, idim2, jdim1, jdim2, bi, bj
_RL qdyn(im1:im2,jm1:jm2,lmdyn,Nsx,Nsy)
_RL pedyn(im1:im2,jm1:jm2,lmdyn+1,Nsx,Nsy)
_RL pephy(im1:im2,jm1:jm2,lmphy+1,Nsx,Nsy)
_RL windphy(im1:im2,jm1:jm2,lmphy,Nsx,Nsy)
integer nlperdyn(im1:im2,jm1:jm2,lmdyn,Nsx,Nsy)
_RL qphy(im1:im2,jm1:jm2,lmphy,Nsx,Nsy)
integer Lbot(im1:im2,jm1:jm2,Nsx,Nsy)
_RL weights(im1:im2,jm1:jm2,lmphy)
_RL pphy(im1:im2,jm1:jm2,lmphy)
_RL dpkedyn, dpkephy, windsum, qd
integer i,j,L,Lout1,Lout2,Lphy
cinterp1 _RL kappa
#ifdef ALLOW_FIZHI
cinterp1 _RL getcon
#else
cinterp1 #include 'SIZE.h'
cinterp1 #include 'EEPARAMS.h'
cinterp1 #include 'PARAMS.h'
#endif
#ifdef ALLOW_FIZHI
cinterp1 kappa = getcon('KAPPA')
#else
cinterp1 kappa = atm_kappa
#endif
C define physics grid mid level pressures
do Lphy = 1,lmphy
do j = jdim1,jdim2
do i = idim1,idim2
pphy(i,j,Lphy) =
. (pephy(i,j,Lphy,bi,bj)+pephy(i,j,Lphy+1,bi,bj))/2.
enddo
enddo
enddo
c do loop for all dynamics (input) levels
do L = 1,lmdyn
c do loop for all grid points
do j = jdim1,jdim2
do i = idim1,idim2
qd = qdyn(i,j,L,bi,bj)
c Check to make sure we are above ground - if not, do nothing
if(L.ge.Lbot(i,j,bi,bj))then
if(L.eq.Lbot(i,j,bi,bj)) then
Lout1 = 0
else
Lout1 = nlperdyn(i,j,L-1,bi,bj)
endif
Lout2 = nlperdyn(i,j,L,bi,bj)
c for U and V fields, need to compute for the weights:
cinterp1 dpkedyn = (pedyn(i,j,L,bi,bj)**kappa)-
cinterp1 (pedyn(i,j,L+1,bi,bj)**kappa)
dpkedyn = pedyn(i,j,L,bi,bj)-pedyn(i,j,L+1,bi,bj)
if(flg.eq.1)then
windsum = 0.
do Lphy = Lout1+1,Lout2
cinterp1 dpkephy = (pephy(i,j,Lphy,bi,bj)**kappa)-
cinterp1 (pephy(i,j,Lphy+1,bi,bj)**kappa)
dpkephy = pephy(i,j,Lphy,bi,bj)-pephy(i,j,Lphy+1,bi,bj)
windsum = windsum+(windphy(i,j,Lphy,bi,bj)*dpkephy)/dpkedyn
enddo
endif
c do loop for all physics levels contained in this dynamics level
do Lphy = Lout1+1,Lout2
weights(i,j,Lphy) = 1.
if( (flg.eq.1).and.(windsum.ne.0.) )
. weights(i,j,Lphy)=windphy(i,j,Lphy,bi,bj)/windsum
if( (flg.eq.2) .and. (pedyn(i,j,L,bi,bj).lt.10000.)) then
weights(i,j,Lphy) =
. (qd-5. + (10.*(pedyn(i,j,L,bi,bj)-pphy(i,j,Lphy))/dpkedyn))/qd
elseif( (flg.eq.2) .and. (pedyn(i,j,L,bi,bj).ge.10000.)) then
weights(i,j,Lphy) = 1.
endif
qphy(i,j,Lphy,bi,bj) = qd * weights(i,j,Lphy)
enddo
endif
enddo
enddo
enddo
return
end