C $Header: /u/gcmpack/MITgcm/pkg/gridalt/dyn2phys.F,v 1.7 2012/07/07 00:08:08 jmc Exp $ C $Name: $ #include "GRIDALT_OPTIONS.h" subroutine DYN2PHYS(qdyn,pedyn,im1,im2,jm1,jm2,lmdyn,Nsx,Nsy, . idim1,idim2,jdim1,jdim2,bi,bj,windphy,pephy,Lbot,lmphy,nlperdyn, . flg,qphy) C*********************************************************************** C Purpose: C To interpolate an arbitrary quantity from the 'dynamics' eta (pstar) C grid to the higher resolution physics grid C Algorithm: C Routine works one layer (edge to edge pressure) at a time. C Dynamics -> Physics retains the dynamics layer mean value, C weights the field either with the profile of the physics grid C wind speed (for U and V fields), or uniformly (T and Q) C C Input: C qdyn..... [im,jm,lmdyn] Arbitrary Quantity on Input Grid C pedyn.... [im,jm,lmdyn+1] Pressures at bottom edges of input levels C im1,2 ... Limits for Longitude Dimension of Input C jm1,2 ... Limits for Latitude Dimension of Input C lmdyn.... Vertical Dimension of Input C Nsx...... Number of processes in x-direction C Nsy...... Number of processes in y-direction C idim1,2.. Beginning and ending i-values to calculate C jdim1,2.. Beginning and ending j-values to calculate C bi....... Index of process number in x-direction C bj....... Index of process number in x-direction C windphy.. [im,jm,lmphy] Magnitude of the wind on the output levels C pephy.... [im,jm,lmphy+1] Pressures at bottom edges of output levels C lmphy.... Vertical Dimension of Output C nlperdyn. [im,jm,lmdyn] Highest Physics level in each dynamics level C flg...... Flag to indicate field type (0 for T or Q, 1 for U or V) C C Output: C qphy..... [im,jm,lmphy] Quantity at output grid (physics grid) C C Notes: C 1) This algorithm assumes that the output (physics) grid levels C fit exactly into the input (dynamics) grid levels C*********************************************************************** implicit none integer im1, im2, jm1, jm2, lmdyn, lmphy, Nsx, Nsy, flg integer idim1, idim2, jdim1, jdim2, bi, bj _RL qdyn(im1:im2,jm1:jm2,lmdyn,Nsx,Nsy) _RL pedyn(im1:im2,jm1:jm2,lmdyn+1,Nsx,Nsy) _RL pephy(im1:im2,jm1:jm2,lmphy+1,Nsx,Nsy) _RL windphy(im1:im2,jm1:jm2,lmphy,Nsx,Nsy) integer nlperdyn(im1:im2,jm1:jm2,lmdyn,Nsx,Nsy) _RL qphy(im1:im2,jm1:jm2,lmphy,Nsx,Nsy) integer Lbot(im1:im2,jm1:jm2,Nsx,Nsy) _RL weights(im1:im2,jm1:jm2,lmphy) _RL pphy(im1:im2,jm1:jm2,lmphy) _RL dpkedyn, dpkephy, windsum, qd integer i,j,L,Lout1,Lout2,Lphy cinterp1 _RL kappa #ifdef ALLOW_FIZHI cinterp1 _RL getcon #else cinterp1 #include 'SIZE.h' cinterp1 #include 'EEPARAMS.h' cinterp1 #include 'PARAMS.h' #endif #ifdef ALLOW_FIZHI cinterp1 kappa = getcon('KAPPA') #else cinterp1 kappa = atm_kappa #endif C define physics grid mid level pressures do Lphy = 1,lmphy do j = jdim1,jdim2 do i = idim1,idim2 pphy(i,j,Lphy) = . (pephy(i,j,Lphy,bi,bj)+pephy(i,j,Lphy+1,bi,bj))/2. enddo enddo enddo c do loop for all dynamics (input) levels do L = 1,lmdyn c do loop for all grid points do j = jdim1,jdim2 do i = idim1,idim2 qd = qdyn(i,j,L,bi,bj) c Check to make sure we are above ground - if not, do nothing if(L.ge.Lbot(i,j,bi,bj))then if(L.eq.Lbot(i,j,bi,bj)) then Lout1 = 0 else Lout1 = nlperdyn(i,j,L-1,bi,bj) endif Lout2 = nlperdyn(i,j,L,bi,bj) c for U and V fields, need to compute for the weights: cinterp1 dpkedyn = (pedyn(i,j,L,bi,bj)**kappa)- cinterp1 (pedyn(i,j,L+1,bi,bj)**kappa) dpkedyn = pedyn(i,j,L,bi,bj)-pedyn(i,j,L+1,bi,bj) if(flg.eq.1)then windsum = 0. do Lphy = Lout1+1,Lout2 cinterp1 dpkephy = (pephy(i,j,Lphy,bi,bj)**kappa)- cinterp1 (pephy(i,j,Lphy+1,bi,bj)**kappa) dpkephy = pephy(i,j,Lphy,bi,bj)-pephy(i,j,Lphy+1,bi,bj) windsum = windsum+(windphy(i,j,Lphy,bi,bj)*dpkephy)/dpkedyn enddo endif c do loop for all physics levels contained in this dynamics level do Lphy = Lout1+1,Lout2 weights(i,j,Lphy) = 1. if( (flg.eq.1).and.(windsum.ne.0.) ) . weights(i,j,Lphy)=windphy(i,j,Lphy,bi,bj)/windsum if( (flg.eq.2) .and. (pedyn(i,j,L,bi,bj).lt.10000.)) then weights(i,j,Lphy) = . (qd-5. + (10.*(pedyn(i,j,L,bi,bj)-pphy(i,j,Lphy))/dpkedyn))/qd elseif( (flg.eq.2) .and. (pedyn(i,j,L,bi,bj).ge.10000.)) then weights(i,j,Lphy) = 1. endif qphy(i,j,Lphy,bi,bj) = qd * weights(i,j,Lphy) enddo endif enddo enddo enddo return end