C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_freedrift.F,v 1.7 2014/10/20 03:20:57 gforget Exp $
C $Name: $
#include "SEAICE_OPTIONS.h"
#ifdef ALLOW_AUTODIFF
# include "AUTODIFF_OPTIONS.h"
#endif
CBOP
SUBROUTINE SEAICE_FREEDRIFT( myTime, myIter, myThid )
C *==========================================================*
C | SUBROUTINE SEAICE_FREEDRIFT
C | o Solve ice approximate momentum equation analytically
C *==========================================================*
IMPLICIT NONE
C === Global variables ===
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "DYNVARS.h"
#include "GRID.h"
#include "SEAICE_SIZE.h"
#include "SEAICE_PARAMS.h"
#include "SEAICE.h"
#ifdef ALLOW_AUTODIFF_TAMC
# include "tamc.h"
#endif
C === Routine arguments ===
C myTime :: Simulation time
C myIter :: Simulation timestep number
C myThid :: my Thread Id. number
_RL myTime
INTEGER myIter
INTEGER myThid
CEOP
#ifdef SEAICE_ALLOW_FREEDRIFT
#ifdef SEAICE_CGRID
C === Local variables ===
INTEGER i, j, kSrf, bi, bj
_RL tmpscal1,tmpscal2,tmpscal3,tmpscal4
_RL taux_onIce_cntr, tauy_onIce_cntr, uvel_cntr, vvel_cntr
_RL mIceCor, rhs_x, rhs_y, rhs_n, rhs_a, sol_n, sol_a
_RL uice_cntr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
_RL vice_cntr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
kSrf=1
C initialize fields:
C ==================
DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
uice_fd(i,j,bi,bj)=0. _d 0
vice_fd(i,j,bi,bj)=0. _d 0
uice_cntr(i,j,bi,bj)=0. _d 0
Vice_cntr(i,j,bi,bj)=0. _d 0
ENDDO
ENDDO
ENDDO
ENDDO
CALL EXCH_UV_XY_RL( TAUX, TAUY, .TRUE., myThid )
DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)
DO j=1,sNy
DO i=1,sNx
C preliminary computations:
C =========================
C air-ice stress at cell center
taux_onIce_cntr=HALF*
& (FORCEX0(i,j,bi,bj)+FORCEX0(i+1,j,bi,bj))
tauy_onIce_cntr=HALF*
& (FORCEY0(i,j,bi,bj)+FORCEY0(i,j+1,bi,bj))
C mass of ice per unit area (kg/m2) times coriolis f
mIceCor=SEAICE_rhoIce*HEFF(i,j,bi,bj)*_fCori(I,J,bi,bj)
C ocean velocity at cell center
uvel_cntr=HALF*(uvel(i,j,kSrf,bi,bj)+uvel(i+1,j,kSrf,bi,bj))
vvel_cntr=HALF*(vvel(i,j,kSrf,bi,bj)+vvel(i,j+1,kSrf,bi,bj))
C right hand side of free drift equation:
rhs_x= -taux_onIce_cntr -mIceCor*vvel_cntr
rhs_y= -tauy_onIce_cntr +mIceCor*uvel_cntr
C norm of angle of rhs
tmpscal1=rhs_x*rhs_x + rhs_y*rhs_y
IF ( tmpscal1.GT.ZERO ) THEN
rhs_n=SQRT( rhs_x*rhs_x + rhs_y*rhs_y )
rhs_a=ATAN2(rhs_y,rhs_x)
ELSE
rhs_n=0. _d 0
rhs_a=0. _d 0
ENDIF
C solve for norm:
C ===============
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN
tmpscal1 = 1. _d 0 /SEAICE_waterDrag_south
ELSE
tmpscal1 = 1. _d 0 /SEAICE_waterDrag
ENDIF
C polynomial coefficients
tmpscal2= tmpscal1*tmpscal1*mIceCor*mIceCor
tmpscal3= tmpscal1*tmpscal1*rhs_n*rhs_n
C discriminant
tmpscal4=tmpscal2*tmpscal2+4. _d 0*tmpscal3
IF ( tmpscal3.GT.ZERO ) THEN
sol_n=SQRT(HALF*(SQRT(tmpscal4)-tmpscal2))
ELSE
sol_n=0. _d 0
ENDIF
C solve for angle:
C ================
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN
tmpscal1 = SEAICE_waterDrag_south
ELSE
tmpscal1 = SEAICE_waterDrag
ENDIF
tmpscal2= tmpscal1*sol_n*sol_n
tmpscal3= mIceCor*sol_n
tmpscal4=tmpscal2*tmpscal2 + tmpscal3*tmpscal3
IF ( tmpscal4.GT.ZERO ) THEN
sol_a=rhs_a-ATAN2(tmpscal3,tmpscal2)
ELSE
sol_a=0. _d 0
ENDIF
C compute uice, vice at cell center:
C ==================================
uice_cntr(i,j,bi,bj)=uvel_cntr-sol_n*COS(sol_a)
vice_cntr(i,j,bi,bj)=vvel_cntr-sol_n*SIN(sol_a)
ENDDO
ENDDO
ENDDO
ENDDO
C interpolated to velocity points:
C ================================
CALL EXCH_UV_AGRID_3D_RL(uice_cntr,vice_cntr,.TRUE.,1,myThid)
DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)
DO j=1,sNy
DO i=1,sNx
uice_fd(i,j,bi,bj)=HALF*
& (uice_cntr(i-1,j,bi,bj)+uice_cntr(i,j,bi,bj))
vice_fd(i,j,bi,bj)=HALF*
& (vice_cntr(i,j-1,bi,bj)+vice_cntr(i,j,bi,bj))
ENDDO
ENDDO
ENDDO
ENDDO
CALL EXCH_UV_XY_RL( uice_fd, vice_fd, .TRUE., myThid )
C Apply masks (same/similar to seaice_evp.F/seaice_lsr.F)
DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
uIce_fd(i,j,bi,bj)=uIce_fd(i,j,bi,bj)* _maskW(i,j,kSrf,bi,bj)
vIce_fd(i,j,bi,bj)=vIce_fd(i,j,bi,bj)* _maskS(i,j,kSrf,bi,bj)
ENDDO
ENDDO
ENDDO
ENDDO
#endif /* SEAICE_CGRID */
#endif /* SEAICE_ALLOW_FREEDRIFT */
RETURN
END