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1 Overview

Bottom topography,h(x, y), is a major factor in deter-
mining the general circulation of the ocean. It is how-
ever, inaccurately known in many regions, and even
where accurately known, the best way to represent it
in models is obscure. To begin to understand the influ-
ence of errors inh and of misrepresentations of both
resolved and sub-grid scale structures, we employ a
linear barotropic shallow water model in which depth
is used as a control variable. A Gaussian meridional
sill in a zonal channel is employed to explore the ex-
tent to which topographic structure determines the sea-
surface elevation in a steady flow and, more directly,
the information content about the bottom contained in
elevation measurements.
Experiments show that even perfect measurements of
sea-surface elevation in a steady state cannot, by itself,
uniquely determine the full structure ofh, but that as in
most control problems, a priori knowledge of its struc-
ture is necessary. The resolution ofh(x, y) as a func-
tion of position is greatest where the flow velocities are
greatest. Best resolution occurs over the upstream and
downstream flanks of the ridge where the meridional
(not zonal) flow is a maximum. The spatial correlation
between the resolution ofh(x, y) and the flow field is
weaker when noise with realistically large variance is
introduced into the data.
Ultimately, bottom topography will likely be included
generally as a control variable in GCMs of arbitrary
complexity.

2 Shallow Water Model and Adjoint Method
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Figure 1: Steady-state flow field of linear
shallow water equations onβ-plane with
linear parameterization of bottom stress
and zonal wind stressτ (y) = sin πy/Y in a
zonal channel on the southern hemisphere
over idealized topography (Gaussian sill).
Top: zonal section along channel with to-
pography,middle: sea-surface height in
cm,bottom: velocity in cm/s.
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Figure 2: Schematic of the iterative mini-
mization algorithm. The adjoint model is
generated by an automatic differentiation
tool (TAF, Giering and Kaminski, 1998).
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Figure 3: First application of the adjoint
model: gradient of the total volume trans-
port through the channel with respect to
depth, h. The sensitivity of the flow is
largest where the current speed is high
(compare with Fig.1)

.

3 Perfect Data and Prior Error Estimates
A least-squares fit of the model to perfect data
with the objective function

J1 =
1

2

∑

all data

(η − ηd)
2 /σ2

η,

shows that all but2∆x-grid scale components
of the topography are formally observable.
These nullspace components are due to the
numerical scheme of the model.
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Figure 4: Eigenvalues of Hessian matrix of
different objective functions. Penalty terms
ensure convergence of the minimization algo-
rithm and a Hessian matrix with finite condi-
tion number. Without these terms, the spec-
trum has at least one eigenvalue that is nu-
merically zero (corresponding to2∆x-waves).
Penalizing deviations from the first guess to-
pography leads to a smaller condition num-
ber of the Hessian matrix (faster convergence)
than penalizing roughness of the solution.
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Figure 5: With objective function

J2 = J1 +
1

2
(h− h0)

TW(h− h0)

we introduce prior knowledge of the topography’s structure. At the same time the model-data
misfit is no longer perfect.W is the inverse of a prior covariance matrix,h0 a prior estimate of the
topography. The prior sea-surface height error estimateση is constant in space and time. Its value
is ση = 10 cm according to the average combined error of satellite altimetry and an underlying
geoid model (Wunsch and Stammer, 1998).a) By choosingh0 = 0 and off-diagonal terms forW,
we seek smooth solutions. Small eigenvalues (compare Fig.4) dominate the formal posterior error
estimate for depth ( square-root of the diagonal of the inverse Hessian matrix).b) The choice of
W = σ−2

h I and a high prior error of depth ofσh = 200 m weakly penalizes deviations from the
initial guessh0. In this case, the formal posterior error is smallest where current speeds are high.

4 Recovering Depth from Sea-Surface Height Data and a (False) Initial Guess
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b) sea−surface height data with white noise
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Figure 6: Solution of optimizing an objective function that penalized roughness. Top row shows the difference between
optimal depth estimate and true depth, bottom row is the posterior error estimate of the optimal depth.a) Perfect sea-surface
height data, however with a finite weight of1/σ2

η = 1/(10 cm)2, rms(optimal estimate – true depth) = 77 m,b) sea-surface
height data plus white noise with a standard deviation of 10 cm, rms(optimal estimate – true depth) = 95 m.
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b) sea−surface height data with white noise
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Figure 7: Solution of optimizing an objective function that penalized deviations from the initial depth estimate. Top row
shows the difference between optimal depth estimate and true depth, bottom row is the posterior error estimate of the optimal
depth.a) Perfect sea-surface height data, however with a finite weight of1/σ2

η = 1/(10 cm)2, rms(optimal estimate – true
depth) = 9 m,b) sea-surface height data plus white noise with a standard deviation of 10 cm, rms(optimal estimate – true
depth) = 45 m.

5 Discussion and Outlook

• sensitivity of the flow to topography is largest where
current speeds are high;

• prior knowledge about topography is necessary to
overcome a numerical nullspace; a bias towards the
(false) initial guess of topography leads to better
convergence and to a more accurate depth estimate
than penalizing roughness.

• the solution is sensitive to noise in the sea-surface
height data with realistic amplitude.

We present first results from on-going work. Future
delevopments will include:

• use different domains;

• include time dependence, baroclinic effects, more
realistic topography;

• use different types of data;

• optimize depth in a full ocean general circulation
model.
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