C $Header: /u/gcmpack/MITgcm/pkg/atm2d/calc_zonal_means.F,v 1.8 2009/07/09 21:40:36 jscott Exp $ C $Name: $ #include "ctrparam.h" #include "ATM2D_OPTIONS.h" C !INTERFACE: SUBROUTINE CALC_ZONAL_MEANS(doAll, myTime, myIter, myThid ) C *==========================================================* C | Calculate zonal mean ocean quantities (at a specific | C | point in time). If first argument is false, only seaice | C | means are calculated, i.e. called after an atm timestep. | C *==========================================================* IMPLICIT NONE C === Global Atmosphere Variables === #include "ATMSIZE.h" #include "AGRID.h" C === Global Ocean Variables === #include "SIZE.h" #include "GRID.h" #include "EEPARAMS.h" C === Global SeaIce Variables === #include "THSICE_VARS.h" INTEGER siLo, siHi, sjLo, sjHi PARAMETER ( siLo = 1-OLx , siHi = sNx+OLx ) PARAMETER ( sjLo = 1-OLy , sjHi = sNy+OLy ) C === Atmos/Ocean/Seaice Interface Variables === #include "ATM2D_VARS.h" C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C doAll - boolean, false -> only vars changed after atm step C myTime - current simulation time (ocean model time) C myIter - iteration number (ocean model) C myThid - Thread no. that called this routine. LOGICAL doAll _RL myTime INTEGER myIter INTEGER myThid C LOCAL VARIABLES: _RL mWgt ! weight of ocean point j+1 INTEGER i,j ! loop counters for the ocean grid INTEGER j_atm ! loop counter for the atm grid DO j_atm=1,jm0 IF (doAll) THEN ctocn(j_atm)=0. _d 0 cfice(j_atm)=0. _d 0 cco2flux(j_atm)=0. _d 0 ENDIF ctice(j_atm)=0. _d 0 csAlb(j_atm)=0. _d 0 csAlbNIR(j_atm)=0. _d 0 ENDDO CALL THSICE_ALBEDO( I 1, 1, siLo, siHi, sjLo, sjHi, I 1, sNx, 1, sNy, I iceMask(siLo,sjLo,1,1), iceHeight(siLo,sjLo,1,1), I snowHeight(siLo,sjLo,1,1), Tsrf(siLo,sjLo,1,1), I snowAge(siLo,sjLo,1,1), O siceAlb(siLo,sjLo,1,1), icAlbNIR(siLo,sjLo,1,1), I myTime, myIter, myThid ) DO j=1,sNy DO i=1,sNx IF (maskC(i,j,1,1,1).EQ.1.) THEN IF (doAll) THEN ctocn(atm_oc_ind(j))= ctocn(atm_oc_ind(j)) + & sstFromOcn(i,j) * rA(i,j,1,1) * & (1. _d 0-iceMask(i,j,1,1))*atm_oc_wgt(j) cfice(atm_oc_ind(j))=cfice(atm_oc_ind(j)) + & rA(i,j,1,1)*iceMask(i,j,1,1)*atm_oc_wgt(j) cco2flux(atm_oc_ind(j))=cco2flux(atm_oc_ind(j)) + & oFluxCO2(i,j)*rA(i,j,1,1)*atm_oc_wgt(j) ENDIF ctice(atm_oc_ind(j))=ctice(atm_oc_ind(j)) + Tsrf(i,j,1,1) & *rA(i,j,1,1)*iceMask(i,j,1,1)*atm_oc_wgt(j) csAlb(atm_oc_ind(j))=csAlb(atm_oc_ind(j)) + siceAlb(i,j,1,1) & *rA(i,j,1,1)*iceMask(i,j,1,1)*atm_oc_wgt(j) csAlbNIR(atm_oc_ind(j))=csAlbNIR(atm_oc_ind(j)) + & icAlbNIR(i,j,1,1) & *rA(i,j,1,1)*iceMask(i,j,1,1)*atm_oc_wgt(j) IF (atm_oc_wgt(j).LT.1. _d 0) THEN mWgt= 1. _d 0-atm_oc_wgt(j) IF (doAll) THEN ctocn(atm_oc_ind(j)+1)= ctocn(atm_oc_ind(j)+1) + & sstFromOcn(i,j) * rA(i,j,1,1) * & (1. _d 0-iceMask(i,j,1,1))*mWgt cfice(atm_oc_ind(j)+1)= cfice(atm_oc_ind(j)+1) + & rA(i,j,1,1)*iceMask(i,j,1,1)*mWgt cco2flux(atm_oc_ind(j)+1)= cco2flux(atm_oc_ind(j)+1) + & oFluxCO2(i,j)*rA(i,j,1,1)*mWgt ENDIF ctice(atm_oc_ind(j)+1)= ctice(atm_oc_ind(j)+1) + & Tsrf(i,j,1,1)*rA(i,j,1,1)*iceMask(i,j,1,1)*mWgt csAlb(atm_oc_ind(j)+1)= csAlb(atm_oc_ind(j)+1) + & siceAlb(i,j,1,1)*rA(i,j,1,1)*iceMask(i,j,1,1)*mWgt csAlbNIR(atm_oc_ind(j)+1)= csAlbNIR(atm_oc_ind(j)+1) + & icAlbNIR(i,j,1,1)*rA(i,j,1,1)*iceMask(i,j,1,1)*mWgt ENDIF ENDIF ENDDO ENDDO DO j_atm=2,jm0-1 IF (ocnArea(j_atm).GT.1. _d -32) THEN IF (doAll) & cfice(j_atm)= cfice(j_atm)/ocnArea(j_atm) IF (cfice(j_atm).GT.1. _d -32) THEN ctice(j_atm)= ctice(j_atm)/ocnArea(j_atm)/cfice(j_atm) csAlb(j_atm)= csAlb(j_atm)/ocnArea(j_atm)/cfice(j_atm) csAlbNIR(j_atm)= csAlbNIR(j_atm)/ocnArea(j_atm)/cfice(j_atm) ENDIF IF ((1. _d 0-cfice(j_atm).GT.1. _d -32).AND.doAll) & ctocn(j_atm)= ctocn(j_atm)/ocnArea(j_atm) & /(1. _d 0-cfice(j_atm)) ENDIF C At present, keeping separate variables in AGRID.h and ATM2D_VARS.h IF (doALL) THEN mmsst(j_atm)= ctocn(j_atm) mmfice(j_atm)= cfice(j_atm) mmco2flux(j_atm)= cco2flux(j_atm) ENDIF mmtice(j_atm)= ctice(j_atm) mmsAlb(j_atm)= csAlb(j_atm) mmsAlbNIR(j_atm)= csAlbNIR(j_atm) ENDDO C Copy data to atmosphere polar points IF (doALL) THEN mmsst(1)= ctocn(2) mmsst(jm0)= ctocn(jm0-1) mmfice(1)= cfice(2) mmfice(jm0)= cfice(jm0-1) mmco2flux(1)= 0. _d 0 mmco2flux(jm0)= 0. _d 0 ! converted to mol/s; pole point contribution in jm0-1 ENDIF mmtice(1)= ctice(2) mmtice(jm0)= ctice(jm0-1) mmsAlb(1)= csAlb(2) mmsAlb(jm0)= csAlb(jm0-1) mmsAlbNIR(1)= csAlbNIR(2) mmsAlbNIR(jm0)= csAlbNIR(jm0-1) RETURN END