C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_u3c4_impl_r.F,v 1.5 2005/06/22 00:27:47 jmc Exp $
C $Name: $
#include "GAD_OPTIONS.h"
CBOP
C !ROUTINE: GAD_FLUXLIMIT_IMPL_R
C !INTERFACE:
SUBROUTINE GAD_U3C4_IMPL_R(
I bi,bj,k, iMin,iMax,jMin,jMax,
I advectionScheme, deltaTarg, rTrans,
O a5d, b5d, c5d, d5d, e5d,
I myThid )
C !DESCRIPTION:
C Compute matrix element to solve vertical advection
C \begin{enumerate}
C \item implicitly using 3rd order upwind, or
C \item 4th order Centered advection schemes.
C \end{enumerate}
C Also, the contribution of vertical transport at interface k
C is added to matrix lines k and k-1
C !USES:
IMPLICIT NONE
C == Global variables ===
#include "SIZE.h"
#include "GRID.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "GAD.h"
C !INPUT/OUTPUT PARAMETERS:
C == Routine Arguments ==
C bi,bj :: tile indices
C k :: vertical level
C iMin,iMax :: computation domain
C jMin,jMax :: computation domain
C advectionScheme :: advection scheme to use
C deltaTarg :: time step
C rTrans :: vertical volume transport
C tFld :: tracer field
C a5d :: 2nd lower diag of pentadiagonal matrix
C b5d :: 1rst lower diag of pentadiagonal matrix
C c5d :: main diag of pentadiagonal matrix
C d5d :: 1rst upper diag of pentadiagonal matrix
C e5d :: 2nd upper diag of pentadiagonal matrix
C myThid :: thread number
INTEGER bi,bj,k
INTEGER iMin,iMax,jMin,jMax
INTEGER advectionScheme
_RL deltaTarg(Nr)
_RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL a5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
_RL b5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
_RL c5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
_RL d5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
_RL e5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
INTEGER myThid
C == Local Variables ==
C i,j :: loop indices
C kp1 :: =min( k+1 , Nr )
C km2 :: =max( k-2 , 1 )
C rCenter :: centered contribution
C rUpwind :: upwind contribution
LOGICAL flagC4
INTEGER i,j,kp1,km2
_RL rCenter, rUpwind
_RL rC4km, rC4kp, rU1k, rU3km, rU3kp
_RL mskM, mskP, maskM2, maskP1
CEOP
C-- process interior interface only:
IF ( k.GT.1 .AND. k.LE.Nr ) THEN
km2=MAX(1,k-2)
kp1=MIN(Nr,k+1)
maskP1 = 1. _d 0
maskM2 = 1. _d 0
IF ( k.LE.2 ) maskM2 = 0. _d 0
IF ( k.GE.Nr) maskP1 = 0. _d 0
flagC4 = advectionScheme.EQ.ENUM_CENTERED_4TH
& .AND. k.GT.2 .AND. k.LT.Nr
C-- Add centered & upwind contributions
DO j=jMin,jMax
DO i=iMin,iMax
rCenter= 0.5 _d 0 *rTrans(i,j)*recip_rA(i,j,bi,bj)*rkSign
mskM = maskC(i,j,km2,bi,bj)*maskM2
mskP = maskC(i,j,kp1,bi,bj)*maskP1
rC4km = oneSixth*rCenter*mskM
rC4kp = oneSixth*rCenter*mskP
IF ( flagC4 .AND. mskM*mskP.GT.0. _d 0 ) THEN
rUpwind= 0. _d 0
rU3km = 0. _d 0
rU3kp = 0. _d 0
ELSE
rU1k = oneSixth*ABS(rCenter)
rUpwind= rU1k+rU1k
rU3km = rU1k*mskM
rU3kp = rU1k*mskP
ENDIF
a5d(i,j,k) = a5d(i,j,k)
& + (rC4km + rU3km)
& *deltaTarg(k)
& *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
b5d(i,j,k) = b5d(i,j,k)
& - (rCenter + rC4km + rUpwind + rU3km)
& *deltaTarg(k)
& *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
c5d(i,j,k) = c5d(i,j,k)
& - (rCenter + rC4kp - rUpwind - rU3kp)
& *deltaTarg(k)
& *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
d5d(i,j,k) = d5d(i,j,k)
& + (rC4kp - rU3kp)
& *deltaTarg(k)
& *recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
b5d(i,j,k-1) = b5d(i,j,k-1)
& - (rC4km + rU3km)
& *deltaTarg(k-1)
& *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
c5d(i,j,k-1) = c5d(i,j,k-1)
& + (rCenter + rC4km + rUpwind + rU3km)
& *deltaTarg(k-1)
& *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
d5d(i,j,k-1) = d5d(i,j,k-1)
& + (rCenter + rC4kp - rUpwind - rU3kp)
& *deltaTarg(k-1)
& *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
e5d(i,j,k-1) = e5d(i,j,k-1)
& - (rC4kp - rU3kp)
& *deltaTarg(k-1)
& *recip_hFacC(i,j,k-1,bi,bj)*recip_drF(k-1)
ENDDO
ENDDO
C-- process interior interface only: end
ENDIF
RETURN
END