C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_calc_hdiv.F,v 1.3 2006/06/07 01:55:14 heimbach Exp $
C $Name: $
#include "MOM_COMMON_OPTIONS.h"
SUBROUTINE MOM_CALC_HDIV(
I bi,bj,k, hDivScheme,
I uFld, vFld,
O hDiv,
I myThid)
IMPLICIT NONE
C /==========================================================\
C | S/R MOM_CALC_HDIV |
C |==========================================================|
C \==========================================================/
C == Global variables ==
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "GRID.h"
C == Routine arguments ==
C myThid - Instance number for this innvocation of CALC_MOM_RHS
INTEGER bi,bj,k,hDivScheme
_RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
INTEGER myThid
C == Local variables ==
INTEGER i,j
IF (hDivScheme.EQ.1) THEN
DO J=1-Oly,sNy+Oly-1
DO I=1-Olx,sNx+Olx-1
C This discretization is the straight forward horizontal divergence
C that only considers the horizontal grid variations.
hDiv(I,J)=(
& uFld(i+1, j )*dyg(i+1, j ,bi,bj)
& -uFld( i , j )*dyg( i , j ,bi,bj)
& +vFld( i ,j+1)*dxg( i ,j+1,bi,bj)
& -vFld( i , j )*dxg( i , j ,bi,bj)
& )*recip_rA(I,J,bi,bj)
ENDDO
ENDDO
ELSEIF (hDivScheme.EQ.2) THEN
DO J=1-Oly,sNy+Oly-1
DO I=1-Olx,sNx+Olx-1
C This discretization takes into account the fractional areas
C due to the lopping. Whether we should do this is not clear!
hDiv(I,J)=
& ( ( uFld(i+1, j )*dyg(i+1, j ,bi,bj)*hFacW(i+1, j ,K,bi,bj)
& -uFld( i , j )*dyg( i , j ,bi,bj)*hFacW( i , j ,K,bi,bj) )
& +( vFld( i ,j+1)*dxg( i ,j+1,bi,bj)*hFacS( i ,j+1,K,bi,bj)
& -vFld( i , j )*dxg( i , j ,bi,bj)*hFacS( i , j ,K,bi,bj) )
& )*recip_rA(I,J,bi,bj)
& *_recip_hFacC(i,j,k,bi,bj)
ENDDO
ENDDO
ELSE
STOP 'S/R MOM_CALC_HDIV: We should never reach this point!'
ENDIF
RETURN
END