C $Header: /u/gcmpack/MITgcm/model/src/calc_gt.F,v 1.56 2010/09/15 03:41:59 heimbach Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" CBOP C !ROUTINE: CALC_GT C !INTERFACE: SUBROUTINE CALC_GT( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, I xA, yA, maskUp, uFld, vFld, wFld, I uTrans, vTrans, rTrans, rTransKp1, I KappaRT, U fVerT, I myTime,myIter,myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE CALC_GT C | o Calculate the temperature tendency terms. C *==========================================================* C | A procedure called EXTERNAL_FORCING_T is called from C | here. These procedures can be used to add per problem C | heat flux source terms. C | Note: Although it is slightly counter-intuitive the C | EXTERNAL_FORCING routine is not the place to put C | file I/O. Instead files that are required to C | calculate the external source terms are generally C | read during the model main loop. This makes the C | logisitics of multi-processing simpler and also C | makes the adjoint generation simpler. It also C | allows for I/O to overlap computation where that C | is supported by hardware. C | Aside from the problem specific term the code here C | forms the tendency terms due to advection and mixing C | The baseline implementation here uses a centered C | difference form for the advection term and a tensorial C | divergence of a flux form for the diffusive term. The C | diffusive term is formulated so that isopycnal mixing and C | GM-style subgrid-scale terms can be incorporated b simply C | setting the diffusion tensor terms appropriately. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == GLobal variables == #include "SIZE.h" #include "DYNVARS.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "RESTART.h" #ifdef ALLOW_GENERIC_ADVDIFF #include "GAD.h" #endif #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" #endif C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C bi, bj, :: tile indices C iMin,iMax :: loop range for called routines C jMin,jMax :: loop range for called routines C k :: vertical index C kM1 :: =k-1 for k>1, =1 for k=1 C kUp :: index into 2 1/2D array, toggles between 1|2 C kDown :: index into 2 1/2D array, toggles between 2|1 C xA :: Tracer cell face area normal to X C yA :: Tracer cell face area normal to X C maskUp :: Land mask used to denote base of the domain. C uFld,vFld :: Local copy of horizontal velocity field C wFld :: Local copy of vertical velocity field C uTrans :: Zonal volume transport through cell face C vTrans :: Meridional volume transport through cell face C rTrans :: Vertical volume transport at interface k C rTransKp1 :: Vertical volume transport at inteface k+1 C KappaRT :: Vertical diffusion for Tempertature C fVerT :: Flux of temperature (T) in the vertical direction C at the upper(U) and lower(D) faces of a cell. C myTime :: current time C myIter :: current iteration number C myThid :: my Thread Id. number INTEGER bi,bj,iMin,iMax,jMin,jMax INTEGER k,kUp,kDown,kM1 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL wFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTransKp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KappaRT(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL myTime INTEGER myIter INTEGER myThid CEOP #ifdef ALLOW_GENERIC_ADVDIFF C === Local variables === LOGICAL calcAdvection INTEGER iterNb #ifdef ALLOW_ADAMSBASHFORTH_3 INTEGER m1, m2 #endif #ifdef ALLOW_AUTODIFF_TAMC act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 act3 = myThid - 1 max3 = nTx*nTy act4 = ikey_dynamics - 1 itdkey = (act1 + 1) + act2*max1 & + act3*max1*max2 & + act4*max1*max2*max3 kkey = (itdkey-1)*Nr + k #endif /* ALLOW_AUTODIFF_TAMC */ #ifdef ALLOW_AUTODIFF_TAMC C-- only the kUp part of fverT is set in this subroutine C-- the kDown is still required fVerT(1,1,kDown) = fVerT(1,1,kDown) # ifdef NONLIN_FRSURF CADJ STORE fVerT(:,:,:) = CADJ & comlev1_bibj_k, key=kkey, byte=isbyte, CADJ & kind = isbyte # ifndef ALLOW_ADAMSBASHFORTH_3 CADJ STORE gtNm1(:,:,k,bi,bj) = CADJ & comlev1_bibj_k, key=kkey, byte=isbyte, CADJ & kind = isbyte else CADJ STORE gt(:,:,k,bi,bj) = CADJ & comlev1_bibj_k, key=kkey, byte=isbyte, CADJ & kind = isbyte CADJ STORE gtNm(:,:,k,bi,bj,1) = CADJ & comlev1_bibj_k, key=kkey, byte=isbyte, CADJ & kind = isbyte CADJ STORE gtNm(:,:,k,bi,bj,2) = CADJ & comlev1_bibj_k, key=kkey, byte=isbyte, CADJ & kind = isbyte # endif # endif #endif C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| calcAdvection = tempAdvection .AND. .NOT.tempMultiDimAdvec iterNb = myIter IF (staggerTimeStep) iterNb = myIter -1 #ifdef ALLOW_ADAMSBASHFORTH_3 m1 = 1 + MOD(iterNb+1,2) m2 = 1 + MOD( iterNb ,2) CALL GAD_CALC_RHS( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, I xA, yA, maskUp, uFld, vFld, wFld, I uTrans, vTrans, rTrans, rTransKp1, I diffKhT, diffK4T, KappaRT, I gtNm(1-Olx,1-Oly,1,1,1,m2), theta, dTtracerLev, I GAD_TEMPERATURE, tempAdvScheme, tempVertAdvScheme, I calcAdvection, tempImplVertAdv, AdamsBashforth_T, I useGMRedi, useKPP, U fVerT, gT, I myTime, myIter, myThid ) #else /* ALLOW_ADAMSBASHFORTH_3 */ CALL GAD_CALC_RHS( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, I xA, yA, maskUp, uFld, vFld, wFld, I uTrans, vTrans, rTrans, rTransKp1, I diffKhT, diffK4T, KappaRT, gtNm1, theta, dTtracerLev, I GAD_TEMPERATURE, tempAdvScheme, tempVertAdvScheme, I calcAdvection, tempImplVertAdv, AdamsBashforth_T, I useGMRedi, useKPP, U fVerT, gT, I myTime, myIter, myThid ) #endif C-- External thermal forcing term(s) inside Adams-Bashforth: IF ( tempForcing .AND. tracForcingOutAB.NE.1 ) & CALL EXTERNAL_FORCING_T( I iMin,iMax,jMin,jMax,bi,bj,k, I myTime,myThid) IF ( AdamsBashforthGt ) THEN #ifdef ALLOW_ADAMSBASHFORTH_3 CALL ADAMS_BASHFORTH3( I bi, bj, k, U gT, gtNm, I tempStartAB, iterNb, myThid ) #else CALL ADAMS_BASHFORTH2( I bi, bj, k, U gT, gtNm1, I tempStartAB, iterNb, myThid ) #endif ENDIF C-- External thermal forcing term(s) outside Adams-Bashforth: IF ( tempForcing .AND. tracForcingOutAB.EQ.1 ) & CALL EXTERNAL_FORCING_T( I iMin,iMax,jMin,jMax,bi,bj,k, I myTime,myThid) #ifdef NONLIN_FRSURF IF (nonlinFreeSurf.GT.0) THEN CALL FREESURF_RESCALE_G( I bi, bj, k, U gT, I myThid ) IF ( AdamsBashforthGt ) THEN #ifdef ALLOW_ADAMSBASHFORTH_3 # ifdef ALLOW_AUTODIFF_TAMC CADJ STORE gtNm(:,:,k,bi,bj,1) = CADJ & comlev1_bibj_k, key=kkey, byte=isbyte, CADJ & kind = isbyte CADJ STORE gtNm(:,:,k,bi,bj,2) = CADJ & comlev1_bibj_k, key=kkey, byte=isbyte, CADJ & kind = isbyte # endif CALL FREESURF_RESCALE_G( I bi, bj, k, U gtNm(1-Olx,1-Oly,1,1,1,1), I myThid ) CALL FREESURF_RESCALE_G( I bi, bj, k, U gtNm(1-Olx,1-Oly,1,1,1,2), I myThid ) #else CALL FREESURF_RESCALE_G( I bi, bj, k, U gtNm1, I myThid ) #endif ENDIF ENDIF #endif /* NONLIN_FRSURF */ #endif /* ALLOW_GENERIC_ADVDIFF */ RETURN END