C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_visc.F,v 1.49 2015/09/10 17:53:04 jmc Exp $
C $Name: $
#include "MOM_COMMON_OPTIONS.h"
#ifdef ALLOW_AUTODIFF
# include "AUTODIFF_OPTIONS.h"
#endif
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
CBOP
C !ROUTINE: MOM_CALC_VISC
C !INTERFACE:
SUBROUTINE MOM_CALC_VISC(
I bi,bj,k,
O viscAh_Z,viscAh_D,viscA4_Z,viscA4_D,
I hDiv,vort3,tension,strain,KE,hFacZ,
I myThid)
C !DESCRIPTION:
C Calculate horizontal viscosities (L is typical grid width)
C harmonic viscosity=
C viscAh (or viscAhD on div pts and viscAhZ on zeta pts)
C +0.25*L**2*viscAhGrid/deltaT
C +sqrt((viscC2leith/pi)**6*grad(Vort3)**2
C +(viscC2leithD/pi)**6*grad(hDiv)**2)*L**3
C +(viscC2smag/pi)**2*L**2*sqrt(Tension**2+Strain**2)
C
C biharmonic viscosity=
C viscA4 (or viscA4D on div pts and viscA4Z on zeta pts)
C +0.25*0.125*L**4*viscA4Grid/deltaT (approx)
C +0.125*L**5*sqrt((viscC4leith/pi)**6*grad(Vort3)**2
C +(viscC4leithD/pi)**6*grad(hDiv)**2)
C +0.125*L**4*(viscC4smag/pi)**2*sqrt(Tension**2+Strain**2)
C
C Note that often 0.125*L**2 is the scale between harmonic and
C biharmonic (see Griffies and Hallberg (2000))
C This allows the same value of the coefficient to be used
C for roughly similar results with biharmonic and harmonic
C
C LIMITERS -- limit min and max values of viscosities
C viscAhReMax is min value for grid point harmonic Reynolds num
C harmonic viscosity>sqrt(2*KE)*L/viscAhReMax
C
C viscA4ReMax is min value for grid point biharmonic Reynolds num
C biharmonic viscosity>sqrt(2*KE)*L**3/8/viscA4ReMax
C
C viscAhgridmax is CFL stability limiter for harmonic viscosity
C harmonic viscosity<0.25*viscAhgridmax*L**2/deltaT
C
C viscA4gridmax is CFL stability limiter for biharmonic viscosity
C biharmonic viscosity
C
C viscAhgridmin and viscA4gridmin are lower limits for viscosity:
C harmonic viscosity>0.25*viscAhgridmin*L**2/deltaT
C biharmonic viscosity>viscA4gridmin*L**4/32/deltaT (approx)
C RECOMMENDED VALUES
C viscC2Leith=1-3
C viscC2LeithD=1-3
C viscC4Leith=1-3
C viscC4LeithD=1.5-3
C viscC2smag=2.2-4 (Griffies and Hallberg,2000)
C 0.2-0.9 (Smagorinsky,1993)
C viscC4smag=2.2-4 (Griffies and Hallberg,2000)
C viscAhReMax>=1, (<2 suppresses a computational mode)
C viscA4ReMax>=1, (<2 suppresses a computational mode)
C viscAhgridmax=1
C viscA4gridmax=1
C viscAhgrid<1
C viscA4grid<1
C viscAhgridmin<<1
C viscA4gridmin<<1
C !USES:
IMPLICIT NONE
C == Global variables ==
#include "SIZE.h"
#include "GRID.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "MOM_VISC.h"
#ifdef ALLOW_AUTODIFF
#include "tamc.h"
#include "tamc_keys.h"
#endif /* ALLOW_AUTODIFF */
C !INPUT/OUTPUT PARAMETERS:
C myThid :: my thread Id number
INTEGER bi,bj,k
_RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
INTEGER myThid
CEOP
C !LOCAL VARIABLES:
INTEGER i,j
#ifdef ALLOW_NONHYDROSTATIC
_RL shiftAh, shiftA4
#endif
#ifdef ALLOW_AUTODIFF_TAMC
INTEGER lockey_1, lockey_2
#endif
_RL smag2fac, smag4fac
_RL leith2fac, leith4fac
_RL leithD2fac, leithD4fac
_RL viscAhRe_max, viscA4Re_max
_RL Alin, grdVrt,grdDiv, keZpt
_RL deepFac3, deepFac4
_RL L2, L3, L5, L2rdt, L4rdt, recip_dt
_RL Uscl,U4scl
_RL divDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL divDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL vrtDx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL vrtDy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_ZMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_DMax(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_ZMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_DMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_ZLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_DLth(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_ZLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_DLthD(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscAh_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_ZSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL viscA4_DSmg(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
LOGICAL calcLeith, calcSmag
#ifdef ALLOW_AUTODIFF_TAMC
act1 = bi - myBxLo(myThid)
max1 = myBxHi(myThid) - myBxLo(myThid) + 1
act2 = bj - myByLo(myThid)
max2 = myByHi(myThid) - myByLo(myThid) + 1
act3 = myThid - 1
max3 = nTx*nTy
act4 = ikey_dynamics - 1
ikey = (act1 + 1) + act2*max1
& + act3*max1*max2
& + act4*max1*max2*max3
lockey_1 = (ikey-1)*Nr + k
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Set flags which are used in this S/R and elsewhere :
C useVariableVisc, useHarmonicVisc and useBiharmonicVisc
C are now set early on (in S/R SET_PARAMS)
c IF ( useVariableVisc ) THEN
C---- variable viscosity :
recip_dt = 1. _d 0
IF ( deltaTMom.NE.0. ) recip_dt = 1. _d 0/deltaTMom
deepFac3 = deepFac2C(k)*deepFacC(k)
deepFac4 = deepFac2C(k)*deepFac2C(k)
IF ( useHarmonicVisc .AND. viscAhReMax.NE.0. ) THEN
viscAhRe_max=SQRT(2. _d 0)/viscAhReMax
ELSE
viscAhRe_max=0. _d 0
ENDIF
IF ( useBiharmonicVisc .AND. viscA4ReMax.NE.0. ) THEN
viscA4Re_max=0.125 _d 0*SQRT(2. _d 0)/viscA4ReMax
ELSE
viscA4Re_max=0. _d 0
ENDIF
calcLeith=
& (viscC2leith.NE.0.)
& .OR.(viscC2leithD.NE.0.)
& .OR.(viscC4leith.NE.0.)
& .OR.(viscC4leithD.NE.0.)
calcSmag=
& (viscC2smag.NE.0.)
& .OR.(viscC4smag.NE.0.)
IF (calcSmag) THEN
smag2fac=(viscC2smag/pi)**2
smag4fac=0.125 _d 0*(viscC4smag/pi)**2
ELSE
smag2fac=0. _d 0
smag4fac=0. _d 0
ENDIF
IF (calcLeith) THEN
IF (useFullLeith) THEN
leith2fac =(viscC2leith /pi)**6
leithD2fac=(viscC2leithD/pi)**6
leith4fac =0.015625 _d 0*(viscC4leith /pi)**6
leithD4fac=0.015625 _d 0*(viscC4leithD/pi)**6
ELSE
leith2fac =(viscC2leith /pi)**3
leithD2fac=(viscC2leithD/pi)**3
leith4fac =0.125 _d 0*(viscC4leith /pi)**3
leithD4fac=0.125 _d 0*(viscC4leithD/pi)**3
ENDIF
ELSE
leith2fac=0. _d 0
leith4fac=0. _d 0
leithD2fac=0. _d 0
leithD4fac=0. _d 0
ENDIF
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
C- viscosity arrays have been initialised everywhere before calling this S/R
c viscAh_D(i,j) = viscAhD
c viscAh_Z(i,j) = viscAhZ
c viscA4_D(i,j) = viscA4D
c viscA4_Z(i,j) = viscA4Z
visca4_zsmg(i,j) = 0. _d 0
viscah_zsmg(i,j) = 0. _d 0
viscAh_Dlth(i,j) = 0. _d 0
viscA4_Dlth(i,j) = 0. _d 0
viscAh_DlthD(i,j)= 0. _d 0
viscA4_DlthD(i,j)= 0. _d 0
viscAh_DSmg(i,j) = 0. _d 0
viscA4_DSmg(i,j) = 0. _d 0
viscAh_ZLth(i,j) = 0. _d 0
viscA4_ZLth(i,j) = 0. _d 0
viscAh_ZLthD(i,j)= 0. _d 0
viscA4_ZLthD(i,j)= 0. _d 0
ENDDO
ENDDO
C- Initialise to zero gradient of vorticity & divergence:
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
divDx(i,j) = 0.
divDy(i,j) = 0.
vrtDx(i,j) = 0.
vrtDy(i,j) = 0.
ENDDO
ENDDO
IF ( calcLeith ) THEN
C-- horizontal gradient of horizontal divergence:
C- gradient in x direction:
IF (useCubedSphereExchange) THEN
C to compute d/dx(hDiv), fill corners with appropriate values:
CALL FILL_CS_CORNER_TR_RL( 1, .FALSE.,
& hDiv, bi,bj, myThid )
ENDIF
DO j=2-OLy,sNy+OLy-1
DO i=2-OLx,sNx+OLx-1
divDx(i,j) = (hDiv(i,j)-hDiv(i-1,j))
& *recip_dxC(i,j,bi,bj)*recip_deepFacC(k)
ENDDO
ENDDO
C- gradient in y direction:
IF (useCubedSphereExchange) THEN
C to compute d/dy(hDiv), fill corners with appropriate values:
CALL FILL_CS_CORNER_TR_RL( 2, .FALSE.,
& hDiv, bi,bj, myThid )
ENDIF
DO j=2-OLy,sNy+OLy-1
DO i=2-OLx,sNx+OLx-1
divDy(i,j) = (hDiv(i,j)-hDiv(i,j-1))
& *recip_dyC(i,j,bi,bj)*recip_deepFacC(k)
ENDDO
ENDDO
C-- horizontal gradient of vertical vorticity:
C- gradient in x direction:
DO j=2-OLy,sNy+OLy
DO i=2-OLx,sNx+OLx-1
vrtDx(i,j) = (vort3(i+1,j)-vort3(i,j))
& *recip_dxG(i,j,bi,bj)*recip_deepFacC(k)
& *maskS(i,j,k,bi,bj)
#ifdef ALLOW_OBCS
& *maskInS(i,j,bi,bj)
#endif
ENDDO
ENDDO
C- gradient in y direction:
DO j=2-OLy,sNy+OLy-1
DO i=2-OLx,sNx+OLx
vrtDy(i,j) = (vort3(i,j+1)-vort3(i,j))
& *recip_dyG(i,j,bi,bj)*recip_deepFacC(k)
& *maskW(i,j,k,bi,bj)
#ifdef ALLOW_OBCS
& *maskInW(i,j,bi,bj)
#endif
ENDDO
ENDDO
C-- end if calcLeith
ENDIF
DO j=2-OLy,sNy+OLy-1
DO i=2-OLx,sNx+OLx-1
CCCCCCCCCCCCCCC Divergence Point CalculationsCCCCCCCCCCCCCCCCCCCC
#ifdef ALLOW_AUTODIFF_TAMC
# ifndef AUTODIFF_DISABLE_LEITH
lockey_2 = i+olx + (sNx+2*olx)*(j+oly-1)
& + (sNx+2*olx)*(sNy+2*oly)*(lockey_1-1)
CADJ STORE viscA4_ZSmg(i,j)
CADJ & = comlev1_mom_ijk_loop , key=lockey_2, byte=isbyte
CADJ STORE viscAh_ZSmg(i,j)
CADJ & = comlev1_mom_ijk_loop , key=lockey_2, byte=isbyte
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
C These are (powers of) length scales
L2 = L2_D(i,j,bi,bj)*deepFac2C(k)
L2rdt = 0.25 _d 0*recip_dt*L2
L3 = L3_D(i,j,bi,bj)*deepFac3
L4rdt = L4rdt_D(i,j,bi,bj)*deepFac4
L5 = (L2*L3)
#ifndef AUTODIFF_DISABLE_REYNOLDS_SCALE
C Velocity Reynolds Scale
IF ( viscAhRe_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
Uscl=SQRT(KE(i,j)*L2)*viscAhRe_max
ELSE
Uscl=0.
ENDIF
IF ( viscA4Re_max.GT.0. .AND. KE(i,j).GT.0. ) THEN
U4scl=SQRT(KE(i,j))*L3*viscA4Re_max
ELSE
U4scl=0.
ENDIF
#endif /* ndef AUTODIFF_DISABLE_REYNOLDS_SCALE */
#ifndef AUTODIFF_DISABLE_LEITH
IF (useFullLeith.AND.calcLeith) THEN
C This is the vector magnitude of the vorticity gradient squared
grdVrt=0.25 _d 0*( (vrtDx(i,j+1)*vrtDx(i,j+1)
& + vrtDx(i,j)*vrtDx(i,j) )
& + (vrtDy(i+1,j)*vrtDy(i+1,j)
& + vrtDy(i,j)*vrtDy(i,j) ) )
C This is the vector magnitude of grad (div.v) squared
C Using it in Leith serves to damp instabilities in w.
grdDiv=0.25 _d 0*( (divDx(i+1,j)*divDx(i+1,j)
& + divDx(i,j)*divDx(i,j) )
& + (divDy(i,j+1)*divDy(i,j+1)
& + divDy(i,j)*divDy(i,j) ) )
viscAh_DLth(i,j)=
& SQRT(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
viscA4_DLth(i,j)=
& SQRT(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
viscAh_DLthd(i,j)=
& SQRT(leithD2fac*grdDiv)*L3
viscA4_DLthd(i,j)=
& SQRT(leithD4fac*grdDiv)*L5
ELSEIF (calcLeith) THEN
C but this approximation will work on cube (and differs by as much as 4X)
grdVrt=MAX( ABS(vrtDx(i,j+1)), ABS(vrtDx(i,j)) )
grdVrt=MAX( grdVrt, ABS(vrtDy(i+1,j)) )
grdVrt=MAX( grdVrt, ABS(vrtDy(i,j)) )
C This approximation is good to the same order as above...
grdDiv=MAX( ABS(divDx(i+1,j)), ABS(divDx(i,j)) )
grdDiv=MAX( grdDiv, ABS(divDy(i,j+1)) )
grdDiv=MAX( grdDiv, ABS(divDy(i,j)) )
viscAh_Dlth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
viscA4_Dlth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
viscAh_DlthD(i,j)=((leithD2fac*grdDiv))*L3
viscA4_DlthD(i,j)=((leithD4fac*grdDiv))*L5
ELSE
viscAh_Dlth(i,j)=0. _d 0
viscA4_Dlth(i,j)=0. _d 0
viscAh_DlthD(i,j)=0. _d 0
viscA4_DlthD(i,j)=0. _d 0
ENDIF
IF (calcSmag) THEN
viscAh_DSmg(i,j)=L2
& *SQRT(tension(i,j)**2
& +0.25 _d 0*(strain(i+1, j )**2+strain( i ,j+1)**2
& +strain(i , j )**2+strain(i+1,j+1)**2))
viscA4_DSmg(i,j)=smag4fac*L2*viscAh_DSmg(i,j)
viscAh_DSmg(i,j)=smag2fac*viscAh_DSmg(i,j)
ELSE
viscAh_DSmg(i,j)=0. _d 0
viscA4_DSmg(i,j)=0. _d 0
ENDIF
#endif /* AUTODIFF_DISABLE_LEITH */
C Harmonic on Div.u points
Alin=viscAhD+viscAhGrid*L2rdt
& +viscAh_DLth(i,j)+viscAh_DSmg(i,j)
#ifdef ALLOW_3D_VISCAH
& +viscAhDfld(i,j,k,bi,bj)
#ifdef ALLOW_AUTODIFF
& *viscFacAdj
#endif
#endif
viscAh_DMin(i,j)=MAX(viscAhGridMin*L2rdt,Uscl)
viscAh_D(i,j)=MAX(viscAh_DMin(i,j),Alin)
viscAh_DMax(i,j)=MIN(viscAhGridMax*L2rdt,viscAhMax)
viscAh_D(i,j)=MIN(viscAh_DMax(i,j),viscAh_D(i,j))
C BiHarmonic on Div.u points
Alin=viscA4D+viscA4Grid*L4rdt
& +viscA4_DLth(i,j)+viscA4_DSmg(i,j)
#ifdef ALLOW_3D_VISCA4
& +viscA4Dfld(i,j,k,bi,bj)
#ifdef ALLOW_AUTODIFF
& *viscFacAdj
#endif
#endif
viscA4_DMin(i,j)=MAX(viscA4GridMin*L4rdt,U4scl)
viscA4_D(i,j)=MAX(viscA4_DMin(i,j),Alin)
viscA4_DMax(i,j)=MIN(viscA4GridMax*L4rdt,viscA4Max)
viscA4_D(i,j)=MIN(viscA4_DMax(i,j),viscA4_D(i,j))
CCCCCCCCCCCCC Vorticity Point CalculationsCCCCCCCCCCCCCCCCCC
C These are (powers of) length scales
L2 = L2_Z(i,j,bi,bj)*deepFac2C(k)
L2rdt = 0.25 _d 0*recip_dt*L2
L3 = L3_Z(i,j,bi,bj)*deepFac3
L4rdt = L4rdt_Z(i,j,bi,bj)*deepFac4
L5 = (L2*L3)
#ifndef AUTODIFF_DISABLE_REYNOLDS_SCALE
C Velocity Reynolds Scale (Pb here at CS-grid corners !)
IF ( viscAhRe_max.GT.0. .OR. viscA4Re_max.GT.0. ) THEN
keZpt=0.25 _d 0*( (KE(i,j)+KE(i-1,j-1))
& +(KE(i-1,j)+KE(i,j-1)) )
IF ( keZpt.GT.0. ) THEN
Uscl = SQRT(keZpt*L2)*viscAhRe_max
U4scl= SQRT(keZpt)*L3*viscA4Re_max
ELSE
Uscl =0.
U4scl=0.
ENDIF
ELSE
Uscl =0.
U4scl=0.
ENDIF
#endif /* ndef AUTODIFF_DISABLE_REYNOLDS_SCALE */
#ifndef AUTODIFF_DISABLE_LEITH
C This is the vector magnitude of the vorticity gradient squared
IF (useFullLeith.AND.calcLeith) THEN
grdVrt=0.25 _d 0*( (vrtDx(i-1,j)*vrtDx(i-1,j)
& + vrtDx(i,j)*vrtDx(i,j) )
& + (vrtDy(i,j-1)*vrtDy(i,j-1)
& + vrtDy(i,j)*vrtDy(i,j) ) )
C This is the vector magnitude of grad(div.v) squared
grdDiv=0.25 _d 0*( (divDx(i,j-1)*divDx(i,j-1)
& + divDx(i,j)*divDx(i,j) )
& + (divDy(i-1,j)*divDy(i-1,j)
& + divDy(i,j)*divDy(i,j) ) )
viscAh_ZLth(i,j)=
& SQRT(leith2fac*grdVrt+leithD2fac*grdDiv)*L3
viscA4_ZLth(i,j)=
& SQRT(leith4fac*grdVrt+leithD4fac*grdDiv)*L5
viscAh_ZLthD(i,j)=
& SQRT(leithD2fac*grdDiv)*L3
viscA4_ZLthD(i,j)=
& SQRT(leithD4fac*grdDiv)*L5
ELSEIF (calcLeith) THEN
C but this approximation will work on cube (and differs by 4X)
grdVrt=MAX( ABS(vrtDx(i-1,j)), ABS(vrtDx(i,j)) )
grdVrt=MAX( grdVrt, ABS(vrtDy(i,j-1)) )
grdVrt=MAX( grdVrt, ABS(vrtDy(i,j)) )
grdDiv=MAX( ABS(divDx(i,j)), ABS(divDx(i,j-1)) )
grdDiv=MAX( grdDiv, ABS(divDy(i,j)) )
grdDiv=MAX( grdDiv, ABS(divDy(i-1,j)) )
viscAh_ZLth(i,j)=(leith2fac*grdVrt+(leithD2fac*grdDiv))*L3
viscA4_ZLth(i,j)=(leith4fac*grdVrt+(leithD4fac*grdDiv))*L5
viscAh_ZLthD(i,j)=(leithD2fac*grdDiv)*L3
viscA4_ZLthD(i,j)=(leithD4fac*grdDiv)*L5
ELSE
viscAh_ZLth(i,j)=0. _d 0
viscA4_ZLth(i,j)=0. _d 0
viscAh_ZLthD(i,j)=0. _d 0
viscA4_ZLthD(i,j)=0. _d 0
ENDIF
IF (calcSmag) THEN
viscAh_ZSmg(i,j)=L2
& *SQRT(strain(i,j)**2
& +0.25 _d 0*(tension( i , j )**2+tension( i ,j-1)**2
& +tension(i-1, j )**2+tension(i-1,j-1)**2))
viscA4_ZSmg(i,j)=smag4fac*L2*viscAh_ZSmg(i,j)
viscAh_ZSmg(i,j)=smag2fac*viscAh_ZSmg(i,j)
ENDIF
#endif /* AUTODIFF_DISABLE_LEITH */
C Harmonic on Zeta points
Alin=viscAhZ+viscAhGrid*L2rdt
& +viscAh_ZLth(i,j)+viscAh_ZSmg(i,j)
#ifdef ALLOW_3D_VISCAH
& +viscAhZfld(i,j,k,bi,bj)
#endif
viscAh_ZMin(i,j)=MAX(viscAhGridMin*L2rdt,Uscl)
viscAh_Z(i,j)=MAX(viscAh_ZMin(i,j),Alin)
viscAh_ZMax(i,j)=MIN(viscAhGridMax*L2rdt,viscAhMax)
viscAh_Z(i,j)=MIN(viscAh_ZMax(i,j),viscAh_Z(i,j))
C BiHarmonic on Zeta points
Alin=viscA4Z+viscA4Grid*L4rdt
& +viscA4_ZLth(i,j)+viscA4_ZSmg(i,j)
#ifdef ALLOW_3D_VISCA4
& +viscA4Zfld(i,j,k,bi,bj)
#endif
viscA4_ZMin(i,j)=MAX(viscA4GridMin*L4rdt,U4scl)
viscA4_Z(i,j)=MAX(viscA4_ZMin(i,j),Alin)
viscA4_ZMax(i,j)=MIN(viscA4GridMax*L4rdt,viscA4Max)
viscA4_Z(i,j)=MIN(viscA4_ZMax(i,j),viscA4_Z(i,j))
ENDDO
ENDDO
#ifdef ALLOW_NONHYDROSTATIC
IF ( nonHydrostatic ) THEN
C-- Pass Viscosities to calc_gw (if constant, not necessary)
IF ( k.LT.Nr ) THEN
C Prepare for next level (next call)
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
viscAh_W(i,j,k+1,bi,bj) = halfRL*viscAh_D(i,j)
viscA4_W(i,j,k+1,bi,bj) = halfRL*viscA4_D(i,j)
ENDDO
ENDDO
ENDIF
shiftAh = viscAhW - viscAhD
shiftA4 = viscA4W - viscA4D
IF ( k.EQ.1 ) THEN
C These values dont get used
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
viscAh_W(i,j,k,bi,bj) = shiftAh + viscAh_D(i,j)
viscA4_W(i,j,k,bi,bj) = shiftA4 + viscA4_D(i,j)
ENDDO
ENDDO
ELSE
C Note that previous call of this function has already added half.
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
viscAh_W(i,j,k,bi,bj) = shiftAh + viscAh_W(i,j,k,bi,bj)
& + halfRL*viscAh_D(i,j)
viscA4_W(i,j,k,bi,bj) = shiftA4 + viscA4_W(i,j,k,bi,bj)
& + halfRL*viscA4_D(i,j)
ENDDO
ENDDO
ENDIF
ENDIF
#endif /* ALLOW_NONHYDROSTATIC */
c ELSE
C---- use constant viscosity (useVariableVisc=F):
c DO j=1-OLy,sNy+OLy
c DO i=1-OLx,sNx+OLx
c viscAh_D(i,j) = viscAhD
c viscAh_Z(i,j) = viscAhZ
c viscA4_D(i,j) = viscA4D
c viscA4_Z(i,j) = viscA4Z
c ENDDO
c ENDDO
C---- variable/constant viscosity : end if/else block
c ENDIF
#ifdef ALLOW_DIAGNOSTICS
IF (useDiagnostics) THEN
CALL DIAGNOSTICS_FILL(viscAh_D,'VISCAHD ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_D,'VISCA4D ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_Z,'VISCAHZ ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_Z,'VISCA4Z ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_DMax,'VAHDMAX ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_DMax,'VA4DMAX ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_ZMax,'VAHZMAX ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_ZMax,'VA4ZMAX ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_DMin,'VAHDMIN ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_DMin,'VA4DMIN ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_ZMin,'VAHZMIN ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_ZMin,'VA4ZMIN ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_DLth,'VAHDLTH ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_DLth,'VA4DLTH ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_ZLth,'VAHZLTH ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_ZLth,'VA4ZLTH ',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_DLthD,'VAHDLTHD',
& k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_DLthD,'VA4DLTHD',
& k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_ZLthD,'VAHZLTHD',
& k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_ZLthD,'VA4ZLTHD',
& k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_DSmg,'VAHDSMAG',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_DSmg,'VA4DSMAG',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscAh_ZSmg,'VAHZSMAG',k,1,2,bi,bj,myThid)
CALL DIAGNOSTICS_FILL(viscA4_ZSmg,'VA4ZSMAG',k,1,2,bi,bj,myThid)
ENDIF
#endif
RETURN
END