C $Header: /u/gcmpack/MITgcm/model/src/pre_cg3d.F,v 1.2 2010/01/23 00:04:03 jmc Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" CBOP C !ROUTINE: PRE_CG3D C !INTERFACE: SUBROUTINE PRE_CG3D( I oldFreeSurfTerm, I cg2d_x, U cg3d_b, I myTime, myIter, myThid ) C !DESCRIPTION: C Called from SOLVE_FOR_PRESSURE, before 3-D solver (cg3d): C Finish calculation of 3-D RHS after 2-D inversionis done. C !USES: IMPLICIT NONE C == Global variables #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "SURFACE.h" #include "FFIELDS.h" #include "DYNVARS.h" #ifdef ALLOW_NONHYDROSTATIC #include "NH_VARS.h" #endif #ifdef ALLOW_OBCS #include "OBCS.h" #endif C === Functions ==== c LOGICAL DIFFERENT_MULTIPLE c EXTERNAL DIFFERENT_MULTIPLE C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C oldFreeSurfTerm :: Treat free-surface term in the old way (no exactConserv) C cg2d_x :: Solution vector of the 2-D solver equation a.x=b C cg3d_b :: Right Hand side vector of the 3-D solver equation A.X=B C myTime :: Current time in simulation C myIter :: Current iteration number in simulation C myThid :: My Thread Id number LOGICAL oldFreeSurfTerm _RL cg2d_x(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL cg3d_b(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) _RL myTime INTEGER myIter INTEGER myThid #ifdef ALLOW_NONHYDROSTATIC C !LOCAL VARIABLES: C == Local variables == INTEGER i,j,k,bi,bj INTEGER ks, kp1 c CHARACTER*10 sufx c CHARACTER*(MAX_LEN_MBUF) msgBuf _RL tmpFac, tmpSurf _RL wFacKm, wFacKp _RL uf(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL vf(1-Olx:sNx+Olx,1-Oly:sNy+Oly) #ifdef NONLIN_FRSURF _RL tmpVar(1-Olx:sNx+Olx,1-Oly:sNy+Oly) #endif CEOP c IF ( use3Dsolver ) THEN C-- Solve for a three-dimensional pressure term (NH or IGW or both ). C see CG3D.h for the interface to this routine. DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) C-- Add EmPmR contribution to top level cg3d_b: C (has been done for cg2d_b ; and addMass was added by CALC_DIV_GHAT) IF ( useRealFreshWaterFlux.AND.fluidIsWater ) THEN tmpFac = freeSurfFac*mass2rUnit IF (exactConserv) & tmpFac = freeSurfFac*mass2rUnit*implicDiv2DFlow ks = 1 IF ( usingPCoords ) ks = Nr DO j=1,sNy DO i=1,sNx cg3d_b(i,j,ks,bi,bj) = cg3d_b(i,j,ks,bi,bj) & + tmpFac*_rA(i,j,bi,bj)*EmPmR(i,j,bi,bj)/deltaTMom ENDDO ENDDO ENDIF C-- Update or Add free-surface contribution to cg3d_b: c IF ( select_rStar.EQ.0 .AND. exactConserv ) THEN IF ( select_rStar.EQ.0 .AND. .NOT.oldFreeSurfTerm ) THEN tmpFac = 0. DO j=1,sNy DO i=1,sNx IF ( selectNHfreeSurf.GE.1 ) THEN tmpSurf = deltaTMom*deltaTfreesurf & *Bo_surf(i,j,bi,bj)*recip_drC(1) & *implicitNHPress*implicDiv2DFlow tmpSurf = ( tmpSurf*( etaN(i,j,bi,bj)-etaH(i,j,bi,bj) ) & +implicDiv2DFlow*deltaTfreesurf c & *(wVel(i,j,1,bi,bj)+PmE) & *wVel(i,j,1,bi,bj) & )/(1. _d 0 + tmpSurf ) ELSE tmpSurf = etaN(i,j,bi,bj)-etaH(i,j,bi,bj) ENDIF ks = ksurfC(i,j,bi,bj) IF ( ks.LE.Nr ) THEN cg3d_b(i,j,ks,bi,bj) = cg3d_b(i,j,ks,bi,bj) & +freeSurfFac*tmpSurf c & +freeSurfFac*(etaN(i,j,bi,bj)-etaH(i,j,bi,bj)) & *_rA(i,j,bi,bj)*deepFac2F(ks) & /deltaTMom/deltaTfreesurf ENDIF ENDDO ENDDO #ifdef NONLIN_FRSURF ELSEIF ( select_rStar.NE.0 ) THEN tmpFac = 0. DO j=1,sNy DO i=1,sNx ks = ksurfC(i,j,bi,bj) tmpVar(i,j) = freeSurfFac & *( etaN(i,j,bi,bj) - etaH(i,j,bi,bj) ) & *_rA(i,j,bi,bj)*deepFac2F(ks) & /deltaTMom/deltaTfreesurf & *recip_Rcol(i,j,bi,bj) ENDDO ENDDO DO k=1,Nr DO j=1,sNy DO i=1,sNx cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) & + tmpVar(i,j)*drF(k)*h0FacC(i,j,k,bi,bj) ENDDO ENDDO ENDDO #endif /* NONLIN_FRSURF */ ELSEIF ( usingZCoords ) THEN C- Z coordinate: assume surface @ level k=1 tmpFac = freeSurfFac*deepFac2F(1) ELSE C- Other than Z coordinate: no assumption on surface level index tmpFac = 0. DO j=1,sNy DO i=1,sNx ks = ksurfC(i,j,bi,bj) IF ( ks.LE.Nr ) THEN cg3d_b(i,j,ks,bi,bj) = cg3d_b(i,j,ks,bi,bj) & +freeSurfFac*etaN(i,j,bi,bj)/deltaTfreesurf & *_rA(i,j,bi,bj)*deepFac2F(ks)/deltaTmom ENDIF ENDDO ENDDO ENDIF C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C-- Finish updating cg3d_b: 1) increment in horiz velocity due to new cg2d_x C 2) add vertical velocity contribution. DO j=1,sNy+1 DO i=1,sNx+1 uf(i,j) = -_recip_dxC(i,j,bi,bj) & * implicSurfPress*implicDiv2DFlow & *(cg2d_x(i,j,bi,bj)-cg2d_x(i-1,j,bi,bj)) vf(i,j) = -_recip_dyC(i,j,bi,bj) & * implicSurfPress*implicDiv2DFlow & *(cg2d_x(i,j,bi,bj)-cg2d_x(i,j-1,bi,bj)) ENDDO ENDDO #ifdef ALLOW_OBCS IF (useOBCS) THEN DO i=1,sNx+1 C Northern boundary IF (OB_Jn(i,bi,bj).NE.0) & vf(i,OB_Jn(i,bi,bj)) = 0. C Southern boundary IF (OB_Js(i,bi,bj).NE.0) & vf(i,OB_Js(i,bi,bj)+1) = 0. ENDDO DO j=1,sNy+1 C Eastern boundary IF (OB_Ie(j,bi,bj).NE.0) & uf(OB_Ie(j,bi,bj),j) = 0. C Western boundary IF (OB_Iw(j,bi,bj).NE.0) & uf(OB_Iw(j,bi,bj)+1,j) = 0. ENDDO ENDIF #endif /* ALLOW_OBCS */ C Note: with implicDiv2DFlow < 1, wVel contribution to cg3d_b is similar to C uVel,vVel contribution to cg2d_b when exactConserv=T, since wVel is C always recomputed from continuity eq (like eta when exactConserv=T) k=1 kp1 = MIN(k+1,Nr) wFacKp = implicDiv2DFlow*deepFac2F(kp1)*rhoFacF(kp1) IF (k.GE.Nr) wFacKp = 0. DO j=1,sNy DO i=1,sNx cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) & +drF(k)*dyG(i+1,j,bi,bj)*_hFacW(i+1,j,k,bi,bj)*uf(i+1,j) & -drF(k)*dyG( i ,j,bi,bj)*_hFacW( i ,j,k,bi,bj)*uf( i ,j) & +drF(k)*dxG(i,j+1,bi,bj)*_hFacS(i,j+1,k,bi,bj)*vf(i,j+1) & -drF(k)*dxG(i, j ,bi,bj)*_hFacS(i, j ,k,bi,bj)*vf(i, j ) & +( tmpFac*etaN(i,j,bi,bj)/deltaTfreesurf & -wVel(i,j,kp1,bi,bj)*wFacKp & )*_rA(i,j,bi,bj)/deltaTmom ENDDO ENDDO DO k=2,Nr kp1 = MIN(k+1,Nr) C- deepFac & rhoFac cancel with the ones in uf[=del_i(Phi)/dx],vf ; C both appear in wVel term, but at 2 different levels wFacKm = implicDiv2DFlow*deepFac2F( k )*rhoFacF( k ) wFacKp = implicDiv2DFlow*deepFac2F(kp1)*rhoFacF(kp1) IF (k.GE.Nr) wFacKp = 0. DO j=1,sNy DO i=1,sNx cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) & +drF(k)*dyG(i+1,j,bi,bj)*_hFacW(i+1,j,k,bi,bj)*uf(i+1,j) & -drF(k)*dyG( i ,j,bi,bj)*_hFacW( i ,j,k,bi,bj)*uf( i ,j) & +drF(k)*dxG(i,j+1,bi,bj)*_hFacS(i,j+1,k,bi,bj)*vf(i,j+1) & -drF(k)*dxG(i, j ,bi,bj)*_hFacS(i, j ,k,bi,bj)*vf(i, j ) & +( wVel(i,j, k ,bi,bj)*wFacKm*maskC(i,j,k-1,bi,bj) & -wVel(i,j,kp1,bi,bj)*wFacKp & )*_rA(i,j,bi,bj)/deltaTmom ENDDO ENDDO ENDDO #ifdef ALLOW_OBCS IF (useOBCS) THEN DO k=1,Nr DO i=1,sNx C Northern boundary IF (OB_Jn(i,bi,bj).NE.0) & cg3d_b(i,OB_Jn(i,bi,bj),k,bi,bj) = 0. C Southern boundary IF (OB_Js(i,bi,bj).NE.0) & cg3d_b(i,OB_Js(i,bi,bj),k,bi,bj) = 0. ENDDO DO j=1,sNy C Eastern boundary IF (OB_Ie(j,bi,bj).NE.0) & cg3d_b(OB_Ie(j,bi,bj),j,k,bi,bj) = 0. C Western boundary IF (OB_Iw(j,bi,bj).NE.0) & cg3d_b(OB_Iw(j,bi,bj),j,k,bi,bj) = 0. ENDDO ENDDO ENDIF #endif /* ALLOW_OBCS */ C- end bi,bj loops ENDDO ENDDO c ENDIF #endif /* ALLOW_NONHYDROSTATIC */ RETURN END