C $Header: /u/gcmpack/MITgcm/pkg/atm2d/calc_1dto2d.F,v 1.5 2009/09/03 19:29:03 jscott Exp $ C $Name: $ #include "ctrparam.h" #include "ATM2D_OPTIONS.h" C !INTERFACE: SUBROUTINE CALC_1DTO2D( myThid ) C *==========================================================* C | - Takes 1D atmos data, regrid to 2D ocean grid. This | C | involves totalling runoff into bands and redistributing| C | and using derivates dF/dT and dH/dT to compute | C | local variations in evap and heat flux. | C *==========================================================* IMPLICIT NONE #include "ATMSIZE.h" #include "SIZE.h" #include "GRID.h" #include "EEPARAMS.h" C === Global SeaIce Variables === #include "THSICE_VARS.h" C === Atmos/Ocean/Seaice Interface Variables === #include "ATM2D_VARS.h" C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C myThid - Thread no. that called this routine. INTEGER myThid C LOCAL VARIABLES: INTEGER i,j ! loop counters across ocean grid INTEGER ib,ibj1,ibj2 ! runoff band variables _RL run_b(sNy) ! total runoff in a band _RL fv_toC ! meridional wind stress for ocean C-grid pt CALL INIT_2DFLD(myThid) C Accumulate runoff into bands (runoff bands are on the ocean grid) DO ib=1,numBands ibj1=1 IF (ib.GT.1) ibj1= rband(ib-1)+1 ibj2=sNy IF (ib.LT.numBands) ibj2= rband(ib) run_b(ib)=0. _d 0 DO j=ibj1,ibj2 run_b(ib)=run_b(ib) + & atm_runoff(atm_oc_ind(j))*atm_oc_frac1(j) + & atm_runoff(atm_oc_ind(j)+1)*atm_oc_frac2(j) ENDDO ENDDO DO j=1,sNy C do a linear interpolation from atmos data to get tauv fv_toC = atm_tauv(tauv_jpt(j)) * tauv_jwght(j) + & atm_tauv(tauv_jpt(j)+1) * (1. _d 0 - tauv_jwght(j)) DO i=1,sNx IF (maskC(i,j,1,1,1).EQ.1.) THEN runoff_2D(i,j) = run_b(runIndex(j)) * & runoffVal(i,j)/rA(i,j,1,1) CALL CALC_WGHT2D(i,j,atm_oc_ind(j),atm_oc_wgt(j)) IF (atm_oc_wgt(j).LT.1. _d 0) & CALL CALC_WGHT2D(i, j, atm_oc_ind(j)+1, & 1. _d 0-atm_oc_wgt(j)) fv_2D(i,j) = fv_toC C Tabulate following diagnostic fluxes from atmos model only qnet_atm(i,j)= qnet_atm(i,j) + & qneti_2D(i,j)*dtatmo*iceMask(i,j,1,1) + & qneto_2D(i,j)*dtatmo*(1. _d 0-iceMask(i,j,1,1)) evap_atm(i,j)= evap_atm(i,j) + & evapi_2D(i,j)*dtatmo*iceMask(i,j,1,1) + & evapo_2D(i,j)*dtatmo*(1. _d 0-iceMask(i,j,1,1)) precip_atm(i,j)= precip_atm(i,j) + & precipi_2D(i,j)*dtatmo*iceMask(i,j,1,1) + & precipo_2D(i,j)*dtatmo*(1. _d 0-iceMask(i,j,1,1)) runoff_atm(i,j)= runoff_atm(i,j) + & runoff_2D(i,j)*dtatmo ENDIF ENDDO ENDDO RETURN END
C-------------------------------------------------------------------------- #include "ctrparam.h" #include "ATM2D_OPTIONS.h" C !INTERFACE: SUBROUTINE CALC_WGHT2D( i, j, ind, wgt) C *==========================================================* C | Use atmos grid cell 1D value and weight to convert to 2D.| C | Variations from zonal mean computed used derivative dH/dT| C | and dF/dT for heat flux and evap terms. | C | | C | Fluxes/values over seaice computed only if seaice present| C *==========================================================* IMPLICIT NONE #include "ATMSIZE.h" #include "SIZE.h" #include "EEPARAMS.h" C === Global SeaIce Variables === #include "THSICE_VARS.h" C === Atmos/Ocean/Seaice Interface Variables === #include "ATM2D_VARS.h" C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C i,j - coordinates of point on ocean grid C ind - index into the atmos grid array C wght - weight of this atmos cell for total INTEGER i, j INTEGER ind _RL wgt precipo_2D(i,j)= precipo_2D(i,j) + atm_precip(ind)*wgt solarnet_ocn_2D(i,j)=solarnet_ocn_2D(i,j) + atm_solar_ocn(ind)*wgt slp_2D(i,j)= slp_2D(i,j) + atm_slp(ind)*wgt pCO2_2D(i,j)= pCO2_2D(i,j) + atm_pco2(ind)*wgt wspeed_2D(i,j)= wspeed_2D(i,j) + atm_windspeed(ind)*wgt fu_2D(i,j)= fu_2D(i,j) + atm_tauu(ind)*wgt qneto_2D(i,j)= qneto_2D(i,j) + atm_qnet_ocn(ind)*wgt evapo_2D(i,j)= evapo_2D(i,j) + atm_evap_ocn(ind)*wgt IF (evapo_2D(i,j).GT.0. _d 0) THEN !convert negative evap. to precip precipo_2D(i,j)= precipo_2D(i,j) - evapo_2D(i,j) evapo_2D(i,j)=0. _d 0 ENDIF IF (iceMask(i,j,1,1) .GT. 0. _d 0) THEN qneti_2D(i,j)= qneti_2D(i,j) + atm_qnet_ice(ind)*wgt precipi_2D(i,j)= precipi_2D(i,j) + atm_precip(ind)*wgt evapi_2D(i,j)= evapi_2D(i,j) + atm_evap_ice(ind)*wgt IF (evapi_2D(i,j).GT.0. _d 0) THEN !convert negative evap. to precip precipi_2D(i,j)= precipi_2D(i,j) - evapi_2D(i,j) evapi_2D(i,j)=0. _d 0 ENDIF dFdT_ice_2D(i,j)= dFdT_ice_2D(i,j) + atm_dFdT_ice(ind)*wgt Tair_2D(i,j)= Tair_2D(i,j) + atm_Tair(ind)*wgt solarinc_2D(i,j)= solarinc_2D(i,j) + atm_solarinc(ind)*wgt ENDIF IF (useAltDeriv) THEN qneto_2D(i,j)= qneto_2D(i,j) + atm_dFdt_ocnq(ind)* & (sstFromOcn(i,j)-ctocn(ind))*wgt evapo_2D(i,j)= evapo_2D(i,j) + atm_dLdt_ocnq(ind)* & (sstFromOcn(i,j)-ctocn(ind))*wgt IF (iceMask(i,j,1,1) .GT. 0. _d 0) THEN qneti_2D(i,j)=qneti_2D(i,j)+atm_dFdt_iceq(ind)* & (Tsrf(i,j,1,1)-ctice(ind))*wgt evapi_2D(i,j)=evapi_2D(i,j)+atm_dLdt_iceq(ind)* & (Tsrf(i,j,1,1)-ctice(ind))*wgt ENDIF ELSE qneto_2D(i,j)= qneto_2D(i,j) + atm_dFdt_ocn(ind)* & (sstFromOcn(i,j)-ctocn(ind))*wgt evapo_2D(i,j)= evapo_2D(i,j) + atm_dLdt_ocn(ind)* & (sstFromOcn(i,j)-ctocn(ind))*wgt IF (iceMask(i,j,1,1) .GT. 0. _d 0) THEN qneti_2D(i,j)= qneti_2D(i,j) + atm_dFdt_ice(ind)* & (Tsrf(i,j,1,1)-ctice(ind))*wgt evapi_2D(i,j)= evapi_2D(i,j)+atm_dLdt_ice(ind)* & (Tsrf(i,j,1,1)-ctice(ind))*wgt ENDIF ENDIF RETURN END
C-------------------------------------------------------------------------- #include "ctrparam.h" #include "ATM2D_OPTIONS.h" C !INTERFACE: SUBROUTINE INIT_2DFLD( myThid) C *==========================================================* C | Zero out the 2D fields; called prior to doing any of the | C | 1D->2D calculation. | C *==========================================================* IMPLICIT NONE #include "ATMSIZE.h" #include "SIZE.h" #include "EEPARAMS.h" #include "ATM2D_VARS.h" C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C myThid - Thread no. that called this routine. INTEGER myThid C LOCAL VARIABLES: INTEGER i,j DO i=1,sNx DO j=1,sNy precipo_2D(i,j)= 0. _d 0 precipi_2D(i,j)= 0. _d 0 solarnet_ocn_2D(i,j)= 0. _d 0 slp_2D(i,j)= 0. _d 0 pCO2_2D(i,j)= 0. _d 0 wspeed_2D(i,j)= 0. _d 0 fu_2D(i,j)= 0. _d 0 fv_2D(i,j)= 0. _d 0 qneto_2D(i,j)= 0. _d 0 evapo_2D(i,j)= 0. _d 0 qneti_2D(i,j)= 0. _d 0 evapi_2D(i,j)= 0. _d 0 dFdT_ice_2D(i,j)= 0. _d 0 Tair_2D(i,j)= 0. _d 0 solarinc_2D(i,j)= 0. _d 0 runoff_2D(i,j)= 0. _d 0 ENDDO ENDDO RETURN END