C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_calc_strainrates.F,v 1.23 2017/06/08 15:10:05 mlosch Exp $ C $Name: $ #include "SEAICE_OPTIONS.h" #ifdef ALLOW_OBCS # include "OBCS_OPTIONS.h" #else # define OBCS_UVICE_OLD #endif #ifdef ALLOW_AUTODIFF # include "AUTODIFF_OPTIONS.h" #endif CBOP C !ROUTINE: SEAICE_CALC_STRAINRATES C !INTERFACE: SUBROUTINE SEAICE_CALC_STRAINRATES( I uFld, vFld, O e11Loc, e22Loc, e12Loc, I iStep, myTime, myIter, myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE SEAICE_CALC_STRAINRATES C | o compute strain rates from ice velocities C *==========================================================* C | written by Martin Losch, Apr 2007 C *==========================================================* C \ev C !USES: IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "SEAICE_SIZE.h" #include "SEAICE_PARAMS.h" #include "SEAICE.h" #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" #endif C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C uFld :: ice velocity, u-component C vFld :: ice velocity, v-component C e11Loc :: strain rate tensor, component 1,1 C e22Loc :: strain rate tensor, component 2,2 C e12Loc :: strain rate tensor, component 1,2 C iStep :: Sub-time-step number C myTime :: Simulation time C myIter :: Simulation timestep number C myThid :: My Thread Id. number _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL e12Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) INTEGER iStep _RL myTime INTEGER myIter INTEGER myThid CEOP #ifdef SEAICE_CGRID #ifdef SEAICE_ALLOW_DYNAMICS C !LOCAL VARIABLES: C === Local variables === C i,j,bi,bj :: Loop counters INTEGER i, j, bi, bj C hFacU, hFacV :: determine the no-slip boundary condition INTEGER k _RS hFacU, hFacV, noSlipFac _RL third PARAMETER ( third = 0.333333333333333333333333333 _d 0 ) C auxillary variables that help writing code that C vectorizes even after TAFization _RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dvdy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dudy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dvdx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) k = 1 noSlipFac = 0. _d 0 IF ( SEAICE_no_slip ) noSlipFac = 1. _d 0 C in order repoduce results before fixing a bug in r1.20 comment out C the following line CML IF ( SEAICE_no_slip ) noSlipFac = 2. _d 0 C DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) C abbreviations on C-points, need to do them in separate loops C for vectorization DO j=1-OLy,sNy+OLy-1 DO i=1-OLx,sNx+OLx-1 dudx(i,j) = _recip_dxF(i,j,bi,bj) * & (uFld(i+1,j,bi,bj)-uFld(i,j,bi,bj)) uave(i,j) = 0.5 _d 0 * (uFld(i,j,bi,bj)+uFld(i+1,j,bi,bj)) ENDDO ENDDO DO j=1-OLy,sNy+OLy-1 DO i=1-OLx,sNx+OLx-1 dvdy(i,j) = _recip_dyF(i,j,bi,bj) * & (vFld(i,j+1,bi,bj)-vFld(i,j,bi,bj)) vave(i,j) = 0.5 _d 0 * (vFld(i,j,bi,bj)+vFld(i,j+1,bi,bj)) ENDDO ENDDO C evaluate strain rates at C-points DO j=1-OLy,sNy+OLy-1 DO i=1-OLx,sNx+OLx-1 e11Loc(i,j,bi,bj) = dudx(i,j) + vave(i,j) * k2AtC(i,j,bi,bj) e22Loc(i,j,bi,bj) = dvdy(i,j) + uave(i,j) * k1AtC(i,j,bi,bj) ENDDO ENDDO #ifndef OBCS_UVICE_OLD C-- for OBCS: assume no gradient beyong OB DO j=1-OLy,sNy+OLy-1 DO i=1-OLx,sNx+OLx-1 e11Loc(i,j,bi,bj) = e11Loc(i,j,bi,bj)*maskInC(i,j,bi,bj) e22Loc(i,j,bi,bj) = e22Loc(i,j,bi,bj)*maskInC(i,j,bi,bj) ENDDO ENDDO #endif /* OBCS_UVICE_OLD */ C abbreviations at Z-points, need to do them in separate loops C for vectorization DO j=1-OLy+1,sNy+OLy DO i=1-OLx+1,sNx+OLx dudy(i,j) = ( uFld(i,j,bi,bj) - uFld(i ,j-1,bi,bj) ) & * _recip_dyU(i,j,bi,bj) uave(i,j) = 0.5 _d 0 * (uFld(i,j,bi,bj)+uFld(i ,j-1,bi,bj)) ENDDO ENDDO DO j=1-OLy+1,sNy+OLy DO i=1-OLx+1,sNx+OLx dvdx(i,j) = ( vFld(i,j,bi,bj) - vFld(i-1,j ,bi,bj) ) & * _recip_dxV(i,j,bi,bj) vave(i,j) = 0.5 _d 0 * (vFld(i,j,bi,bj)+vFld(i-1,j ,bi,bj)) ENDDO ENDDO C evaluate strain rates at Z-points DO j=1-OLy+1,sNy+OLy DO i=1-OLx+1,sNx+OLx hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) e12Loc(i,j,bi,bj) = 0.5 _d 0 * ( & dudy(i,j) + dvdx(i,j) & - k1AtZ(i,j,bi,bj) * vave(i,j) & - k2AtZ(i,j,bi,bj) * uave(i,j) & ) & *maskC(i ,j ,k,bi,bj)*maskC(i-1,j ,k,bi,bj) & *maskC(i ,j-1,k,bi,bj)*maskC(i-1,j-1,k,bi,bj) & + noSlipFac * ( & 2.0 _d 0 * uave(i,j) * _recip_dyU(i,j,bi,bj) * hFacU & + 2.0 _d 0 * vave(i,j) * _recip_dxV(i,j,bi,bj) * hFacV & ) C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 C accross the boundary; this is already accomplished by masking so C that the following lines are not necessary c$$$ & - hFacV * k1AtZ(i,j,bi,bj) * vave(i,j) c$$$ & - hFacU * k2AtZ(i,j,bi,bj) * uave(i,j) ENDDO ENDDO IF ( SEAICE_no_slip .AND. SEAICE_2ndOrderBC ) THEN DO j=1-OLy+2,sNy+OLy-1 DO i=1-OLx+2,sNx+OLx-1 hFacU = (_maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj))*third hFacV = (_maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj))*third hFacU = hFacU*( _maskW(i,j-2,k,bi,bj)*_maskW(i,j-1,k,bi,bj) & + _maskW(i,j+1,k,bi,bj)*_maskW(i,j, k,bi,bj) ) hFacV = hFacV*( _maskS(i-2,j,k,bi,bj)*_maskS(i-1,j,k,bi,bj) & + _maskS(i+1,j,k,bi,bj)*_maskS(i ,j,k,bi,bj) ) C right hand sided dv/dx = (9*v(i,j)-v(i+1,j))/(4*dxv(i,j)-dxv(i+1,j)) C according to a Taylor expansion to 2nd order. We assume that dxv C varies very slowly, so that the denominator simplifies to 3*dxv(i,j), C then dv/dx = (6*v(i,j)+3*v(i,j)-v(i+1,j))/(3*dxv(i,j)) C = 2*v(i,j)/dxv(i,j) + (3*v(i,j)-v(i+1,j))/(3*dxv(i,j)) C the left hand sided dv/dx is analogously C = - 2*v(i-1,j)/dxv(i,j) - (3*v(i-1,j)-v(i-2,j))/(3*dxv(i,j)) C the first term is the first order part, which is already added. C For e12 we only need 0.5 of this gradient and vave = is either C 0.5*v(i,j) or 0.5*v(i-1,j) near the boundary so that we need an C extra factor of 2. This explains the six. du/dy is analogous. C The masking is ugly, but hopefully effective. e12Loc(i,j,bi,bj) = e12Loc(i,j,bi,bj) + 0.5 _d 0 * ( & _recip_dyU(i,j,bi,bj) * ( 6.0 _d 0 * uave(i,j) & - uFld(i,j-2,bi,bj)*_maskW(i,j-1,k,bi,bj) & - uFld(i,j+1,bi,bj)*_maskW(i,j ,k,bi,bj) ) * hFacU & + _recip_dxV(i,j,bi,bj) * ( 6.0 _d 0 * vave(i,j) & - vFld(i-2,j,bi,bj)*_maskS(i-1,j,k,bi,bj) & - vFld(i+1,j,bi,bj)*_maskS(i ,j,k,bi,bj) ) * hFacV & ) ENDDO ENDDO ENDIF ENDDO ENDDO #ifdef ALLOW_AUTODIFF_TAMC #ifdef SEAICE_DYN_STABLE_ADJOINT cgf zero out adjoint fields to stabilize pkg/seaice dyna. adjoint CALL ZERO_ADJ( 1, e11Loc, myThid) CALL ZERO_ADJ( 1, e12Loc, myThid) CALL ZERO_ADJ( 1, e22Loc, myThid) #endif #endif /* ALLOW_AUTODIFF_TAMC */ #endif /* SEAICE_ALLOW_DYNAMICS */ #endif /* SEAICE_CGRID */ RETURN END