C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_ocean_stress.F,v 1.30 2012/03/06 16:45:20 jmc Exp $
C $Name: $
#include "SEAICE_OPTIONS.h"
CStartOfInterface
SUBROUTINE SEAICE_OCEAN_STRESS(
I myTime, myIter, myThid )
C *==========================================================*
C | SUBROUTINE SEAICE_OCEAN_STRESS |
C | o Calculate ocean surface stresses |
C | - C-grid version |
C *==========================================================*
C *==========================================================*
IMPLICIT NONE
C === Global variables ===
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "DYNVARS.h"
#include "GRID.h"
#include "FFIELDS.h"
#include "SEAICE_SIZE.h"
#include "SEAICE_PARAMS.h"
#include "SEAICE.h"
C === Routine arguments ===
C myTime - Simulation time
C myIter - Simulation timestep number
C myThid - Thread no. that called this routine.
_RL myTime
INTEGER myIter
INTEGER myThid
CEndOfInterface
#ifdef SEAICE_CGRID
C === Local variables ===
C i,j,bi,bj - Loop counters
C kSrf - vertical index of surface layer
INTEGER i, j, bi, bj
INTEGER kSrf
_RL COSWAT
_RS SINWAT
_RL fuIceLoc, fvIceLoc
_RL areaW, areaS
C surrface level
kSrf = 1
C introduce turning angle (default is zero)
SINWAT=SIN(SEAICE_waterTurnAngle*deg2rad)
COSWAT=COS(SEAICE_waterTurnAngle*deg2rad)
IF ( useHB87StressCoupling ) THEN
C
C use an intergral over ice and ocean surface layer to define
C surface stresses on ocean following Hibler and Bryan (1987, JPO)
C
DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)
DO J=1,sNy
DO I=1,sNx
C average wind stress over ice and ocean and apply averaged wind
C stress and internal ice stresses to surface layer of ocean
areaW = 0.5 * (AREA(I,J,bi,bj) + AREA(I-1,J,bi,bj))
& * SEAICEstressFactor
fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)
& + areaW*taux(I,J,bi,bj)
& + stressDivergenceX(I,J,bi,bj) * SEAICEstressFactor
ENDDO
ENDDO
C This loop separation makes the adjoint code vectorize
DO J=1,sNy
DO I=1,sNx
areaS = 0.5 * (AREA(I,J,bi,bj) + AREA(I,J-1,bi,bj))
& * SEAICEstressFactor
fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)
& + areaS*tauy(I,J,bi,bj)
& + stressDivergenceY(I,J,bi,bj) * SEAICEstressFactor
ENDDO
ENDDO
ENDDO
ENDDO
ELSE
C else: useHB87StressCoupling=F
C-- Compute ice-affected wind stress (interpolate to U/V-points)
C by averaging wind stress and ice-ocean stress according to
C ice cover
DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)
DO j=1,sNy
DO i=1,sNx
fuIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I-1,J,bi,bj) )*
& COSWAT *
& ( uIce(I,J,bi,bj)-uVel(I,J,kSrf,bi,bj) )
& - SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
& ( DWATN(I ,J,bi,bj) *
& 0.5 _d 0*(vIce(I ,J ,bi,bj)-vVel(I ,J ,kSrf,bi,bj)
& +vIce(I ,J+1,bi,bj)-vVel(I ,J+1,kSrf,bi,bj))
& + DWATN(I-1,J,bi,bj) *
& 0.5 _d 0*(vIce(I-1,J ,bi,bj)-vVel(I-1,J ,kSrf,bi,bj)
& +vIce(I-1,J+1,bi,bj)-vVel(I-1,J+1,kSrf,bi,bj))
& )
fvIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I,J-1,bi,bj) )*
& COSWAT *
& ( vIce(I,J,bi,bj)-vVel(I,J,kSrf,bi,bj) )
& + SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
& ( DWATN(I,J ,bi,bj) *
& 0.5 _d 0*(uIce(I ,J ,bi,bj)-uVel(I ,J ,kSrf,bi,bj)
& +uIce(I+1,J ,bi,bj)-uVel(I+1,J ,kSrf,bi,bj))
& + DWATN(I,J-1,bi,bj) *
& 0.5 _d 0*(uIce(I ,J-1,bi,bj)-uVel(I ,J-1,kSrf,bi,bj)
& +uIce(I+1,J-1,bi,bj)-uVel(I+1,J-1,kSrf,bi,bj))
& )
areaW = 0.5 _d 0 * (AREA(I,J,bi,bj) + AREA(I-1,J,bi,bj))
& * SEAICEstressFactor
areaS = 0.5 _d 0 * (AREA(I,J,bi,bj) + AREA(I,J-1,bi,bj))
& * SEAICEstressFactor
fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)+areaW*fuIceLoc
fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)+areaS*fvIceLoc
ENDDO
ENDDO
ENDDO
ENDDO
ENDIF
CALL EXCH_UV_XY_RS(fu, fv, .TRUE., myThid)
#endif /* SEAICE_CGRID */
RETURN
END