C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_ocean_stress.F,v 1.30 2012/03/06 16:45:20 jmc Exp $ C $Name: $ #include "SEAICE_OPTIONS.h" CStartOfInterface SUBROUTINE SEAICE_OCEAN_STRESS( I myTime, myIter, myThid ) C *==========================================================* C | SUBROUTINE SEAICE_OCEAN_STRESS | C | o Calculate ocean surface stresses | C | - C-grid version | C *==========================================================* C *==========================================================* IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "DYNVARS.h" #include "GRID.h" #include "FFIELDS.h" #include "SEAICE_SIZE.h" #include "SEAICE_PARAMS.h" #include "SEAICE.h" C === Routine arguments === C myTime - Simulation time C myIter - Simulation timestep number C myThid - Thread no. that called this routine. _RL myTime INTEGER myIter INTEGER myThid CEndOfInterface #ifdef SEAICE_CGRID C === Local variables === C i,j,bi,bj - Loop counters C kSrf - vertical index of surface layer INTEGER i, j, bi, bj INTEGER kSrf _RL COSWAT _RS SINWAT _RL fuIceLoc, fvIceLoc _RL areaW, areaS C surrface level kSrf = 1 C introduce turning angle (default is zero) SINWAT=SIN(SEAICE_waterTurnAngle*deg2rad) COSWAT=COS(SEAICE_waterTurnAngle*deg2rad) IF ( useHB87StressCoupling ) THEN C C use an intergral over ice and ocean surface layer to define C surface stresses on ocean following Hibler and Bryan (1987, JPO) C DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1,sNy DO I=1,sNx C average wind stress over ice and ocean and apply averaged wind C stress and internal ice stresses to surface layer of ocean areaW = 0.5 * (AREA(I,J,bi,bj) + AREA(I-1,J,bi,bj)) & * SEAICEstressFactor fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj) & + areaW*taux(I,J,bi,bj) & + stressDivergenceX(I,J,bi,bj) * SEAICEstressFactor ENDDO ENDDO C This loop separation makes the adjoint code vectorize DO J=1,sNy DO I=1,sNx areaS = 0.5 * (AREA(I,J,bi,bj) + AREA(I,J-1,bi,bj)) & * SEAICEstressFactor fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj) & + areaS*tauy(I,J,bi,bj) & + stressDivergenceY(I,J,bi,bj) * SEAICEstressFactor ENDDO ENDDO ENDDO ENDDO ELSE C else: useHB87StressCoupling=F C-- Compute ice-affected wind stress (interpolate to U/V-points) C by averaging wind stress and ice-ocean stress according to C ice cover DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1,sNy DO i=1,sNx fuIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I-1,J,bi,bj) )* & COSWAT * & ( uIce(I,J,bi,bj)-uVel(I,J,kSrf,bi,bj) ) & - SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 * & ( DWATN(I ,J,bi,bj) * & 0.5 _d 0*(vIce(I ,J ,bi,bj)-vVel(I ,J ,kSrf,bi,bj) & +vIce(I ,J+1,bi,bj)-vVel(I ,J+1,kSrf,bi,bj)) & + DWATN(I-1,J,bi,bj) * & 0.5 _d 0*(vIce(I-1,J ,bi,bj)-vVel(I-1,J ,kSrf,bi,bj) & +vIce(I-1,J+1,bi,bj)-vVel(I-1,J+1,kSrf,bi,bj)) & ) fvIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I,J-1,bi,bj) )* & COSWAT * & ( vIce(I,J,bi,bj)-vVel(I,J,kSrf,bi,bj) ) & + SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 * & ( DWATN(I,J ,bi,bj) * & 0.5 _d 0*(uIce(I ,J ,bi,bj)-uVel(I ,J ,kSrf,bi,bj) & +uIce(I+1,J ,bi,bj)-uVel(I+1,J ,kSrf,bi,bj)) & + DWATN(I,J-1,bi,bj) * & 0.5 _d 0*(uIce(I ,J-1,bi,bj)-uVel(I ,J-1,kSrf,bi,bj) & +uIce(I+1,J-1,bi,bj)-uVel(I+1,J-1,kSrf,bi,bj)) & ) areaW = 0.5 _d 0 * (AREA(I,J,bi,bj) + AREA(I-1,J,bi,bj)) & * SEAICEstressFactor areaS = 0.5 _d 0 * (AREA(I,J,bi,bj) + AREA(I,J-1,bi,bj)) & * SEAICEstressFactor fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)+areaW*fuIceLoc fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)+areaS*fvIceLoc ENDDO ENDDO ENDDO ENDDO ENDIF CALL EXCH_UV_XY_RS(fu, fv, .TRUE., myThid) #endif /* SEAICE_CGRID */ RETURN END