C $Header: /u/gcmpack/MITgcm/pkg/cheapaml/cheapaml_gad_dst3fl_adv_r.F,v 1.3 2012/12/04 17:26:10 jmc Exp $
C $Name: $
#include "GAD_OPTIONS.h"
CBOP
C !ROUTINE: GAD_DST3FL_ADV_R
C !INTERFACE: ==========================================================
SUBROUTINE CHEAPAML_GAD_DST3FL_ADV_R(
I bi,bj,dTarg,
I rTrans,
I tracer,
O wT,
I myThid )
C !DESCRIPTION:
C Calculates the area integrated vertical flux due to advection of a tracer
C using 3rd Order DST Scheme with flux limiting
c modified for use in Cheapaml
C !USES: ===============================================================
IMPLICIT NONE
C == GLobal variables ==
#include "SIZE.h"
#include "GRID.h"
#include "GAD.h"
C == Routine arguments ==
C !INPUT PARAMETERS: ===================================================
C bi,bj :: tile indices
C k :: vertical level
C deltaTloc :: local time-step (s)
C rTrans :: vertical volume transport
C tracer :: tracer field
C myThid :: thread number
INTEGER bi,bj
_RL dTarg
_RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
INTEGER myThid
C !OUTPUT PARAMETERS: ==================================================
C wT :: vertical advective flux
_RL wT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
C == Local variables ==
C !LOCAL VARIABLES: ====================================================
C i,j :: loop indices
C wLoc :: velocity, vertical component
C wCFL :: Courant-Friedrich-Levy number
INTEGER i,j
_RL Rjm,Rj,Rjp,wCFL,d0,d1
_RL psiP,psiM,thetaP,thetaM
_RL wLoc
_RL thetaMax
PARAMETER( thetaMax = 1.D+20 )
Rjp= 0. _d 0
Rj = 0. _d 0
Rjm = 0. _d 0
c DO j=1-OLy,sNy+OLy
c DO i=1-OLx,sNx+OLx
DO j=1,sNy
DO i=1,sNx
wLoc = rTrans(i,j)
wCFL = ABS(wLoc*dTarg*recip_drC(1))
d0=(2. _d 0 -wCFL)*(1. _d 0 -wCFL)*oneSixth
d1=(1. _d 0 -wCFL*wCFL)*oneSixth
C- prevent |thetaP,M| to reach too big value:
thetaP=SIGN(thetaMax,Rjm*Rj)
thetaM=SIGN(thetaMax,Rjp*Rj)
psiP=d0+d1*thetaP
psiP=MAX(0. _d 0,MIN(MIN(1. _d 0,psiP),
& thetaP*(1. _d 0 -wCFL)/(wCFL+1. _d -20) ))
psiM=d0+d1*thetaM
psiM=MAX(0. _d 0,MIN(MIN(1. _d 0,psiM),
& thetaM*(1. _d 0 -wCFL)/(wCFL+1. _d -20) ))
wT(i,j)=
& 0.5*(rTrans(i,j)+ABS(rTrans(i,j)))
& *( tracer(i,j ) + psiM*Rj )
& +0.5*(rTrans(i,j)-ABS(rTrans(i,j)))
& *( tracer(i,j) - psiP*Rj )
ENDDO
ENDDO
RETURN
END