C $Header: /u/gcmpack/MITgcm/pkg/exf/exf_zenithangle_table.F,v 1.4 2010/04/17 20:57:08 gforget Exp $
C $Name: $
#include "EXF_OPTIONS.h"
SUBROUTINE EXF_ZENITHANGLE_TABLE(myThid)
C ==================================================================
C SUBROUTINE exf_zenithangle_table
C ==================================================================
C
C o compute table of daily mean albedo that will be used in exf_zenithangle.F
C
C ==================================================================
C SUBROUTINE exf_zenithangle_table
C ==================================================================
IMPLICIT NONE
C == global variables ==
#include "EEPARAMS.h"
#include "SIZE.h"
#include "PARAMS.h"
#include "DYNVARS.h"
#include "GRID.h"
#include "EXF_PARAM.h"
#include "EXF_FIELDS.h"
#include "EXF_CONSTANTS.h"
C == routine arguments ==
INTEGER myThid
#ifdef ALLOW_DOWNWARD_RADIATION
#ifdef ALLOW_ZENITHANGLE
C == local variables ==
INTEGER bi,bj
INTEGER i,j
_RL FSOL, dD0dDsq, SOLC, tmpINT1, tmpINT2
_RL LLLAT, TYEAR, TDAY, ALPHA, CZEN, ALBSEA1
_RL DECLI, ZS, ZC, SJ, CJ, TMPA, TMPB
integer iLat,iTyear,iTday
C == end of interface ==
_BEGIN_MASTER( myThid )
c solar constant
c --------------
SOLC = 1368. _d 0
DO iLat=1,181
DO iTyear=1,366
LLLAT=(iLat-91. _d 0)
TYEAR=(iTyear-1. _d 0)/365. _d 0
c determine solar declination
c ---------------------------
c (formula from Hartmann textbook, after Spencer 1971)
ALPHA= 2. _d 0*PI*TYEAR
DECLI = 0.006918 _d 0
& - 0.399912 _d 0 * cos ( 1. _d 0 * ALPHA )
& + 0.070257 _d 0 * sin ( 1. _d 0 * ALPHA )
& - 0.006758 _d 0 * cos ( 2. _d 0 * ALPHA )
& + 0.000907 _d 0 * sin ( 2. _d 0 * ALPHA )
& - 0.002697 _d 0 * cos ( 3. _d 0 * ALPHA )
& + 0.001480 _d 0 * sin ( 3. _d 0 * ALPHA )
ZC = COS(DECLI)
ZS = SIN(DECLI)
SJ = SIN(LLLAT * deg2rad)
CJ = COS(LLLAT * deg2rad)
TMPA = SJ*ZS
TMPB = CJ*ZC
c compute squared earth-sun distance ratio
c ----------------------------------------
c (formula from Hartmann textbook, after Spencer 1971)
dD0dDsq = 1.000110 _d 0
& + 0.034221 _d 0 * cos ( 1. _d 0 * ALPHA )
& + 0.001280 _d 0 * sin ( 1. _d 0 * ALPHA )
& + 0.000719 _d 0 * cos ( 2. _d 0 * ALPHA )
& + 0.000077 _d 0 * sin ( 2. _d 0 * ALPHA )
tmpINT1=0. _d 0
tmpINT2=0. _d 0
DO iTday=1,100
TDAY=iTday/100. _d 0
c determine DAILY VARYING cos of solar zenith angle CZEN
c ------------------------------------------------------
CZEN = TMPA + TMPB *
& cos( 2. _d 0 *PI* TDAY + 0. _d 0 * deg2rad )
if ( CZEN .LE.0 ) CZEN = 0. _d 0
c compute incoming flux at the top of the atm.:
c ---------------------------------------------
FSOL = SOLC * dD0dDsq * MAX( 0. _d 0, CZEN )
c determine direct ocean albedo
c -----------------------------
c (formula from Briegleb, Minnis, et al 1986)
ALBSEA1 = ( ( 2.6 _d 0 / (CZEN**(1.7 _d 0) + 0.065 _d 0) )
& + ( 15. _d 0 * (CZEN-0.1 _d 0) * (CZEN-0.5 _d 0)
& * (CZEN-1.0 _d 0) ) ) / 100.0 _d 0
c accumulate averages
c -------------------
tmpINT1=tmpINT1+FSOL*ALBSEA1/100. _d 0
tmpINT2=tmpINT2+FSOL/100. _d 0
ENDDO
c compute weighted average of albedo
c ----------------------------------
if ( 0.5 _d 0 * tmpINT2 .GT. tmpINT1) then
zen_albedo_table(iTyear,iLat)=tmpINT1/tmpINT2
else
zen_albedo_table(iTyear,iLat)=0.5 _d 0
endif
ENDDO
ENDDO
_END_MASTER( myThid )
_BARRIER
c determine interpolation coefficient for each grid point
DO bj = myByLo(myThid),myByHi(myThid)
DO bi = myBxLo(myThid),myBxHi(myThid)
DO j = 1,sNy
DO i = 1,sNx
LLLAT=yC(i,j,bi,bj)+91. _d 0
c ensure that it is in valid range
LLLAT=max(LLLAT, 1. _d 0)
LLLAT=min(LLLAT, 181. _d 0)
c store
zen_albedo_pointer(i,j,bi,bj)=LLLAT
ENDDO
ENDDO
ENDDO
ENDDO
#endif /* ALLOW_ZENITHANGLE */
#endif /* ALLOW_DOWNWARD_RADIATION */
RETURN
END