C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_fluxlimit_adv_r.F,v 1.8 2004/03/29 03:33:51 edhill Exp $
C $Name: $
#include "GAD_OPTIONS.h"
CBOP
C !ROUTINE: GAD_FLUXLIMIT_ADV_R
C !INTERFACE: ==========================================================
SUBROUTINE GAD_FLUXLIMIT_ADV_R(
I bi_arg,bj_arg,k,dTarg,
I rTrans, wVel,
I tracer,
O wT,
I myThid )
C !DESCRIPTION:
C Calculates the area integrated vertical flux due to advection of a tracer
C using second-order interpolation with a flux limiter:
C \begin{equation*}
C F^x_{adv} = W \overline{ \theta }^k
C - \frac{1}{2} \left(
C [ 1 - \psi(C_r) ] |W|
C + W \frac{w \Delta t}{\Delta r_c} \psi(C_r)
C \right) \delta_k \theta
C \end{equation*}
C where the $\psi(C_r)$ is the limiter function and $C_r$ is
C the slope ratio.
C !USES: ===============================================================
IMPLICIT NONE
#include "SIZE.h"
#include "GRID.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
C !INPUT PARAMETERS: ===================================================
C bi_arg,bj_arg :: tile indices
C k :: vertical level
C rTrans :: vertical volume transport
C wVel :: vertical flow
C tracer :: tracer field
C myThid :: thread number
INTEGER bi_arg,bj_arg,k
_RL dTarg
_RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL wVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
_RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
INTEGER myThid
C !OUTPUT PARAMETERS: ==================================================
C wT :: vertical advective flux
_RL wT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
C !LOCAL VARIABLES: ====================================================
C i,j :: loop indices
C kp1 :: =min( k+1 , Nr )
C km1 :: =max( k-1 , 1 )
C km2 :: =max( k-2 , 1 )
C bi,bj :: tile indices or (1,1) depending on use
C Cr :: slope ratio
C Rjm,Rj,Rjp :: differences at i-1,i,i+1
C wFld :: velocity, vertical component
INTEGER i,j,kp1,km1,km2,bi,bj
_RL Cr,Rjm,Rj,Rjp
_RL wFld
C Statement function provides Limiter(Cr)
#include "GAD_FLUX_LIMITER.h"
CEOP
IF (.NOT. multiDimAdvection) THEN
C If using the standard time-stepping/advection schemes (ie. AB-II)
C then the data-structures are all global arrays
bi=bi_arg
bj=bj_arg
ELSE
C otherwise if using the multi-dimensional advection schemes
C then the data-structures are all local arrays except
C for maskC(...) and wVel(...)
bi=1
bj=1
ENDIF
km2=MAX(1,k-2)
km1=MAX(1,k-1)
kp1=MIN(Nr,k+1)
IF ( k.GT.Nr) THEN
DO j=1-Oly,sNy+Oly
DO i=1-Olx,sNx+Olx
wT(i,j) = 0.
ENDDO
ENDDO
ELSE
DO j=1-Oly,sNy+Oly
DO i=1-Olx,sNx+Olx
c wFld = wVel(i,j,k,bi_arg,bj_arg)
wFld = rTrans(i,j)*recip_rA(i,j,bi_arg,bj_arg)
Rjp=(tracer(i,j,kp1,bi,bj)-tracer(i,j,k,bi,bj))
& *maskC(i,j,kp1,bi_arg,bj_arg)
Rj=(tracer(i,j,k,bi,bj)-tracer(i,j,kM1,bi,bj))
Rjm=(tracer(i,j,km1,bi,bj)-tracer(i,j,kM2,bi,bj))
& *maskC(i,j,km2,bi_arg,bj_arg)
IF (Rj.NE.0.) THEN
IF (rTrans(i,j).LT.0.) THEN
Cr=Rjm/Rj
ELSE
Cr=Rjp/Rj
ENDIF
ELSE
IF (rTrans(i,j).LT.0.) THEN
Cr=Rjm*1.E20
ELSE
Cr=Rjp*1.E20
ENDIF
ENDIF
Cr=Limiter(Cr)
wT(i,j) = maskC(i,j,kM1,bi_arg,bj_arg)*(
& rTrans(i,j)*
& (Tracer(i,j,k,bi,bj)+Tracer(i,j,kM1,bi,bj))*0.5 _d 0
& +(ABS(rTrans(i,j))*(1-Cr)
& +rTrans(i,j)*wFld*dTarg*recip_drC(k)
& *Cr
& )*Rj*0.5 _d 0 )
ENDDO
ENDDO
ENDIF
RETURN
END