C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.147 2010/08/10 17:58:30 gforget Exp $
C $Name: $
#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"
#ifdef ALLOW_OBCS
# include "OBCS_OPTIONS.h"
#endif
#undef DYNAMICS_GUGV_EXCH_CHECK
CBOP
C !ROUTINE: DYNAMICS
C !INTERFACE:
SUBROUTINE DYNAMICS(myTime, myIter, myThid)
C !DESCRIPTION: \bv
C *==========================================================*
C | SUBROUTINE DYNAMICS
C | o Controlling routine for the explicit part of the model
C | dynamics.
C *==========================================================*
C | This routine evaluates the "dynamics" terms for each
C | block of ocean in turn. Because the blocks of ocean have
C | overlap regions they are independent of one another.
C | If terms involving lateral integrals are needed in this
C | routine care will be needed. Similarly finite-difference
C | operations with stencils wider than the overlap region
C | require special consideration.
C | The algorithm...
C |
C | "Correction Step"
C | =================
C | Here we update the horizontal velocities with the surface
C | pressure such that the resulting flow is either consistent
C | with the free-surface evolution or the rigid-lid:
C | U[n] = U* + dt x d/dx P
C | V[n] = V* + dt x d/dy P
C | W[n] = W* + dt x d/dz P (NH mode)
C |
C | "Calculation of Gs"
C | ===================
C | This is where all the accelerations and tendencies (ie.
C | physics, parameterizations etc...) are calculated
C | rho = rho ( theta[n], salt[n] )
C | b = b(rho, theta)
C | K31 = K31 ( rho )
C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
C |
C | "Time-stepping" or "Prediction"
C | ================================
C | The models variables are stepped forward with the appropriate
C | time-stepping scheme (currently we use Adams-Bashforth II)
C | - For momentum, the result is always *only* a "prediction"
C | in that the flow may be divergent and will be "corrected"
C | later with a surface pressure gradient.
C | - Normally for tracers the result is the new field at time
C | level [n+1} *BUT* in the case of implicit diffusion the result
C | is also *only* a prediction.
C | - We denote "predictors" with an asterisk (*).
C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C | With implicit diffusion:
C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C | (1 + dt * K * d_zz) theta[n] = theta*
C | (1 + dt * K * d_zz) salt[n] = salt*
C |
C *==========================================================*
C \ev
C !USES:
IMPLICIT NONE
C == Global variables ===
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "DYNVARS.h"
#ifdef ALLOW_CD_CODE
#include "CD_CODE_VARS.h"
#endif
#include "GRID.h"
#ifdef ALLOW_AUTODIFF_TAMC
# include "tamc.h"
# include "tamc_keys.h"
# include "FFIELDS.h"
# include "EOS.h"
# ifdef ALLOW_KPP
# include "KPP.h"
# endif
# ifdef ALLOW_PTRACERS
# include "PTRACERS_SIZE.h"
# include "PTRACERS_FIELDS.h"
# endif
# ifdef ALLOW_OBCS
# include "OBCS.h"
# ifdef ALLOW_PTRACERS
# include "OBCS_PTRACERS.h"
# endif
# endif
# ifdef ALLOW_MOM_FLUXFORM
# include "MOM_FLUXFORM.h"
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
C !CALLING SEQUENCE:
C DYNAMICS()
C |
C |-- CALC_EP_FORCING
C |
C |-- CALC_GRAD_PHI_SURF
C |
C |-- CALC_VISCOSITY
C |
C |-- CALC_PHI_HYD
C |
C |-- MOM_FLUXFORM
C |
C |-- MOM_VECINV
C |
C |-- TIMESTEP
C |
C |-- OBCS_APPLY_UV
C |
C |-- MOM_U_IMPLICIT_R
C |-- MOM_V_IMPLICIT_R
C |
C |-- IMPLDIFF
C |
C |-- OBCS_APPLY_UV
C |
C |-- CALC_GW
C |
C |-- DIAGNOSTICS_FILL
C |-- DEBUG_STATS_RL
C !INPUT/OUTPUT PARAMETERS:
C == Routine arguments ==
C myTime :: Current time in simulation
C myIter :: Current iteration number in simulation
C myThid :: Thread number for this instance of the routine.
_RL myTime
INTEGER myIter
INTEGER myThid
C !FUNCTIONS:
#ifdef ALLOW_DIAGNOSTICS
LOGICAL DIAGNOSTICS_IS_ON
EXTERNAL
#endif
C !LOCAL VARIABLES:
C == Local variables
C fVer[UV] o fVer: Vertical flux term - note fVer
C is "pipelined" in the vertical
C so we need an fVer for each
C variable.
C phiHydC :: hydrostatic potential anomaly at cell center
C In z coords phiHyd is the hydrostatic potential
C (=pressure/rho0) anomaly
C In p coords phiHyd is the geopotential height anomaly.
C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
C phiSurfY or geopotential (atmos) in X and Y direction
C guDissip :: dissipation tendency (all explicit terms), u component
C gvDissip :: dissipation tendency (all explicit terms), v component
C KappaRU :: vertical viscosity
C KappaRV :: vertical viscosity
C iMin, iMax - Ranges and sub-block indices on which calculations
C jMin, jMax are applied.
C bi, bj
C k, kup, - Index for layer above and below. kup and kDown
C kDown, km1 are switched with layer to be the appropriate
C index into fVerTerm.
_RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
_RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
_RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
_RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
_RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
_RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
INTEGER iMin, iMax
INTEGER jMin, jMax
INTEGER bi, bj
INTEGER i, j
INTEGER k, km1, kp1, kup, kDown
#ifdef ALLOW_DIAGNOSTICS
LOGICAL dPhiHydDiagIsOn
_RL tmpFac
#endif /* ALLOW_DIAGNOSTICS */
C--- The algorithm...
C
C "Correction Step"
C =================
C Here we update the horizontal velocities with the surface
C pressure such that the resulting flow is either consistent
C with the free-surface evolution or the rigid-lid:
C U[n] = U* + dt x d/dx P
C V[n] = V* + dt x d/dy P
C
C "Calculation of Gs"
C ===================
C This is where all the accelerations and tendencies (ie.
C physics, parameterizations etc...) are calculated
C rho = rho ( theta[n], salt[n] )
C b = b(rho, theta)
C K31 = K31 ( rho )
C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
C
C "Time-stepping" or "Prediction"
C ================================
C The models variables are stepped forward with the appropriate
C time-stepping scheme (currently we use Adams-Bashforth II)
C - For momentum, the result is always *only* a "prediction"
C in that the flow may be divergent and will be "corrected"
C later with a surface pressure gradient.
C - Normally for tracers the result is the new field at time
C level [n+1} *BUT* in the case of implicit diffusion the result
C is also *only* a prediction.
C - We denote "predictors" with an asterisk (*).
C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C With implicit diffusion:
C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C (1 + dt * K * d_zz) theta[n] = theta*
C (1 + dt * K * d_zz) salt[n] = salt*
C---
CEOP
#ifdef ALLOW_DEBUG
IF ( debugLevel .GE. debLevB )
& CALL DEBUG_ENTER( 'DYNAMICS', myThid )
#endif
#ifdef ALLOW_DIAGNOSTICS
dPhiHydDiagIsOn = .FALSE.
IF ( useDiagnostics )
& dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
& .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
#endif
C-- Call to routine for calculation of
C Eliassen-Palm-flux-forced U-tendency,
C if desired:
#ifdef INCLUDE_EP_FORCING_CODE
CALL CALC_EP_FORCING(myThid)
#endif
#ifdef ALLOW_AUTODIFF_TAMC
C-- HPF directive to help TAMC
CHPF$ INDEPENDENT
#endif /* ALLOW_AUTODIFF_TAMC */
DO bj=myByLo(myThid),myByHi(myThid)
#ifdef ALLOW_AUTODIFF_TAMC
C-- HPF directive to help TAMC
CHPF$ INDEPENDENT, NEW (fVerU,fVerV
CHPF$& ,phiHydF
CHPF$& ,KappaRU,KappaRV
CHPF$& )
#endif /* ALLOW_AUTODIFF_TAMC */
DO bi=myBxLo(myThid),myBxHi(myThid)
#ifdef ALLOW_AUTODIFF_TAMC
act1 = bi - myBxLo(myThid)
max1 = myBxHi(myThid) - myBxLo(myThid) + 1
act2 = bj - myByLo(myThid)
max2 = myByHi(myThid) - myByLo(myThid) + 1
act3 = myThid - 1
max3 = nTx*nTy
act4 = ikey_dynamics - 1
idynkey = (act1 + 1) + act2*max1
& + act3*max1*max2
& + act4*max1*max2*max3
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Set up work arrays with valid (i.e. not NaN) values
C These inital values do not alter the numerical results. They
C just ensure that all memory references are to valid floating
C point numbers. This prevents spurious hardware signals due to
C uninitialised but inert locations.
#ifdef ALLOW_AUTODIFF_TAMC
DO k=1,Nr
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
KappaRU(i,j,k) = 0. _d 0
KappaRV(i,j,k) = 0. _d 0
cph(
c-- need some re-initialisation here to break dependencies
cph)
gU(i,j,k,bi,bj) = 0. _d 0
gV(i,j,k,bi,bj) = 0. _d 0
ENDDO
ENDDO
ENDDO
#endif /* ALLOW_AUTODIFF_TAMC */
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
fVerU (i,j,1) = 0. _d 0
fVerU (i,j,2) = 0. _d 0
fVerV (i,j,1) = 0. _d 0
fVerV (i,j,2) = 0. _d 0
phiHydF (i,j) = 0. _d 0
phiHydC (i,j) = 0. _d 0
#ifndef INCLUDE_PHIHYD_CALCULATION_CODE
dPhiHydX(i,j) = 0. _d 0
dPhiHydY(i,j) = 0. _d 0
#endif
phiSurfX(i,j) = 0. _d 0
phiSurfY(i,j) = 0. _d 0
guDissip(i,j) = 0. _d 0
gvDissip(i,j) = 0. _d 0
#ifdef ALLOW_AUTODIFF_TAMC
phiHydLow(i,j,bi,bj) = 0. _d 0
# ifdef NONLIN_FRSURF
# ifndef DISABLE_RSTAR_CODE
dWtransC(i,j,bi,bj) = 0. _d 0
dWtransU(i,j,bi,bj) = 0. _d 0
dWtransV(i,j,bi,bj) = 0. _d 0
# endif
# endif
#endif
ENDDO
ENDDO
C-- Start computation of dynamics
iMin = 0
iMax = sNx+1
jMin = 0
jMax = sNy+1
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE wvel (:,:,:,bi,bj) =
CADJ & comlev1_bibj, key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
IF (implicSurfPress.NE.1.) THEN
CALL CALC_GRAD_PHI_SURF(
I bi,bj,iMin,iMax,jMin,jMax,
I etaN,
O phiSurfX,phiSurfY,
I myThid )
ENDIF
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
#ifdef ALLOW_KPP
CADJ STORE KPPviscAz (:,:,:,bi,bj)
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
#endif /* ALLOW_KPP */
#endif /* ALLOW_AUTODIFF_TAMC */
#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
C-- Calculate the total vertical viscosity
CALL CALC_VISCOSITY(
I bi,bj, iMin,iMax,jMin,jMax,
O KappaRU, KappaRV,
I myThid )
#else
DO k=1,Nr
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
KappaRU(i,j,k) = 0. _d 0
KappaRV(i,j,k) = 0. _d 0
ENDDO
ENDDO
ENDDO
#endif
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE KappaRU(:,:,:)
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
CADJ STORE KappaRV(:,:,:)
CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Start of dynamics loop
DO k=1,Nr
C-- km1 Points to level above k (=k-1)
C-- kup Cycles through 1,2 to point to layer above
C-- kDown Cycles through 2,1 to point to current layer
km1 = MAX(1,k-1)
kp1 = MIN(k+1,Nr)
kup = 1+MOD(k+1,2)
kDown= 1+MOD(k,2)
#ifdef ALLOW_AUTODIFF_TAMC
kkey = (idynkey-1)*Nr + k
c
CADJ STORE totphihyd (:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE phihydlow (:,:,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE theta (:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE salt (:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gt(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gs(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# ifdef NONLIN_FRSURF
cph-test
CADJ STORE phiHydC (:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE phiHydF (:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gudissip (:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gvdissip (:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fVerU (:,:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fVerV (:,:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gu(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gv(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gunm1(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gvnm1(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# ifdef ALLOW_CD_CODE
CADJ STORE unm1(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE vnm1(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE uVelD(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE vVelD(:,:,k,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# endif
# ifdef ALLOW_DEPTH_CONTROL
CADJ STORE fVerU (:,:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fVerV (:,:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Integrate hydrostatic balance for phiHyd with BC of
C phiHyd(z=0)=0
IF ( implicitIntGravWave ) THEN
CALL CALC_PHI_HYD(
I bi,bj,iMin,iMax,jMin,jMax,k,
I gT, gS,
U phiHydF,
O phiHydC, dPhiHydX, dPhiHydY,
I myTime, myIter, myThid )
ELSE
CALL CALC_PHI_HYD(
I bi,bj,iMin,iMax,jMin,jMax,k,
I theta, salt,
U phiHydF,
O phiHydC, dPhiHydX, dPhiHydY,
I myTime, myIter, myThid )
ENDIF
#ifdef ALLOW_DIAGNOSTICS
IF ( dPhiHydDiagIsOn ) THEN
tmpFac = -1. _d 0
CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
& 'Um_dPHdx', k, 1, 2, bi, bj, myThid )
CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
& 'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
ENDIF
#endif /* ALLOW_DIAGNOSTICS */
C-- Calculate accelerations in the momentum equations (gU, gV, ...)
C and step forward storing the result in gU, gV, etc...
IF ( momStepping ) THEN
#ifdef ALLOW_AUTODIFF_TAMC
# ifdef NONLIN_FRSURF
# ifndef DISABLE_RSTAR_CODE
CADJ STORE dWtransC(:,:,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE dWtransU(:,:,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE dWtransV(:,:,bi,bj)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# endif
#endif
IF (.NOT. vectorInvariantMomentum) THEN
#ifdef ALLOW_MOM_FLUXFORM
C
CALL MOM_FLUXFORM(
I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
I KappaRU, KappaRV,
U fVerU, fVerV,
O guDissip, gvDissip,
I myTime, myIter, myThid)
#endif
ELSE
#ifdef ALLOW_MOM_VECINV
C
# ifdef ALLOW_AUTODIFF_TAMC
# ifdef NONLIN_FRSURF
CADJ STORE fVerU(:,:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fVerV(:,:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# endif /* ALLOW_AUTODIFF_TAMC */
C
CALL MOM_VECINV(
I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
I KappaRU, KappaRV,
U fVerU, fVerV,
O guDissip, gvDissip,
I myTime, myIter, myThid)
#endif
ENDIF
C
CALL TIMESTEP(
I bi,bj,iMin,iMax,jMin,jMax,k,
I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
I guDissip, gvDissip,
I myTime, myIter, myThid)
#ifdef ALLOW_OBCS
C-- Apply open boundary conditions
IF (useOBCS) THEN
CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
ENDIF
#endif /* ALLOW_OBCS */
ENDIF
C-- end of dynamics k loop (1:Nr)
ENDDO
C-- Implicit Vertical advection & viscosity
#if (defined (INCLUDE_IMPLVERTADV_CODE)
defined (ALLOW_MOM_COMMON) !(defined ALLOW_AUTODIFF_TAMC))
IF ( momImplVertAdv ) THEN
CALL MOM_U_IMPLICIT_R( kappaRU,
I bi, bj, myTime, myIter, myThid )
CALL MOM_V_IMPLICIT_R( kappaRV,
I bi, bj, myTime, myIter, myThid )
ELSEIF ( implicitViscosity ) THEN
#else /* INCLUDE_IMPLVERTADV_CODE */
IF ( implicitViscosity ) THEN
#endif /* INCLUDE_IMPLVERTADV_CODE */
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I -1, KappaRU,recip_HFacW,
U gU,
I myThid )
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I -2, KappaRV,recip_HFacS,
U gV,
I myThid )
ENDIF
#ifdef ALLOW_OBCS
C-- Apply open boundary conditions
IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
DO K=1,Nr
CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
ENDDO
ENDIF
#endif /* ALLOW_OBCS */
#ifdef ALLOW_CD_CODE
IF (implicitViscosity.AND.useCDscheme) THEN
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I 0, KappaRU,recip_HFacW,
U vVelD,
I myThid )
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I 0, KappaRV,recip_HFacS,
U uVelD,
I myThid )
ENDIF
#endif /* ALLOW_CD_CODE */
C-- End implicit Vertical advection & viscosity
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
#ifdef ALLOW_NONHYDROSTATIC
C-- Step forward W field in N-H algorithm
IF ( nonHydrostatic ) THEN
#ifdef ALLOW_DEBUG
IF ( debugLevel .GE. debLevB )
& CALL DEBUG_CALL('CALC_GW', myThid )
#endif
CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
CALL CALC_GW(
I bi,bj, KappaRU, KappaRV,
I myTime, myIter, myThid )
ENDIF
IF ( nonHydrostatic.OR.implicitIntGravWave )
& CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
IF ( nonHydrostatic )
& CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
#endif
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
C- end of bi,bj loops
ENDDO
ENDDO
#ifdef ALLOW_OBCS
IF (useOBCS) THEN
CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
ENDIF
#endif
Cml(
C In order to compare the variance of phiHydLow of a p/z-coordinate
C run with etaH of a z/p-coordinate run the drift of phiHydLow
C has to be removed by something like the following subroutine:
C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
C & 'phiHydLow', myTime, myThid )
Cml)
#ifdef ALLOW_DIAGNOSTICS
IF ( useDiagnostics ) THEN
CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
tmpFac = 1. _d 0
CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
& 'PHIHYDSQ',0,Nr,0,1,1,myThid)
CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
& 'PHIBOTSQ',0, 1,0,1,1,myThid)
ENDIF
#endif /* ALLOW_DIAGNOSTICS */
#ifdef ALLOW_DEBUG
If ( debugLevel .GE. debLevB ) THEN
CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
#ifndef ALLOW_ADAMSBASHFORTH_3
CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
#endif
ENDIF
#endif
#ifdef DYNAMICS_GUGV_EXCH_CHECK
C- jmc: For safety checking only: This Exchange here should not change
C the solution. If solution changes, it means something is wrong,
C but it does not mean that it is less wrong with this exchange.
IF ( debugLevel .GT. debLevB ) THEN
CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
ENDIF
#endif
#ifdef ALLOW_DEBUG
IF ( debugLevel .GE. debLevB )
& CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
#endif
RETURN
END