C $Header: /u/gcmpack/MITgcm/model/src/thermodynamics.F,v 1.134 2010/12/09 21:35:33 gforget Exp $
C $Name: $
#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"
#ifdef ALLOW_GENERIC_ADVDIFF
# include "GAD_OPTIONS.h"
#endif
#ifdef ALLOW_LONGSTEP
#include "LONGSTEP_OPTIONS.h"
#endif
#ifdef ALLOW_AUTODIFF_TAMC
# ifdef ALLOW_GMREDI
# include "GMREDI_OPTIONS.h"
# endif
# ifdef ALLOW_KPP
# include "KPP_OPTIONS.h"
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
CBOP
C !ROUTINE: THERMODYNAMICS
C !INTERFACE:
SUBROUTINE THERMODYNAMICS(myTime, myIter, myThid)
C !DESCRIPTION: \bv
C *==========================================================*
C | SUBROUTINE THERMODYNAMICS
C | o Controlling routine for the prognostic part of the
C | thermo-dynamics.
C *===========================================================
C | The algorithm...
C |
C | "Correction Step"
C | =================
C | Here we update the horizontal velocities with the surface
C | pressure such that the resulting flow is either consistent
C | with the free-surface evolution or the rigid-lid:
C | U[n] = U* + dt x d/dx P
C | V[n] = V* + dt x d/dy P
C |
C | "Calculation of Gs"
C | ===================
C | This is where all the accelerations and tendencies (ie.
C | physics, parameterizations etc...) are calculated
C | rho = rho ( theta[n], salt[n] )
C | b = b(rho, theta)
C | K31 = K31 ( rho )
C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
C |
C | "Time-stepping" or "Prediction"
C | ================================
C | The models variables are stepped forward with the appropriate
C | time-stepping scheme (currently we use Adams-Bashforth II)
C | - For momentum, the result is always *only* a "prediction"
C | in that the flow may be divergent and will be "corrected"
C | later with a surface pressure gradient.
C | - Normally for tracers the result is the new field at time
C | level [n+1} *BUT* in the case of implicit diffusion the result
C | is also *only* a prediction.
C | - We denote "predictors" with an asterisk (*).
C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C | With implicit diffusion:
C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
C | (1 + dt * K * d_zz) theta[n] = theta*
C | (1 + dt * K * d_zz) salt[n] = salt*
C |
C *==========================================================*
C \ev
C !USES:
IMPLICIT NONE
C == Global variables ===
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "RESTART.h"
#include "DYNVARS.h"
#include "GRID.h"
#ifdef ALLOW_GENERIC_ADVDIFF
# include "GAD.h"
# include "GAD_SOM_VARS.h"
#endif
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
# include "PTRACERS_SIZE.h"
# include "PTRACERS_PARAMS.h"
# include "PTRACERS_FIELDS.h"
#endif
#endif
#ifdef ALLOW_TIMEAVE
# include "TIMEAVE_STATV.h"
#endif
#ifdef ALLOW_AUTODIFF_TAMC
# include "tamc.h"
# include "tamc_keys.h"
# include "FFIELDS.h"
# include "SURFACE.h"
# include "EOS.h"
# ifdef ALLOW_KPP
# include "KPP.h"
# endif
# ifdef ALLOW_GMREDI
# include "GMREDI.h"
# endif
# ifdef ALLOW_EBM
# include "EBM.h"
# endif
# ifdef ALLOW_SALT_PLUME
# include "SALT_PLUME.h"
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
C !INPUT/OUTPUT PARAMETERS:
C == Routine arguments ==
C myTime - Current time in simulation
C myIter - Current iteration number in simulation
C myThid - Thread number for this instance of the routine.
_RL myTime
INTEGER myIter
INTEGER myThid
#ifdef ALLOW_GENERIC_ADVDIFF
C !LOCAL VARIABLES:
C == Local variables
C xA, yA - Per block temporaries holding face areas
C uFld, vFld, wFld - Local copy of velocity field (3 components)
C uTrans, vTrans, rTrans - Per block temporaries holding flow transport
C o uTrans: Zonal transport
C o vTrans: Meridional transport
C o rTrans: Vertical transport
C rTransKp1 o vertical volume transp. at interface k+1
C maskUp o maskUp: land/water mask for W points
C fVer[STUV] o fVer: Vertical flux term - note fVer
C is "pipelined" in the vertical
C so we need an fVer for each
C variable.
C kappaRT, - Total diffusion in vertical at level k, for T and S
C kappaRS (background + spatially varying, isopycnal term).
C kappaRTr - Total diffusion in vertical at level k,
C for each passive Tracer
C kappaRk - Total diffusion in vertical, all levels, 1 tracer
C useVariableK = T when vertical diffusion is not constant
C iMin, iMax - Ranges and sub-block indices on which calculations
C jMin, jMax are applied.
C bi, bj
C k, kup, - Index for layer above and below. kup and kDown
C kDown, km1 are switched with layer to be the appropriate
C index into fVerTerm.
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL wFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL rTransKp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
_RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
_RL kappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
_RL kappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
_RL fVerP (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2,PTRACERS_num)
_RL kappaRTr(1-Olx:sNx+Olx,1-Oly:sNy+Oly,PTRACERS_num)
#endif
#endif
_RL kappaRk (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
INTEGER iMin, iMax
INTEGER jMin, jMax
INTEGER bi, bj
INTEGER i, j
INTEGER k, km1, kup, kDown
#ifdef ALLOW_ADAMSBASHFORTH_3
INTEGER iterNb, m1, m2
#endif
#ifdef ALLOW_TIMEAVE
LOGICAL useVariableK
#endif
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
INTEGER iTracer, ip
#endif
#endif
CEOP
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_ENTER('THERMODYNAMICS',myThid)
#endif
#ifdef ALLOW_AUTODIFF_TAMC
C-- dummy statement to end declaration part
ikey = 1
itdkey = 1
#endif /* ALLOW_AUTODIFF_TAMC */
#ifdef ALLOW_AUTODIFF_TAMC
C-- HPF directive to help TAMC
CHPF$ INDEPENDENT
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Compute correction at the surface for Lin Free Surf.
#ifdef ALLOW_AUTODIFF_TAMC
TsurfCor = 0. _d 0
SsurfCor = 0. _d 0
#endif
IF (linFSConserveTr) THEN
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE theta,salt,wvel = comlev1, key = ikey_dynamics, byte=isbyte
#endif
CALL CALC_WSURF_TR(theta,salt,wVel,
& myTime,myIter,myThid)
ENDIF
DO bj=myByLo(myThid),myByHi(myThid)
#ifdef ALLOW_AUTODIFF_TAMC
C-- HPF directive to help TAMC
CHPF$ INDEPENDENT, NEW (rTrans,fVerT,fVerS
CHPF$& ,utrans,vtrans,xA,yA
CHPF$& ,kappaRT,kappaRS
CHPF$& )
# ifdef ALLOW_PTRACERS
# ifndef ALLOW_LONGSTEP
CHPF$ INDEPENDENT, NEW (fVerP,kappaRTr)
# endif
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
DO bi=myBxLo(myThid),myBxHi(myThid)
#ifdef ALLOW_AUTODIFF_TAMC
act1 = bi - myBxLo(myThid)
max1 = myBxHi(myThid) - myBxLo(myThid) + 1
act2 = bj - myByLo(myThid)
max2 = myByHi(myThid) - myByLo(myThid) + 1
act3 = myThid - 1
max3 = nTx*nTy
act4 = ikey_dynamics - 1
itdkey = (act1 + 1) + act2*max1
& + act3*max1*max2
& + act4*max1*max2*max3
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Set up work arrays with valid (i.e. not NaN) values
C These inital values do not alter the numerical results. They
C just ensure that all memory references are to valid floating
C point numbers. This prevents spurious hardware signals due to
C uninitialised but inert locations.
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
xA(i,j) = 0. _d 0
yA(i,j) = 0. _d 0
uTrans(i,j) = 0. _d 0
vTrans(i,j) = 0. _d 0
rTrans (i,j) = 0. _d 0
rTransKp1(i,j) = 0. _d 0
fVerT (i,j,1) = 0. _d 0
fVerT (i,j,2) = 0. _d 0
fVerS (i,j,1) = 0. _d 0
fVerS (i,j,2) = 0. _d 0
kappaRT(i,j) = 0. _d 0
kappaRS(i,j) = 0. _d 0
ENDDO
ENDDO
DO k=1,Nr
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
C This is currently also used by IVDC and Diagnostics
kappaRk(i,j,k) = 0. _d 0
C- tracer tendency needs to be set to zero (moved here from gad_calc_rhs):
gT(i,j,k,bi,bj) = 0. _d 0
gS(i,j,k,bi,bj) = 0. _d 0
ENDDO
ENDDO
ENDDO
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
IF ( usePTRACERS ) THEN
DO ip=1,PTRACERS_num
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
fVerP (i,j,1,ip) = 0. _d 0
fVerP (i,j,2,ip) = 0. _d 0
kappaRTr(i,j,ip) = 0. _d 0
ENDDO
ENDDO
ENDDO
C- set tracer tendency to zero:
DO iTracer=1,PTRACERS_num
DO k=1,Nr
DO j=1-OLy,sNy+OLy
DO i=1-OLx,sNx+OLx
gPTr(i,j,k,bi,bj,itracer) = 0. _d 0
ENDDO
ENDDO
ENDDO
ENDDO
ENDIF
#endif
#endif
#ifdef ALLOW_ADAMSBASHFORTH_3
C- Apply AB on T,S :
iterNb = myIter
IF (staggerTimeStep) iterNb = myIter - 1
m1 = 1 + MOD(iterNb+1,2)
m2 = 1 + MOD( iterNb ,2)
C compute T^n+1/2 (stored in gtNm) extrapolating T forward in time
IF ( AdamsBashforth_T ) CALL ADAMS_BASHFORTH3(
I bi, bj, 0,
U theta, gtNm,
I tempStartAB, iterNb, myThid )
C compute S^n+1/2 (stored in gsNm) extrapolating S forward in time
IF ( AdamsBashforth_S ) CALL ADAMS_BASHFORTH3(
I bi, bj, 0,
U salt, gsNm,
I saltStartAB, iterNb, myThid )
#endif /* ALLOW_ADAMSBASHFORTH_3 */
c iMin = 1-OLx
c iMax = sNx+OLx
c jMin = 1-OLy
c jMax = sNy+OLy
#ifdef ALLOW_AUTODIFF_TAMC
cph avoids recomputation of integrate_for_w
CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Attention: by defining "SINGLE_LAYER_MODE" in CPP_OPTIONS.h
C-- MOST of THERMODYNAMICS will be disabled
#ifndef SINGLE_LAYER_MODE
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
# if ((defined ALLOW_DEPTH_CONTROL) (defined NONLIN_FRSURF))
# ifndef ALLOW_ADAMSBASHFORTH_3
CADJ STORE gtnm1(:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
CADJ STORE gsnm1(:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
# endif
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
#ifndef DISABLE_MULTIDIM_ADVECTION
C-- Some advection schemes are better calculated using a multi-dimensional
C method in the absence of any other terms and, if used, is done here.
C
C The CPP flag DISABLE_MULTIDIM_ADVECTION is currently unset in GAD_OPTIONS.h
C The default is to use multi-dimensinal advection for non-linear advection
C schemes. However, for the sake of efficiency of the adjoint it is necessary
C to be able to exclude this scheme to avoid excessive storage and
C recomputation. It *is* differentiable, if you need it.
C Edit GAD_OPTIONS.h and #define DISABLE_MULTIDIM_ADVECTION to
C disable this section of code.
#ifdef GAD_ALLOW_TS_SOM_ADV
IF ( tempSOM_Advection ) THEN
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_CALL('GAD_SOM_ADVECT',myThid)
#endif
CALL GAD_SOM_ADVECT(
I tempImplVertAdv, tempAdvScheme, tempVertAdvScheme,
I GAD_TEMPERATURE, dTtracerLev,
I uVel, vVel, wVel, theta,
U som_T,
O gT,
I bi,bj,myTime,myIter,myThid)
ELSEIF (tempMultiDimAdvec) THEN
#else /* GAD_ALLOW_TS_SOM_ADV */
IF (tempMultiDimAdvec) THEN
#endif /* GAD_ALLOW_TS_SOM_ADV */
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_CALL('GAD_ADVECTION',myThid)
#endif
CALL GAD_ADVECTION(
I tempImplVertAdv, tempAdvScheme, tempVertAdvScheme,
I GAD_TEMPERATURE, dTtracerLev,
I uVel, vVel, wVel, theta,
O gT,
I bi,bj,myTime,myIter,myThid)
ENDIF
#ifdef GAD_ALLOW_TS_SOM_ADV
IF ( saltSOM_Advection ) THEN
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_CALL('GAD_SOM_ADVECT',myThid)
#endif
CALL GAD_SOM_ADVECT(
I saltImplVertAdv, saltAdvScheme, saltVertAdvScheme,
I GAD_SALINITY, dTtracerLev,
I uVel, vVel, wVel, salt,
U som_S,
O gS,
I bi,bj,myTime,myIter,myThid)
ELSEIF (saltMultiDimAdvec) THEN
#else /* GAD_ALLOW_TS_SOM_ADV */
IF (saltMultiDimAdvec) THEN
#endif /* GAD_ALLOW_TS_SOM_ADV */
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_CALL('GAD_ADVECTION',myThid)
#endif
CALL GAD_ADVECTION(
I saltImplVertAdv, saltAdvScheme, saltVertAdvScheme,
I GAD_SALINITY, dTtracerLev,
I uVel, vVel, wVel, salt,
O gS,
I bi,bj,myTime,myIter,myThid)
ENDIF
C Since passive tracers are configurable separately from T,S we
C call the multi-dimensional method for PTRACERS regardless
C of whether multiDimAdvection is set or not.
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
IF ( usePTRACERS ) THEN
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_CALL('PTRACERS_ADVECTION',myThid)
#endif
CALL PTRACERS_ADVECTION( bi,bj,myTime,myIter,myThid )
ENDIF
#endif /* ALLOW_LONGSTEP */
#endif /* ALLOW_PTRACERS */
#endif /* DISABLE_MULTIDIM_ADVECTION */
#ifdef ALLOW_DEBUG
IF (debugMode)
& CALL DEBUG_MSG('ENTERING DOWNWARD K LOOP',myThid)
#endif
#ifdef ALLOW_AUTODIFF_TAMC
# ifdef ALLOW_SALT_PLUME
CADJ STORE saltPlumeFlux(:,:,bi,bj) =
CADJ & comlev1_bibj, key=itdkey,kind = isbyte
CADJ STORE saltPlumeDepth(:,:,bi,bj) =
CADJ & comlev1_bibj, key=itdkey,kind = isbyte
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
C-- Start of thermodynamics loop
DO k=Nr,1,-1
#ifdef ALLOW_AUTODIFF_TAMC
C? Patrick Is this formula correct?
cph Yes, but I rewrote it.
cph Also, the kappaR? need the index and subscript k!
kkey = (itdkey-1)*Nr + k
#endif /* ALLOW_AUTODIFF_TAMC */
C-- km1 Points to level above k (=k-1)
C-- kup Cycles through 1,2 to point to layer above
C-- kDown Cycles through 2,1 to point to current layer
km1 = MAX(1,k-1)
kup = 1+MOD(k+1,2)
kDown= 1+MOD(k,2)
iMin = 1-OLx
iMax = sNx+OLx
jMin = 1-OLy
jMax = sNy+OLy
IF (k.EQ.Nr) THEN
DO j=1-Oly,sNy+Oly
DO i=1-Olx,sNx+Olx
rTransKp1(i,j) = 0. _d 0
ENDDO
ENDDO
ELSE
DO j=1-Oly,sNy+Oly
DO i=1-Olx,sNx+Olx
rTransKp1(i,j) = rTrans(i,j)
ENDDO
ENDDO
ENDIF
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE rTransKp1(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
#endif
C-- Get temporary terms used by tendency routines :
C- Calculate horizontal "volume transport" through tracer cell face
C anelastic: uTrans,vTrans are scaled by rhoFacC (~ mass transport)
CALL CALC_COMMON_FACTORS (
I uVel, vVel,
O uFld, vFld, uTrans, vTrans, xA, yA,
I k,bi,bj, myThid )
C- Calculate vertical "volume transport" through tracer cell face
IF (k.EQ.1) THEN
C- Surface interface :
DO j=1-Oly,sNy+Oly
DO i=1-Olx,sNx+Olx
wFld(i,j) = 0. _d 0
maskUp(i,j) = 0. _d 0
rTrans(i,j) = 0. _d 0
ENDDO
ENDDO
ELSE
C- Interior interface :
C anelastic: rTrans is scaled by rhoFacF (~ mass transport)
DO j=1-Oly,sNy+Oly
DO i=1-Olx,sNx+Olx
wFld(i,j) = wVel(i,j,k,bi,bj)
maskUp(i,j) = maskC(i,j,k-1,bi,bj)*maskC(i,j,k,bi,bj)
rTrans(i,j) = wFld(i,j)*rA(i,j,bi,bj)*maskUp(i,j)
& *deepFac2F(k)*rhoFacF(k)
ENDDO
ENDDO
ENDIF
#ifdef ALLOW_GMREDI
C-- Residual transp = Bolus transp + Eulerian transp
IF (useGMRedi) THEN
CALL GMREDI_CALC_UVFLOW(
U uFld, vFld, uTrans, vTrans,
I k, bi, bj, myThid )
IF (K.GE.2) THEN
CALL GMREDI_CALC_WFLOW(
U wFld, rTrans,
I k, bi, bj, myThid )
ENDIF
ENDIF
# ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE rTrans(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE wfld(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# ifdef GM_BOLUS_ADVEC
CADJ STORE ufld(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE vfld(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE uTrans(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE vTrans(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# endif /* ALLOW_AUTODIFF_TAMC */
#endif /* ALLOW_GMREDI */
#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
C-- Calculate the total vertical diffusivity
IF ( .NOT.implicitDiffusion ) THEN
CALL CALC_DIFFUSIVITY(
I bi,bj,iMin,iMax,jMin,jMax,k,
I maskUp,
O kappaRT,kappaRS,
I myThid)
ENDIF
# ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE kappaRT(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE kappaRS(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif /* ALLOW_AUTODIFF_TAMC */
#endif
iMin = 1-OLx+2
iMax = sNx+OLx-1
jMin = 1-OLy+2
jMax = sNy+OLy-1
C-- Calculate active tracer tendencies (gT,gS,...)
C and step forward storing result in gT, gS, etc.
C--
# ifdef ALLOW_AUTODIFF_TAMC
# if ((defined NONLIN_FRSURF) (defined ALLOW_DEPTH_CONTROL)) (defined ALLOW_GMREDI)
# ifdef GM_NON_UNITY_DIAGONAL
CADJ STORE kux(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE kvy(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# ifdef GM_EXTRA_DIAGONAL
CADJ STORE kuz(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE kvz(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
# endif
# endif /* ALLOW_AUTODIFF_TAMC */
C
#ifdef ALLOW_AUTODIFF_TAMC
# if (defined NONLIN_FRSURF) (defined ALLOW_DEPTH_CONTROL)
cph-test
CADJ STORE uFld(:,:), vFld(:,:), wFld(:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE uTrans(:,:), vTrans(:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE xA(:,:), yA(:,:)
CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
# ifdef ALLOW_ADAMSBASHFORTH_3
CADJ STORE gT(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gS(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gSnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gSnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gTnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gTnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE salt(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fvert(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fvers(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif /* ALLOW_ADAMSBASHFORTH_3 */
# endif /* NONLIN_FRSURF */
#endif /* ALLOW_AUTODIFF_TAMC */
C
IF ( tempStepping ) THEN
#ifdef ALLOW_AUTODIFF_TAMC
# ifndef ALLOW_ADAMSBASHFORTH_3
CADJ STORE gTnm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
else
# ifndef NONLIN_FRSURF
CADJ STORE gTnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gTnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
# endif /* ndef NONLIN_FRSURF */
# endif /* ndef ALLOW_ADAMSBASHFORTH_3 */
# if (defined NONLIN_FRSURF) (defined ALLOW_DEPTH_CONTROL)
CADJ STORE gt(:,:,:,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fvert(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
CALL CALC_GT(
I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
I xA, yA, maskUp, uFld, vFld, wFld,
I uTrans, vTrans, rTrans, rTransKp1,
I kappaRT,
U fVerT,
I myTime,myIter,myThid)
#ifdef ALLOW_ADAMSBASHFORTH_3
IF ( AdamsBashforth_T ) THEN
CALL TIMESTEP_TRACER(
I bi,bj,iMin,iMax,jMin,jMax,k,tempAdvScheme,dTtracerLev(k),
I gtNm(1-Olx,1-Oly,1,1,1,m2),
U gT,
I myIter, myThid)
ELSE
#endif
CALL TIMESTEP_TRACER(
I bi,bj,iMin,iMax,jMin,jMax,k,tempAdvScheme,dTtracerLev(k),
I theta,
U gT,
I myIter, myThid)
#ifdef ALLOW_ADAMSBASHFORTH_3
ENDIF
#endif
ENDIF
#ifdef ALLOW_AUTODIFF_TAMC
# if (defined NONLIN_FRSURF) (defined ALLOW_ADAMSBASHFORTH_3)
CADJ STORE gTnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gTnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fvert(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
#endif
IF ( saltStepping ) THEN
#ifdef ALLOW_AUTODIFF_TAMC
# ifndef ALLOW_ADAMSBASHFORTH_3
CADJ STORE gSnm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
else
# ifndef NONLIN_FRSURF
CADJ STORE gSnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE gSnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
# endif /* ndef NONLIN_FRSURF */
# endif /* ndef ALLOW_ADAMSBASHFORTH_3 */
# if (defined NONLIN_FRSURF) (defined ALLOW_DEPTH_CONTROL)
CADJ STORE gs(:,:,:,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
CADJ STORE fvers(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif
#endif /* ALLOW_AUTODIFF_TAMC */
CALL CALC_GS(
I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
I xA, yA, maskUp, uFld, vFld, wFld,
I uTrans, vTrans, rTrans, rTransKp1,
I kappaRS,
U fVerS,
I myTime,myIter,myThid)
#ifdef ALLOW_ADAMSBASHFORTH_3
IF ( AdamsBashforth_S ) THEN
CALL TIMESTEP_TRACER(
I bi,bj,iMin,iMax,jMin,jMax,k,saltAdvScheme,dTtracerLev(k),
I gsNm(1-Olx,1-Oly,1,1,1,m2),
U gS,
I myIter, myThid)
ELSE
#endif
CALL TIMESTEP_TRACER(
I bi,bj,iMin,iMax,jMin,jMax,k,saltAdvScheme,dTtracerLev(k),
I salt,
U gS,
I myIter, myThid)
#ifdef ALLOW_ADAMSBASHFORTH_3
ENDIF
#endif
ENDIF
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
IF ( usePTRACERS ) THEN
IF ( .NOT.implicitDiffusion ) THEN
CALL PTRACERS_CALC_DIFF(
I bi,bj,iMin,iMax,jMin,jMax,k,
I maskUp,
O kappaRTr,
I myThid)
ENDIF
# ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE kappaRTr(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
# endif /* ALLOW_AUTODIFF_TAMC */
CALL PTRACERS_INTEGRATE(
I bi,bj,k,
I xA, yA, maskUp, uFld, vFld, wFld,
I uTrans, vTrans, rTrans, rTransKp1,
I kappaRTr,
U fVerP,
I myTime,myIter,myThid)
ENDIF
#endif /*ALLOW_LONGSTEP */
#endif /* ALLOW_PTRACERS */
C-- Freeze water
C this bit of code is left here for backward compatibility.
C freezing at surface level has been moved to FORWARD_STEP
IF ( useOldFreezing .AND. .NOT. useSEAICE
& .AND. .NOT.(useThSIce.AND.k.EQ.1) ) THEN
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE gT(:,:,k,bi,bj) = comlev1_bibj_k
CADJ & , key = kkey, byte = isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid )
ENDIF
C-- end of thermodynamic k loop (Nr:1)
ENDDO
#ifdef ALLOW_DOWN_SLOPE
IF ( tempStepping .AND. useDOWN_SLOPE ) THEN
IF ( usingPCoords ) THEN
CALL DWNSLP_APPLY(
I GAD_TEMPERATURE, bi, bj, kSurfC,
I recip_drF, recip_hFacC, recip_rA,
I dTtracerLev,
I theta,
U gT,
I myTime, myIter, myThid )
ELSE
CALL DWNSLP_APPLY(
I GAD_TEMPERATURE, bi, bj, kLowC,
I recip_drF, recip_hFacC, recip_rA,
I dTtracerLev,
I theta,
U gT,
I myTime, myIter, myThid )
ENDIF
ENDIF
IF ( saltStepping .AND. useDOWN_SLOPE ) THEN
IF ( usingPCoords ) THEN
CALL DWNSLP_APPLY(
I GAD_SALINITY, bi, bj, kSurfC,
I recip_drF, recip_hFacC, recip_rA,
I dTtracerLev,
I salt,
U gS,
I myTime, myIter, myThid )
ELSE
CALL DWNSLP_APPLY(
I GAD_SALINITY, bi, bj, kLowC,
I recip_drF, recip_hFacC, recip_rA,
I dTtracerLev,
I salt,
U gS,
I myTime, myIter, myThid )
ENDIF
ENDIF
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
IF ( usePTRACERS .AND. useDOWN_SLOPE ) THEN
CALL PTRACERS_DWNSLP_APPLY(
I bi, bj, myTime, myIter, myThid )
ENDIF
#endif /*ALLOW_LONGSTEP */
#endif /* ALLOW_PTRACERS */
#endif /* ALLOW_DOWN_SLOPE */
C All explicit advection/diffusion/sources should now be
C done. The updated tracer field is in gPtr. Accumalate
C explicit tendency and also reset gPtr to initial tracer
C field for implicit matrix calculation
#ifdef ALLOW_MATRIX
IF (useMATRIX)
& CALL MATRIX_STORE_TENDENCY_EXP(bi,bj, myTime,myIter,myThid)
#endif
iMin = 1
iMax = sNx
jMin = 1
jMax = sNy
C-- Implicit vertical advection & diffusion
IF ( tempStepping .AND. implicitDiffusion ) THEN
CALL CALC_3D_DIFFUSIVITY(
I bi,bj,iMin,iMax,jMin,jMax,
I GAD_TEMPERATURE, useGMredi, useKPP,
O kappaRk,
I myThid)
ENDIF
#ifdef INCLUDE_IMPLVERTADV_CODE
IF ( tempImplVertAdv ) THEN
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE kappaRk(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
CADJ STORE gT(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
CADJ STORE wvel(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL GAD_IMPLICIT_R(
I tempImplVertAdv, tempVertAdvScheme, GAD_TEMPERATURE,
I dTtracerLev,
I kappaRk, wVel, theta,
U gT,
I bi, bj, myTime, myIter, myThid )
ELSEIF ( tempStepping .AND. implicitDiffusion ) THEN
#else /* INCLUDE_IMPLVERTADV_CODE */
IF ( tempStepping .AND. implicitDiffusion ) THEN
#endif /* INCLUDE_IMPLVERTADV_CODE */
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE kappaRk(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
CADJ STORE gT(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I GAD_TEMPERATURE, kappaRk, recip_hFacC,
U gT,
I myThid )
ENDIF
#ifdef ALLOW_TIMEAVE
useVariableK = useKPP .OR. usePP81 .OR. useMY82 .OR. useGGL90
& .OR. useGMredi .OR. ivdc_kappa.NE.0.
IF (taveFreq.GT.0. .AND. useVariableK ) THEN
IF (implicitDiffusion) THEN
CALL TIMEAVE_CUMUL_DIF_1T(TdiffRtave, gT, kappaRk,
I Nr, 3, deltaTclock, bi, bj, myThid)
c ELSE
c CALL TIMEAVE_CUMUL_DIF_1T(TdiffRtave, theta, kappaRT,
c I Nr, 3, deltaTclock, bi, bj, myThid)
ENDIF
ENDIF
#endif /* ALLOW_TIMEAVE */
IF ( saltStepping .AND. implicitDiffusion ) THEN
CALL CALC_3D_DIFFUSIVITY(
I bi,bj,iMin,iMax,jMin,jMax,
I GAD_SALINITY, useGMredi, useKPP,
O kappaRk,
I myThid)
ENDIF
#ifdef INCLUDE_IMPLVERTADV_CODE
IF ( saltImplVertAdv ) THEN
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE kappaRk(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
CADJ STORE gS(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
CADJ STORE wvel(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
CADJ STORE salt(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL GAD_IMPLICIT_R(
I saltImplVertAdv, saltVertAdvScheme, GAD_SALINITY,
I dTtracerLev,
I kappaRk, wVel, salt,
U gS,
I bi, bj, myTime, myIter, myThid )
ELSEIF ( saltStepping .AND. implicitDiffusion ) THEN
#else /* INCLUDE_IMPLVERTADV_CODE */
IF ( saltStepping .AND. implicitDiffusion ) THEN
#endif /* INCLUDE_IMPLVERTADV_CODE */
#ifdef ALLOW_AUTODIFF_TAMC
CADJ STORE kappaRk(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
CADJ STORE gS(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
#endif /* ALLOW_AUTODIFF_TAMC */
CALL IMPLDIFF(
I bi, bj, iMin, iMax, jMin, jMax,
I GAD_SALINITY, kappaRk, recip_hFacC,
U gS,
I myThid )
ENDIF
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
IF ( usePTRACERS ) THEN
C-- Vertical advection/diffusion (implicit) for passive tracers
C Also apply open boundary conditions for each passive tracer
CALL PTRACERS_IMPLICIT(
U kappaRk,
I bi, bj, myTime, myIter, myThid )
ENDIF
#endif /* ALLOW_LONGSTEP */
#endif /* ALLOW_PTRACERS */
#ifdef ALLOW_OBCS
C-- Apply open boundary conditions
IF ( useOBCS ) THEN
CALL OBCS_APPLY_TS( bi, bj, 0, gT, gS, myThid )
ENDIF
#endif /* ALLOW_OBCS */
#endif /* SINGLE_LAYER_MODE */
C-- end bi,bj loops.
ENDDO
ENDDO
#ifdef ALLOW_DEBUG
IF ( debugLevel.GE.debLevB ) THEN
CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (THERMODYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (THERMODYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (THERMODYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,theta,'Theta (THERMODYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,salt,'Salt (THERMODYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gT,'Gt (THERMODYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gS,'Gs (THERMODYNAMICS)',myThid)
#ifndef ALLOW_ADAMSBASHFORTH_3
CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (THERMODYNAMICS)',myThid)
CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (THERMODYNAMICS)',myThid)
#endif
#ifdef ALLOW_PTRACERS
#ifndef ALLOW_LONGSTEP
IF ( usePTRACERS ) THEN
CALL PTRACERS_DEBUG(myThid)
ENDIF
#endif /* ALLOW_LONGSTEP */
#endif /* ALLOW_PTRACERS */
ENDIF
#endif /* ALLOW_DEBUG */
#ifdef ALLOW_DEBUG
IF (debugMode) CALL DEBUG_LEAVE('THERMODYNAMICS',myThid)
#endif
#endif /* ALLOW_GENERIC_ADVDIFF */
RETURN
END