C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_dst3fl_adv_r.F,v 1.4 2002/03/06 01:29:36 jmc Exp $
C $Name: $
#include "GAD_OPTIONS.h"
SUBROUTINE GAD_DST3FL_ADV_R(
I bi_arg,bj_arg,k,dTarg,
I rTrans, wVel,
I tracer,
O wT,
I myThid )
C /==========================================================\
C | SUBROUTINE GAD_DST3_ADV_R |
C | o Compute Vertical advective Flux of Tracer using |
C | 3rd Order DST Sceheme with flux limiting |
C |==========================================================|
IMPLICIT NONE
C == GLobal variables ==
#include "SIZE.h"
#include "GRID.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "GAD.h"
C == Routine arguments ==
INTEGER bi_arg,bj_arg,k
_RL dTarg
_RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL wVel(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
_RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
_RL wT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
INTEGER myThid
C == Local variables ==
C wFld :: velocity, vertical component
INTEGER i,j,kp1,km1,km2,bi,bj
_RL Rjm,Rj,Rjp,cfl,d0,d1
_RL psiP,psiM,thetaP,thetaM
_RL wFld
IF (.NOT. multiDimAdvection) THEN
C If using the standard time-stepping/advection schemes (ie. AB-II)
C then the data-structures are all global arrays
bi=bi_arg
bj=bj_arg
ELSE
C otherwise if using the multi-dimensional advection schemes
C then the data-structures are all local arrays except
C for maskC(...) and wVel(...)
bi=1
bj=1
ENDIF
km2=MAX(1,k-2)
km1=MAX(1,k-1)
kp1=MIN(Nr,k+1)
DO j=1-Oly,sNy+Oly
DO i=1-Olx,sNx+Olx
Rjp=(tracer(i,j,k,bi,bj)-tracer(i,j,kp1,bi,bj))
& *maskC(i,j,kp1,bi_arg,bj_arg)
Rj =(tracer(i,j,km1,bi,bj)-tracer(i,j,k,bi,bj))
& *maskC(i,j,k,bi_arg,bj_arg)*maskC(i,j,km1,bi_arg,bj_arg)
Rjm=(tracer(i,j,km2,bi,bj)-tracer(i,j,km1,bi,bj))
& *maskC(i,j,km1,bi_arg,bj_arg)
c wFld = wVel(i,j,k,bi_arg,bj_arg)
wFld = rTrans(i,j)*recip_rA(i,j,bi_arg,bj_arg)
cfl=abs(wFld*dTarg*recip_drC(k))
d0=(2.D0-cfl)*(1.-cfl)*oneSixth
d1=(1.D0-cfl*cfl)*oneSixth
c thetaP=0.D0
c IF (Rj.NE.0.D0) thetaP=Rjm/Rj
thetaP=Rjm/(1.D-20+Rj)
psiP=d0+d1*thetaP
psiP=max(0.D0,min(min(1.D0,psiP),
& (1.D0-cfl)/(1.D-20+cfl)*thetaP))
thetaM=Rjp/(1.D-20+Rj)
c thetaM=0.D0
c IF (Rj.NE.0.D0) thetaM=Rjp/Rj
psiM=d0+d1*thetaM
psiM=max(0.D0,min(min(1.D0,psiM),
& (1.D0-cfl)/(1.D-20+cfl)*thetaM))
wT(i,j)=
& 0.5*(rTrans(i,j)+abs(rTrans(i,j)))
& *( Tracer(i,j, k ,bi,bj) + psiM*Rj )
& +0.5*(rTrans(i,j)-abs(rTrans(i,j)))
& *( Tracer(i,j,km1,bi,bj) - psiP*Rj )
ENDDO
ENDDO
RETURN
END