C $Header: /u/gcmpack/MITgcm/pkg/kpp/kpp_forcing_surf.F,v 1.5 2009/11/21 01:27:07 dimitri Exp $
C $Name:  $

#include "KPP_OPTIONS.h"

CBOP
C !ROUTINE: KPP_FORCING_SURF

C !INTERFACE: ==========================================================
      SUBROUTINE KPP_FORCING_SURF(
     I     rhoSurf, surfForcU, surfForcV,
     I     surfForcT, surfForcS, surfForcTice, 
     I     Qsw, 
#ifdef ALLOW_SALT_PLUME
     I     saltPlumeFlux,
#endif /* ALLOW_SALT_PLUME */
     I     ttalpha, ssbeta,  
     O     ustar, bo, bosol, 
#ifdef ALLOW_SALT_PLUME
     O     boplume,
#endif /* ALLOW_SALT_PLUME */
     O     dVsq,
     I     ikppkey, iMin, iMax, jMin, jMax, bi, bj, myTime, myThid )

C !DESCRIPTION: \bv
C     /==========================================================\
C     | SUBROUTINE KPP_FORCING_SURF                              |
C     | o Compute all surface related KPP fields:                |
C     |   - friction velocity ustar                              |
C     |   - turbulent and radiative surface buoyancy forcing,    |
C     |     bo and bosol, and surface haline buoyancy forcing    |
C     |     boplume                                              |
C     |   - velocity shear relative to surface squared (this is  |
C     |     not really a surface affected quantity unless it is  |
C     |     computed with respect to some resolution independent |
C     |     reference level, that is KPP_ESTIMATE_UREF defined ) |
C     |==========================================================|
C     \==========================================================/
      IMPLICIT NONE

c     taux / rho = surfForcU                               (N/m^2)
c     tauy / rho = surfForcV                               (N/m^2)
c     ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho )        (m/s)
c     bo    = - g * ( alpha*surfForcT +
c                     beta *surfForcS ) / rho              (m^2/s^3)
c     bosol = - g * alpha * Qsw * drF(1) / rho             (m^2/s^3)
c     boplume = g * ( beta *saltPlumeFlux/rhoConst )/rho   (m^2/s^3) 
c------------------------------------------------------------------------

c \ev

C !USES: ===============================================================
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "GRID.h"
#include "DYNVARS.h"
#include "KPP_PARAMS.h"

C !INPUT PARAMETERS: ===================================================
C Routine arguments
C     ikppkeyb - key for storing trajectory for adjoint (taf)
c     imin, imax, jmin, jmax  - array computation indices
C     bi, bj - array indices on which to apply calculations
C     myTime - Current time in simulation
C     myThid - Current thread id
c     rhoSurf- density of surface layer                            (kg/m^3)
C     surfForcU     units are  r_unit.m/s^2 (=m^2/s^2 if r=z)
C     surfForcV     units are  r_unit.m/s^2 (=m^2/s^-2 if r=z)
C     surfForcS     units are  r_unit.psu/s (=psu.m/s if r=z)
C            - EmPmR * S_surf plus salinity relaxation*drF(1)
C     surfForcT     units are  r_unit.Kelvin/s (=Kelvin.m/s if r=z)
C            - Qnet (+Qsw) plus temp. relaxation*drF(1)
C                -> calculate        -lambda*(T(model)-T(clim))
C            Qnet assumed to be net heat flux including ShortWave rad.
C     surfForcTice
C            - equivalent Temperature flux in the top level that corresponds
C              to the melting or freezing of sea-ice.
C              Note that the surface level temperature is modified
C              directly by the sea-ice model in order to maintain
C              water temperature under sea-ice at the freezing
C              point.  But we need to keep track of the
C              equivalent amount of heat that this surface-level
C              temperature change implies because it is used by
C              the KPP package (kpp_calc.F and kpp_transport_t.F).
C              Units are r_unit.K/s (=Kelvin.m/s if r=z) (>0 for ocean warming).
C
C     Qsw     - surface shortwave radiation (upwards positive)
C     saltPlumeFlux - salt rejected during freezing (downward = positive)
C     ttalpha - thermal expansion coefficient without 1/rho factor
C               d(rho{k,k})/d(T(k))                           (kg/m^3/C)
C     ssbeta  - salt expansion coefficient without 1/rho factor
C               d(rho{k,k})/d(S(k))                         (kg/m^3/PSU)
C !OUTPUT PARAMETERS: 
C     ustar  (nx,ny)       - surface friction velocity                  (m/s)
C     bo     (nx,ny)       - surface turbulent buoyancy forcing     (m^2/s^3)
C     bosol  (nx,ny)       - surface radiative buoyancy forcing     (m^2/s^3)
C     boplume(nx,ny)       - surface haline buoyancy forcing        (m^2/s^3)
C     dVsq   (nx,ny,Nr)    - velocity shear re surface squared
C                            at grid levels for bldepth             (m^2/s^2)

      INTEGER ikppkey
      INTEGER iMin, iMax, jMin, jMax
      INTEGER bi, bj
      INTEGER myThid
      _RL     myTime

      _RL rhoSurf     (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
      _RL surfForcU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
      _RL surfForcV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
      _RL surfForcT   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
      _RL surfForcS   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
      _RL surfForcTice(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
      _RS Qsw         (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
      _RL TTALPHA     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1)
      _RL SSBETA      (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1)

      _RL ustar ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )
      _RL bo    ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )
      _RL bosol ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )
#ifdef ALLOW_SALT_PLUME
      _RL saltPlumeFlux   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
      _RL boplume(1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )
#endif /* ALLOW_SALT_PLUME */
      _RL dVsq  ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr            )

C !LOCAL VARIABLES: ====================================================
c Local constants
c     minusone, p0, p5, p25, p125, p0625
      _RL        p0    , p5    , p125      
      parameter( p0=0.0, p5=0.5, p125=0.125 )
      integer i, j, k, im1, ip1, jm1, jp1
      _RL tempvar2

      _RL work3 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )

#ifdef KPP_ESTIMATE_UREF
      _RL tempvar1, dBdz1, dBdz2, ustarX, ustarY
      _RL z0    ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )
      _RL zRef  ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )
      _RL uRef  ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )
      _RL vRef  ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy                )
#endif
CEOP

c------------------------------------------------------------------------
c     friction velocity, turbulent and radiative surface buoyancy forcing
c     -------------------------------------------------------------------
c     taux / rho = surfForcU                               (N/m^2)
c     tauy / rho = surfForcV                               (N/m^2)
c     ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho )        (m/s)
c     bo    = - g * ( alpha*surfForcT +
c                     beta *surfForcS ) / rho            (m^2/s^3)
c     bosol = - g * alpha * Qsw * drF(1) / rho           (m^2/s^3)
c     boplume = g * ( beta *saltPlumeFlux/rhoConst )/rho (m^2/s^3)
c------------------------------------------------------------------------

c initialize arrays to zero
      DO j = 1-OLy, sNy+OLy
         DO i = 1-OLx, sNx+OLx
            ustar(i,j) = p0
            bo   (I,J) = p0
            bosol(I,J) = p0
#ifdef ALLOW_SALT_PLUME
            boplume(I,J) = p0
#endif /* ALLOW_SALT_PLUME */
         END


DO END


DO DO j = jmin, jmax jp1 = j + 1 DO i = imin, imax ip1 = i+1 work3(i,j) = & (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) * & (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) + & (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj)) * & (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj)) END


DO END


DO cph( CADJ store work3 = comlev1_kpp, key = ikppkey cph) DO j = jmin, jmax jp1 = j + 1 DO i = imin, imax ip1 = i+1 if ( work3(i,j) .lt. (phepsi*phepsi*drF(1)*drF(1)) ) then ustar(i,j) = SQRT( phepsi * p5 * drF(1) ) else tempVar2 = SQRT( work3(i,j) ) * p5 ustar(i,j) = SQRT( tempVar2 ) endif END


DO END


DO DO j = jmin, jmax jp1 = j + 1 DO i = imin, imax ip1 = i+1 bo(I,J) = - gravity * & ( TTALPHA(I,J,1) * (surfForcT(i,j,bi,bj)+ & surfForcTice(i,j,bi,bj)) + & SSBETA(I,J,1) * surfForcS(i,j,bi,bj) ) & / rhoSurf(I,J) bosol(I,J) = gravity * TTALPHA(I,J,1) * Qsw(i,j,bi,bj) * & recip_Cp*recip_rhoConst & / rhoSurf(I,J) END


DO END


DO #ifdef ALLOW_SALT_PLUME IF ( useSALT_PLUME ) THEN DO j = jmin, jmax jp1 = j + 1 DO i = imin, imax ip1 = i+1 boplume(I,J) = - gravity * SSBETA(I,J,1) & * saltPlumeFlux(i,j,bi,bj) & * recip_rhoConst / rhoSurf(I,J) END


DO END


DO ENDIF #endif /* ALLOW_SALT_PLUME */ cph( CADJ store ustar = comlev1_kpp, key = ikppkey cph) #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(bo ,'KPPbo ',0,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(bosol ,'KPPbosol',0,1,2,bi,bj,myThid) #ifdef ALLOW_SALT_PLUME CALL DIAGNOSTICS_FILL(boplume,'KPPboplm',0,1,2,bi,bj,myThid) #endif /* ALLOW_SALT_PLUME */ ENDIF #endif /* ALLOW_DIAGNOSTICS */ c------------------------------------------------------------------------ c velocity shear c -------------- c Get velocity shear squared, averaged from "u,v-grid" c onto "t-grid" (in (m/s)**2): c dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels c------------------------------------------------------------------------ c initialize arrays to zero DO k = 1, Nr DO j = 1-OLy, sNy+OLy DO i = 1-OLx, sNx+OLx dVsq(i,j,k) = p0 END


DO END


DO END


DO c dVsq computation #ifdef KPP_ESTIMATE_UREF c Get rid of vertical resolution dependence of dVsq term by c estimating a surface velocity that is independent of first level c thickness in the model. First determine mixed layer depth hMix. c Second zRef = espilon * hMix. Third determine roughness length c scale z0. Third estimate reference velocity. DO j = jmin, jmax jp1 = j + 1 DO i = imin, imax ip1 = i + 1 c Determine mixed layer depth hMix as the shallowest depth at which c dB/dz exceeds 5.2e-5 s^-2. work1(i,j) = nzmax(i,j,bi,bj) DO k = 1, Nr IF ( k .LT. nzmax(i,j,bi,bj) .AND. & maskC(I,J,k,bi,bj) .GT. 0. .AND. & dbloc(i,j,k) / drC(k+1) .GT. dB_dz ) & work1(i,j) = k ENDDO c Linearly interpolate to find hMix. k = work1(i,j) IF ( k .EQ. 0 .OR. nzmax(i,j,bi,bj) .EQ. 1 ) THEN zRef(i,j) = p0 ELSEIF ( k .EQ. 1) THEN dBdz2 = dbloc(i,j,1) / drC(2) zRef(i,j) = drF(1) * dB_dz / dBdz2 ELSEIF ( k .LT. nzmax(i,j,bi,bj) ) THEN dBdz1 = dbloc(i,j,k-1) / drC(k ) dBdz2 = dbloc(i,j,k ) / drC(k+1) zRef(i,j) = rF(k) + drF(k) * (dB_dz - dBdz1) / & MAX ( phepsi, dBdz2 - dBdz1 ) ELSE zRef(i,j) = rF(k+1) ENDIF c Compute roughness length scale z0 subject to 0 < z0 tempVar1 = p5 * ( & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) * & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) + & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) * & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) + & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) * & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) + & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) * & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) ) IF ( tempVar1 .lt. (epsln*epsln) ) THEN tempVar2 = epsln ELSE tempVar2 = SQRT ( tempVar1 ) ENDIF z0(i,j) = rF(2) * & ( rF(3) * LOG ( rF(3) / rF(2) ) / & ( rF(3) - rF(2) ) - & tempVar2 * vonK / & MAX ( ustar(i,j), phepsi ) ) z0(i,j) = MAX ( z0(i,j), phepsi ) c zRef is set to 0.1 * hMix subject to z0 <= zRef <= drF(1) zRef(i,j) = MAX ( epsilon * zRef(i,j), z0(i,j) ) zRef(i,j) = MIN ( zRef(i,j), drF(1) ) c Estimate reference velocity uRef and vRef. uRef(i,j) = p5 * ( uVel(i,j,1,bi,bj) + uVel(ip1,j,1,bi,bj) ) vRef(i,j) = p5 * ( vVel(i,j,1,bi,bj) + vVel(i,jp1,1,bi,bj) ) IF ( zRef(i,j) .LT. drF(1) ) THEN ustarX = ( surfForcU(i, j,bi,bj) + & surfForcU(ip1,j,bi,bj) ) * p5 *recip_drF(1) ustarY = ( surfForcV(i,j, bi,bj) + & surfForcV(i,jp1,bi,bj) ) * p5 *recip_drF(1) tempVar1 = ustarX * ustarX + ustarY * ustarY if ( tempVar1 .lt. (epsln*epsln) ) then tempVar2 = epsln else tempVar2 = SQRT ( tempVar1 ) endif tempVar2 = ustar(i,j) * & ( LOG ( zRef(i,j) / rF(2) ) + & z0(i,j) / zRef(i,j) - z0(i,j) / rF(2) ) / & vonK / tempVar2 uRef(i,j) = uRef(i,j) + ustarX * tempVar2 vRef(i,j) = vRef(i,j) + ustarY * tempVar2 ENDIF ENDDO ENDDO DO k = 1, Nr DO j = jmin, jmax jm1 = j - 1 jp1 = j + 1 DO i = imin, imax im1 = i - 1 ip1 = i + 1 dVsq(i,j,k) = p5 * ( $ (uRef(i,j) - uVel(i, j, k,bi,bj)) * $ (uRef(i,j) - uVel(i, j, k,bi,bj)) + $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) * $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) + $ (vRef(i,j) - vVel(i, j, k,bi,bj)) * $ (vRef(i,j) - vVel(i, j, k,bi,bj)) + $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) * $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) ) #ifdef KPP_SMOOTH_DVSQ dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * ( $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) * $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) + $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) * $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) + $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) * $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) + $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) * $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) + $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) * $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) + $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) * $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) + $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) * $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) + $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) * $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) ) #endif /* KPP_SMOOTH_DVSQ */ ENDDO ENDDO ENDDO #else /* KPP_ESTIMATE_UREF */ DO k = 1, Nr DO j = jmin, jmax jm1 = j - 1 jp1 = j + 1 DO i = imin, imax im1 = i - 1 ip1 = i + 1 dVsq(i,j,k) = p5 * ( $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) * $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) + $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) * $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) + $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) * $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) + $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) * $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) ) #ifdef KPP_SMOOTH_DVSQ dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * ( $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) * $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) + $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) * $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) + $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) * $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) + $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) * $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) + $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) * $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) + $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) * $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) + $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) * $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) + $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) * $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) ) #endif /* KPP_SMOOTH_DVSQ */ ENDDO ENDDO ENDDO #endif /* KPP_ESTIMATE_UREF */ RETURN END