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Abstract

Recent developments of the explicit elastic-viscous-plastic (EVP) solvers call for

a new comparison with implicit solvers for the equations of viscous-plastic sea

ice dynamics. In Arctic sea ice simulations, the modified and the adaptive EVP

solvers, and the implicit Jacobian–free Newton–Krylov (JFNK) solver are com-

pared against each other. The adaptive EVP method shows convergence rates

that are generally similar or even better than those of the modified EVP method,

but the convergence of the EVP methods is found to depend dramatically on

the use of the replacement pressure (RP). Apparently, using the RP can affect

the pseudo-elastic waves in the EVP methods by introducing extra non-physical

oscillations so that, in the extreme case, convergence to the VP solution can be

lost altogether. The JFNK solver also suffers from higher failure rates with RP

implying that with RP the momentum equations are stiffer and more difficult

to solve. For practical purposes, both EVP methods can be used efficiently

with an unexpectedly low number of sub-cycling steps without compromising

the solutions. The differences between the RP solutions and the NoRP solutions

(when the RP is not being used) can be reduced with lower thresholds of viscous

regularization at the cost of increasing stiffness of the equations, and hence the

computational costs of solving them.
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1. Introduction1

Sea ice covers only approximately 7% of the global ocean, but it is an im-2

portant contributor to the surface heat budget and hence an important player3

for the Earth’s climate. It undergoes strong annual variations and it is affected4

by climate change about twice as much as globally averaged quantities (Van-5

coppenolle, 2008). Thus, for any application in climate sciences, it is important6

to describe the physics of sea ice accurately. Dynamic and thermodynamic7

processes determine sea ice evolution. While thermodynamic processes lead to8

melting and growth of the ice, sea ice dynamics describe the motion and defor-9

mation of the sea ice pack under the action of wind forces, ocean currents and10

internal ice stresses. We focus on the dynamics of sea ice. Most state-of-the-art11

numerical sea ice model dynamics are based on a quasi-continuum assumption12

and treat sea ice as a non-Newtonian fluid with an appropriate formulation of13

rheology.14

The dynamical nature of sea ice is strongly non-linear (Hibler, 1988), mainly15

due to the strong non-linearity of the internal ice stresses, and encompasses a16

wide variety of ice types and features. Thus, any realistic rheology for sea ice,17

that is the relationship between the internal ice stresses and the ice strain rates,18

leads to a very stiff system of non-linear equations and requires efficient solution19

methods with good numerical convergence properties.20

In spite of recent developments, such as the elastic-plastic-anisotropic (Tsama-21

dos et al., 2013) or the elasto-brittle rheology (Girard et al., 2011, Bouillon and22

Rampal, 2015), the vast majority of sea ice models are based on the viscous-23

plastic (VP) rheology (Hibler, 1979). To our knowledge, an implicit Jacobian-24

free Newton-Krylov (JFNK) solver (Lemieux et al., 2010, 2012, Losch et al.,25

2014) is one of the most efficient way to obtain accurate (machine precision)26
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solutions available today for the highly non-linear VP model, but such a solver27

is still computationally very expensive. In this manuscript we use converged28

JFNK solutions as a reference.29

An alternative is to use fully explicit Elastic-Viscous-Plastic (EVP) schemes30

in which an elasticity term has been added to the stress equation in order to31

relax the restrictive time step limitation of VP-models. In this case, sub-cycling32

within each external time level is applied in order to damp out the artificial33

elastic waves. The idea (Hunke and Dukowicz, 1997, Hunke, 2001) is now widely34

used in numerical sea ice modeling. Losch et al. (2010), Losch and Danilov35

(2012) and Lemieux et al. (2012) showed that the original attempt does not36

converge to the VP solution, and instead produces different deformation fields,37

weaker ice and smaller viscosities. To overcome this issue, Lemieux et al. (2012)38

added an inertial term in the momentum equations. Bouillon et al. (2013)39

reformulated this modified EVP (mEVP) scheme as a pseudo-time iterative40

process, which by construction should converge to the VP solution. Kimmritz41

et al. (2015) formulated a criterion that ensured (linear) convergence of the42

scheme proposed in Bouillon et al. (2013) in a set of experiments with simple43

geometry and forcing.44

In the mEVP method, two constant sub-cycling parameters α and β deter-45

mine the convergence rates of the ice stress and momentum equations to the46

VP solution in the pseudo-time iteration. They need to be sufficiently large,47

typically order of several hundreds, to ensure stability of the scheme. Large48

sub-cycling parameters, however, also mean slower convergence rates and thus49

likely require a larger number of sub-cycling steps NEVP to reach a reasonable50

degree of convergence. Full convergence (i.e. the residuals of the momentum51

and stress equations are reduced to machine precision) requires many thousand52

sub-cycles and has been found to be too expensive to be practical (Kimmritz53

et al., 2015).54

Kimmritz et al. (2016) modified mEVP further and determined the sub-55

cycling parameters locally according to local stability requirements to ensure56

sufficient accuracy of the sub-cycling. In this adaptive EVP (aEVP) scheme, the57
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sub-cycling parameters vary in space and time, while the number of sub-cycling58

steps is kept constant as in the mEVP scheme. The aEVP scheme requires large59

values for the sub-cycling parameters α and β only in a few areas where the ice60

is strong and immobile (Kimmritz et al., 2016). If one accepts poor reduction of61

residuals in these areas (i.e. low convergence), a smaller overall number of sub-62

cycling steps can be used without compromising accuracy almost everywhere63

compared to mEVP.64

A practical performance analysis of aEVP and mEVP with realistic ocean65

geometries and forcing was not a subject of Kimmritz et al. (2016) and is done66

here. We will show that for both explicit schemes we can reproduce solutions67

that are nearly indistinguishable (see below) from reference solutions obtained68

with the converged JFNK solver. Tightly connected to the choice of solution69

techniques is the practical question of selecting the number of sub-cycling steps70

NEVP. Because running the mEVP and aEVP schemes to full convergence is71

computationally very expensive, these schemes, in practice, will be run with72

incomplete convergence. We show that, in order to save computer time, NEVP73

can be reduced well below the value required by formal theoretical consideration74

with only very limited effect on the obtained solutions.75

Another, almost accidental, result emerges that, in contrast to the simple76

test cases in Kimmritz et al. (2016), the convergence of the mEVP and aEVP77

schemes to the VP solution and the performance of the JFNK solver in realistic78

configurations are sensitive to the regularization of the internal ice strength in79

the viscous regime. Hibler (1979) limited large viscosities for very small strain80

rates in the internal stress equations by maximal values thereby introducing81

viscous behavior to the model. Bounding the viscosities from above is almost82

equivalent to limiting the strain rate parameter ∆ from below. In some models83

(including ours), this regularization is implemented by adding a minimum ∆min84

to ∆ (see Section 2 for more details) to yield a smooth regularization (Kreyscher85

et al., 2000). Lemieux et al. (2010) implemented a narrower but still smooth86

transition from the plastic to the viscous regime by regularizing the viscosities87

with a hyperbolic tangent (tanh) function. With regularized viscosities, ice88
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strength gradients (i.e., ice thickness and concentration gradients) lead to creep89

of ice in the absence of forcing. Modifying the compressive strength in analogy90

to the regularized viscosities removes this spurious effect (Hibler and Ip, 1995).91

The physical effect of this so-called replacement pressure (RP) on large scale92

simulations was compared to other rheologies (Geiger et al., 1998), and most,93

if not all, sea ice models use RP to avoid spurious motion. We re-evaluate the94

effects of the replacement pressure in the context of numerical convergence of95

the mEVP and aEVP schemes.96

This article is structured as follows. Section 2 describes the sea ice momen-97

tum equations followed by a brief introduction of solution methods in Section 3.98

Section 4 presents the numerical results. A discussion of the results and the99

conclusions are given in Sections 5 and 6.100

2. Description of model sea ice dynamics101

The dynamics of sea ice is governed by the sea ice momentum balance102

m(∂t + fk×)u = τ a + τ o −mg∇H + F, (1)

where m is the ice (plus snow) mass per unit area, f is the Coriolis parameter,103

k the vertical unit vector, u the ice velocity, τ a and τ o the wind and ocean104

stresses, g the acceleration due to gravity, H the sea ice surface elevation, and105

F = ∇ · σ the divergence of internal stresses in sea ice. In our implementation,106

τ a is independent of the ice velocities. The ocean stress is prescribed by τ o =107

−Cdρo(u − uo)|u − uo| with ocean–ice drag Cd, ocean water density ρo and108

ocean velocity uo.109

The viscous plastic constitutive law is given by110

σij(u) = 2ηε̇ij +

[
(ζ − η)ε̇kk −

P

2

]
δij (2)

with the strain rates111

ε̇ij =
1

2
(∂iuj + ∂jui) (3)

where the indices i and j denote the x and y directions. The ice strength P is112

parameterized as P = P ∗ h a e−c∗(1−a), where a is the ice concentration (or ice113
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compactness) and h is the mean thickness of the grid cell; the constants P ∗ and114

c∗ are set to 27500 Nm−2 and 20 (Lemieux et al., 2010). The bulk and shear115

viscosities are given by ζ = P/(2∆) and η = ζ/e2, such that the stress states lie116

on an elliptic yield curve with the ratio of the semi-major and the semi-minor117

axis e = 2. The parameter ∆ is defined as ∆ = (ε̇2d + e−2ε̇2s)1/2 with divergence118

ε̇d = ε̇11 + ε̇22 and shear ε̇s = ((ε̇11 − ε̇22)2 + 4ε̇212)1/2.119

Thus, the ice is presumed to act as a plastic material, unless the shear and120

the divergence are very small. If the deformation parameter ∆ is below a given121

threshold (∆ < ∆min), the ice is treated as a linear-viscous fluid. We implement122

this by replacing ∆ with ∆reg = ∆ + ∆min in the definition of ζ and η.123

In the case of small strain rates and non-uniform P , changes in the internal124

ice stress P introduce a slow creep towards equilibrium even if no external forces125

are being imposed. Hibler and Ip (1995) introduced the so called replacement126

pressure (RP) Pr = 2∆ζ = P∆/(∆ + ∆min) to remove this unphysical effect of127

unforced spontaneous viscous creep. The constitutive law then reads128

σij(u) = 2ηε̇ij +

[
(ζ − η)ε̇kkδij −

Pr

2

]
δij . (4)

Note, that Pr is smaller than P in the viscous regime as the strain rates, and129

hence ∆, tend to zero.130

RP is used in virtually all VP models. But because the RP can become131

small in immobile pack ice, this parameterization may also lead to too low resis-132

tance against compression. This can occur for instance when pack ice is pushed133

against a boundary and then piles up infinitely. Further, we will show that with134

RP extra pseudo-elastic waves are generated in the EVP case by the pressure135

gradients that lead to additional instabilities. We denote the formulation which136

uses equation (4) as RP, and the set of equations which use equation (2) as137

NoRP. It should be stressed that the RP and NoRP cases are only different138

when ∆ is small (order ∆min or less), that is, in the viscous regime. The differ-139

ence is therefore related to the regularization and depends on the magnitude of140

∆min.141
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3. Numerical schemes142

Both EVP schemes and the JFNK scheme use the same temporal discreti-143

sation. Let ∆t be the time step length and n the index of the time level. Ice144

velocities at time level n are computed from the ice concentration, ice and snow145

thicknesses, the ocean velocity and elevation at time level n−1 using an implicit146

Euler scheme. Dropping the time index for all but the ice velocity, we write:147

m(un − un−1)∆t−1 =−mfk× un − Cdρo(un − uo)|un − uo|

+ R +∇ · σ(un)
(5)

where R includes the ice-air drag and the sea surface tilt. The stress tensor148

σ(un) for NoRP or RP is given by (2) or (4). The momentum equations are149

discretized in space on a C grid (Losch et al., 2010).150

3.1. JFNK solver151

After spatial discretization, the N components of the discrete u- and v-152

velocities can be stacked into an N -dimensional vector u, and the nonlinear153

equation (5) can be written in vector-matrix form as154

A(un)un = b(un), (6)

where A is an N×N matrix and b an N -dimensional vector. In order to find an155

approximate solution u∗ to this equation within a given tolerance, the JFNK156

solver uses a Newton method to determine the minimum of the norm of the157

residual F = A(u)u − b(u). The linearized Newton problem is solved with158

a Krylov method (here the Flexible Generalized Minimum RESidual method159

(FGMRES, Saad, 1993) with right-hand side preconditioning). Further details160

of the JFNK solver, in particular the preconditioner for the FGMRES method,161

can be found in Lemieux et al. (2012), Losch et al. (2014).162

3.2. EVP schemes163

The modified EVP scheme can be thought of as an iterative explicit scheme164

solving (5) through sub-cycling (Lemieux et al., 2012, Bouillon et al., 2013).165
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The p-th level of the sub-cycling in the mEVP scheme to determine the solution166

un from time level n− 1 reads167

σp+1 − σp = α−1
(
σ(up)− σp

)
, (7)

up+1 − up = β−1
(∆t

m
∇ · σp+1 +

∆t

m
Rp+1/2 + un−1 − up

)
. (8)

The term Rp+1/2 contains the Coriolis forces, the contributions from the wind168

and ocean stresses and the sea surface tilt. The sea ice - ocean drag is lin-169

earized as Cdρo|uo − up|(uo − up+1). The initial values of the sub-cycling are170

(σ0,u0) = (σn−1,un−1). Once converged ((σp+1,up+1) ≈ (σp,up)), the sys-171

tem provides the solution to (5) as un = up+1. For convergence, the relaxation172

parameters α and β need to be large enough to make the iterative scheme stable173

(to be determined experimentally) and the number NEVP of p-iterations, which174

is constant through the entire domain, should be large compared to α and β.175

In the mEVP method, these constraints for α and β are global, and the most176

critical region sets the constraint for the entire simulation. As will be shown177

experimentally, α = β = 300 is large enough for the experiments in this study178

and we will use these parameter values from now on.179

The aEVP scheme (Kimmritz et al., 2016) is a variant of the mEVP scheme.180

In order to guarantee stability of the iteration, the relaxation parameters α and181

β are computed to satisfy the local stability criterion182

αβ > γ = ζ
(c π)2

Ac

∆t

m
(9)

in each iteration step. The term (c π)2/Ac with area Ac of the local grid cell183

and factor c accounts for the eigenvalues of the Laplacian operator. We use184

c = 0.5. To satisfy the stability criterion (9), we set α = β = (4γ)1/2. α is185

also limited from below by a value of 50 to control the accuracy of pseudo-time186

sub-cycling for weak ice. We note that the right-hand-side of (9) depends on187

known quantities. Thus the use of varying α and β involves negligible additional188

costs. NEVP is kept constant in the entire integration domain, but may vary189

as a function of external time steps. Varying NEVP in space would break time190

synchronism of computations.191
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NEVP should be much larger than α, for example, a multiple of α, to guar-192

antee sufficient accuracy of the EVP solution. For α = 300, this would lead to193

an expensive sea ice solver. In this work we will explore the impact of lower194

NEVP on the quality of the EVP solution. This will also include very low values195

for NEVP < 200, which are way below the suggestion made in Kimmritz et al.196

(2016).197

In practice, the aEVP scheme leads to much lower values of α and β than198

used in the mEVP scheme in most parts of the domain, allowing faster local199

convergence. The formal convergence may be lost in a few localized areas with200

very thick and immobile ice, but since ice velocities will be small in these cases,201

the errors incurred are expected to be small. Examples are given in the following202

sections.203

3.3. Model setup204

Our regional model is based on the MITgcm (Marshall et al., 1997, MIT-205

gcm Group, 2016). The domain covers the Arctic, the North Atlantic and the206

Canadian Arctic Archipelago (CAA). In the Atlantic sector the domain reaches207

down to 50N in the center and to 45N near the corners of the domain. In the208

Pacific sector the domain boundaries are located at about 69N (south of the209

Bering Strait). We use a quarter degree grid with a horizontal grid spacing of210

about 27 km and 33 vertical levels. The grid is rotated so that the grid equator211

runs through the North Pole. The same model configuration has been used and212

described in Castro-Morales et al. (2014). We only repeat relevant details here.213

The setup is forced with atmospheric fields of the Climate Forecast System214

Reanalysis (NCEP–CFSR) (Saha et al., 2010). The sea ice model uses sim-215

ple zero-layer thermodynamics and two thickness categories (thick ice and thin216

ice including open water as in Hibler, 1979), but provides different VP solvers217

(Losch et al., 2010, 2014, Kimmritz et al., 2016). The available options are the218

JFNK solver, the mEVP and aEVP schemes.219

We use no-slip/no-flow boundary conditions for the ice drift velocities and220

no-flux conditions for thickness and concentration at land boundaries. For the221
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open boundaries near 55◦N we impose von-Neumann conditions for drift veloc-222

ities and zero Dirichlet conditions for thickness and concentration; hence P is223

also zero at open boundaries. The model is run with different solvers for sea ice224

dynamics (mEVP, aEVP, and JFNK) over an integration period of six years.225

All experiments are started from a restart file on Jan 01, 1993 after a 35-year226

spinup run with the JFNK solver using RP.227

4. Results228

4.1. Performance of the explicit schemes229

Reaching full convergence of the mEVP and aEVP schemes is too expensive230

for all practical purposes (see Kimmritz et al., 2015, 2016). We run simulations231

using both mEVP and aEVP and a range of values of sub-cycling time steps232

that are numerically affordable (NEVP = 500, 300, 200, 100, 50.). We do this in233

order to explore the consequences of incomplete convergence at each external234

(advective) time level.235

The schemes use the NoRP method (we will examine the differences between236

the NoRP and RP cases in the next section). For the regularization of the in-237

ternal ice stresses we use ∆min = 2 × 10−9 s−1. Figure 1 shows the residual238

β|up+1 − up| of the momentum equation related to the zonal velocity compo-239

nent after one month of integration for the mEVP and the aEVP scheme using240

NEVP = 50 and 500. The residual characterizes the accuracy of the balance241

between the terms within the round brackets in (8). For aEVP, the residuals242

are about one order of magnitude smaller than for mEVP. The mean absolute243

aEVP residual for NEVP = 50 is similar in magnitue to the mean absolute244

mEVP residual for NEVP between 200 and 300.245

The smaller residuals of the aEVP scheme, according to equation (9), are246

due to the much lower values of α and β (and thus faster local convergence) in247

most areas of the ice covered region. We illustrate this in Fig. 2(a – b) with248

two spatial maps showing the field of α for the month of March and September249

1993; other years are similar as the timeseries in Fig. 2(c) indicates. The spatial250
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distribution of α shows little sensitivity to NEVP in the range of 50 to 500. Note251

that no upper bound on α is imposed.252

In winter conditions, the constraint (9) requires high values for α of about 300253

in some areas (i.e., the CAA and sporadically other coasts) and also locally in254

the central Arctic. Elsewhere, the values of α are about 100 or less (remember255

that α is limited from below by a value of 50 to control the accuracy of pseudo-256

time sub-cycling for weak ice).257

The CAA is characterized by land-fast ice in straits (Howell et al., 2016),258

multi year ice, with fewer keels and ridging, and high summer ice concentrations259

(Melling, 2002). Although these details are not parametrized nor resolved in our260

model, the simulated winter sea ice in the CAA is also rather compact, immobile261

and characterized by small values of ∆.262

As a consequence, the stability parameter α selected by the aEVP scheme is263

large in the CAA in winter (see Fig. 2), which results in similar residual errors264

as shown by the mEVP scheme. For NEVP = 50, shown in Fig. 1(a – b), the265

mEVP and aEVP schemes are far from converged. The residual errors in the266

CAA prove to be smaller than in the open ocean because the ice velocities in the267

CAA are small. For NEVP = 500 (Fig. 1(c – d)), the aEVP scheme demonstrates268

better convergence in the open ocean, and the situation reverses.269

In summer conditions, α drops to its lower bound over most of the ice covered270

areas, including the CAA. The small values of α in most of the domain also271

explain why one may hope to reach a reasonable behavior of the aEVP scheme272

with relatively low NEVP. As the maximum values of α obtained for the aEVP273

scheme (Fig. 2(c)) are of about 300, using the values α = β = 300 for the mEVP274

scheme is sufficient to maintain stability and results in optimal convergence275

rates.276

Now we compare the solutions obtained with mEVP and aEVP with mod-277

erate NEVP to a reference obtained with the converged JFNK solver in order to278

assess the quality of the incompletely converged EVP solutions. Therefore we279

use two metrics: In order to indicate the errors in the mass field, which stem280

from the inaccuracies in the velocity field, we consider monthly mean values of281
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the ice thickness field. To evaluate the error in the ice solver for the highly282

non-linear ice dynamics, we analyse the states of ∆ on particular time levels.283

This field reflects the errors in both divergence and shear. Furthermore, it also284

indicates where the viscous regularization takes place. Figure 3 shows the solu-285

tions (panels (a) – (d) for NEVP = 50 and panels (e) – (h) for NEVP = 200) for286

March 1997 when differences with respect to the JFNK solution have already287

accumulated over about five years of integration. Although the differences in288

thickness (left column) are larger for lower NEVP, they are small compared to289

both the magnitude of thickness in the reference solution and the uncertainties290

in satellite observations of sea ice thickness. The latter depend on the type of ob-291

servational data and may easily reach tens of centimeters (Zygmuntowska et al.,292

2014, Kwok and Rothrock, 2009). For more information, see also e.g. Alexandrov293

et al. (2010), Kaleschke et al. (2012). The same is true for the ice concentration294

fields (not shown).295

Further, mEVP and aEVP give similar results. As expected, the differ-296

ences to the JFNK solution are higher for mEVP. Note, for example, the better297

agreement between aEVP and the reference for ∆ in the Kara Sea. Although298

initially (in the first winter season) the aEVP shows smaller errors, the summer299

season, when the contribution from rheology is less important, makes the error300

comparable and they remain so for the rest of the simulation. The colorbar in301

Figure 3 hides anomalously high differences that can be found sporadically over302

very localized areas in the marginal ice zone and at points adjacent to the coast.303

In Table 1 we present the errors for the Central Arctic (aice > 0.8) and for the304

marginal ice zones (aice < 0.8) for March 1997 separately. The errors are larger305

in the marginal ice zones, especially for the ∆ field. They are partly linked to306

larger ice velocities, so that the advection of accumulated errors become more307

important. Except for the ice margin, the errors of both schemes drop down308

when the number of sub-cycles is increased, with errors staying smaller for309

aEVP. In the interior Arctic, the mean absolute differences between solutions310

remain small for the entire integration. For ice thickness, they are generally311

smaller than 1 cm, for concentration below 0.5% points, and for ice drift below312
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aice < 0.8 aice > 0.8

NEVP mEVP aEVP mEVP aEVP

||h− href ||
50 7.3 7.4 1.1 0.92

200 7.3 5.2 0.99 0.76

||∆−∆ref ||
50 4.2× 10−7 3.9× 10−7 2.6× 10−8 1.6× 10−8

200 3.5× 10−7 3.5× 10−7 1.7× 10−8 1.3× 10−8

Table 1: Mean absolute differences for March 1997 in the ice thickness (in cm) and in the ∆

field (in s−1) between the reference solution and the mEVP and the aEVP scheme for different

choices of NEVP in areas with different ice concentrations.

aice < 0.8 aice > 0.8

NEVP mEVP aEVP mEVP aEVP

||h− href ||
50 0.41 0.31 1.4 0.69

200 0.95 0.87 0.72 0.54

||∆−∆ref ||
50 1.3× 10−7 1.3× 10−7 1.4× 10−8 1.2× 10−9

200 1.2× 10−7 1.2× 10−7 9.1× 10−9 8.0× 10−9

||aice − aice,ref ||
50 0.84 0.64 0.50 0.34

200 1.6 1.4 0.27 0.23

||u− uref ||
50 0.76 0.79 8.8× 10−2 6.8× 10−2

200 0.65 0.66 5.2× 10−2 4.5× 10−2

||v − vref ||
50 0.94 0.91 8.4× 10−2 6.2× 10−2

200 0.74 0.72 4.4× 10−2 3.8× 10−2

Table 2: Mean absolute differences as average over the entire period in the ice thickness (in

cm), in the ∆ field (in s−1), in the ice concentration (in %), and in the horizontal velocities

u and v (in cm s−1) between the reference solution and the mEVP and the aEVP scheme for

different choices of NEVP in areas with different ice concentrations.
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1 mm s−1 (Table 2). The differences are up to one order magnitude larger in the313

marginal ice zone; except for ice thickness, because the ice is generally thinner314

in these regions than in the Central Arctic.315

The aEVP scheme allows smaller values of α over large parts of the Arctic316

which improves the convergence locally. In contrast, the mEVP scheme uses317

large α everywhere, which slows down the convergence in the regions where318

stability constraints do not require α to be large.319

Figure 4 depicts the timeseries of the absolute differences of the mean ice320

thickness between the JFNK solution and the EVP solutions for the entire period321

of integration. It shows that the differences for the aEVP and mEVP schemes322

accumulate with time, with stronger accumulation rate for smaller NEVP (com-323

pare panels (a) and (b)). During the first year of integration the mEVP solutions324

tend to be more sensitive to the choice of NEVP than the aEVP solutions. Ini-325

tially the aEVP scheme simulates smaller errors, but with time, the accumulated326

model errors make the differences of mEVP and aEVP similar to each other.327

The runs with smaller NEVP show larger deviations from the reference solution.328

But even for NEVP = 50, the aEVP and the mEVP solutions are of comparable329

accuracy. For larger values of α = β = 500, the mEVP solution shows larger330

deviations from the reference solution when NEVP becomes smaller, because331

with large α and β the convergence rates are low (not shown).332

Note that within the first year of integration the largest increase in the333

error for the aEVP scheme takes place in summer when the internal ice stresses334

are least important. It is thus likely that small errors in the velocity field335

are amplified by chaotic advection in summer, when the rheology only plays a336

minor role and the impact of oceanic and atmospheric surface stress terms on337

the momentum balance is increased. The results for the ice concentration and338

the ∆ fields are similar (not shown).339

In summary, for the given setup the partial convergence of mEVP and aEVP340

(the use of small values for NEVP) does not lead to significant errors (relative341

to the JFNK solutions), as long as the stability of the iterative process is main-342

tained. The overall deviations from the reference solution are small and tend to343
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be less for aEVP but both solvers show more similarity than differences. That344

is, the development of the mean absolute deviation from the reference solution345

shows the same trend for aEVP and mEVP after the first winter season with346

aEVP being slightly closer to the reference solution. The spatial distribution347

of the ice concentration, ice thickness and the ∆-field agree in structure and348

magnitude with improved agreement for larger NEVP.349

4.2. The impact of the pressure replacement method350

The pressure replacement method (Hibler and Ip, 1995) prevents sea ice from351

viscous creep in the absence of external forcing. Here, we are interested in the352

impact of RP and NoRP on the ice state and the convergence of the JFNK,353

mEVP and aEVP schemes. The following results are obtained with the JFNK354

solver that we call converged when the residual has been reduced by a factor355

of 10−4. A failure of a Newton iteration is registered, when the residual is not356

reduced by this factor within 100 Newton iterations; a maximum number of 50357

Krylov steps per Newton step is used (see Lemieux et al., 2012, Losch et al.,358

2014, for details). We start with the examination of the ice state simulated with359

and without RP. Numerical aspects will be considered afterwards.360

4.2.1. Impact on the ice state361

Figure 5 illustrates the differences between the NoRP and the RP solutions362

by the example of mean 1997-March values of ice thicknesses (panels (a) – (f))363

and ∆ fields (panels (g) – (l)). In this figure we focus on the northern CAA364

and the Lincoln Sea, as the impact of RP is most prominent in that area. We365

start with the case ∆min = 2 · 10−9s−1 (Hibler and Ip, 1995) ( Fig. 5(a – c) and366

Fig. 5(g – i)).367

In winter, very thick ice of locally up to 12 m is formed in the Lincoln Sea368

for RP. In contrast, for NoRP, the ice is thinner by 0.2− 0.4 m in a large region369

extending from the northern part of the Nares Strait (Robeson Channel) into370

the Lincoln Sea, and largest local values drop to about 9m (while not necessarily371

realistic, such local values are commonly simulated by sea ice models of the type372
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used here). This is so because, in contrast to the RP simulation, in the NoRP373

simulation immobile ice with differing ice thicknesses undergoes (slow) creep.374

Thus, there is more ice transport through the Nares Strait (compare eqs. (2)375

and (4) in the viscous regime, ∆ � ∆min, in the presence of ice thickness376

gradients), so that a trough of thinner ice extends from the Robeson Channel377

into the Lincoln Sea. This trough forms already in the first year of the model run378

(not shown) and persists throughout the entire simulation. Differences between379

RP and NoRP in ∆ (Fig. 5(g – i)) are from about 1% to 10%, both in the380

interior and in the weaker ice zones. In analogy with the ice thickness fields, the381

values for ∆ in the Nares Strait are lower for RP than for NoRP. Furthermore,382

for RP values of ∆ lower than 10−9 s−1 (viscous regime) are only found in the383

CAA. For NoRP such low values are also found at the northern boundary of384

the CAA, which agrees with the thinner ice simulated there.385

The viscous regime represents a regularization so that smaller values of the386

regularization parameter ∆min should lead to smaller differences between the387

two cases. This is seen in Fig. 5(d – f) – and Fig. 5(j – l), where we used ∆min =388

2 · 10−11 s−1 (two orders of magnitude smaller than before). The maximum389

thicknesses for this choice of ∆min are 12 m and 10.7 m for RP and NoRP.390

These values are closer to each other and closer to the RP case with larger391

∆min = 2 · 10−9 s−1. There is no trough in the Robeson Channel in the NoRP392

case. Compared to the larger ∆min-case, the differences in the ∆ fields are now393

about one to two orders of magnitudes smaller in regions where ∆ is small. The394

viscous regularization is active at fewer times and only in very small areas; the395

system remains in a plastic state for a wider range of ∆ values.396

Polynyas in the Nares Strait can be found in satellite images (e.g. Adams,397

2012). These polynyas or regions of thin ice can reach the northern entrance of398

the strait and even protrude as a tongue into the Lincoln Sea (Allison, 2013). In399

some winters, a stable ice bridge forms at this entrance to the CAA and blocks400

any transport into the Nares Strait (Allison, 2013). This situation is similar in401

the ICESat-derived ice thickness estimates (Maslanik et al., 2007, their Fig. 3d):402

As in our RP simulations stronger ice is formed in the Lincoln Sea instead of403
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RP09 NoRP09 RP11 NoRP11

# Krylov steps 1.10 · 107 6.32 · 106 1.76 · 107 1.53 · 107

# Newton steps 1.26 · 106 9.96 · 105 2.35 · 106 2.05 · 106

# Newton failures 52 5 243 109

Table 3: Accumulated numbers of Krylov and Newton steps and number of failures for RP

and NoRP cases using ∆min = 2 · 10−9 s−1 (center block) and ∆min = 2 · 10−11 s−1 (right

block) for the years 1993 – 1997.

a trough. Allison (2013) also reports cases where this bridge did not form and404

ice was transported southwards through the strait. Furthermore, the ICESat405

data for sea ice thickness in spring (Kwok and Cunningham, 2008, their Fig. 11)406

do not rule out a trough extending into the Lincoln Sea similar to our NoRP407

solutions, although in our simulation this trough is much larger.408

4.2.2. Numerical aspects409

In this section we discuss the numerical properties of the schemes. Although410

the detected issues might not affect the quality of the solutions for the coarse res-411

olution simulations (here, approximately 27 km grid spacing), they may become412

more important in simulations on finer meshes (5 km grid spacing or smaller).413

On finer meshes more dynamical features of the ice are expected to be resolved414

with larger gradients in the solutions. This may impose new requirements on415

the convergences of the solvers.416

We start with the implicit JFNK solver. Table 3 lists the numbers of Krylov417

and Newton steps and failures accumulated over the entire integration period.418

For ∆min = 2 · 10−9 s−1 the RP case requires almost twice as many Krylov419

steps and about one third more Newton steps than the NoRP case, and the420

numbers of failures of a Newton iteration is much larger in the RP compared421

to the NoRP case (note that 243 failures in 6 years of integration with timestep422

length of 20 minutes is a failure rate of 1.5o/oo). A hundred times smaller ∆min =423

2·10−11 s−1 doubles the number of solver steps and strongly increases the number424

of failures. The increase for RP is not as large as for NoRP, but the scheme still425
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remains more expensive with RP and the number of failures is still larger than426

in the NoRP case.427

For the explicit EVP schemes (where we use a fixed number of sub-cycling428

steps) the effect of the RP on the convergence is not less dramatic. Both the429

mEVP and aEVP schemes converge to machine precision after 60000 sub-cycling430

steps only with NoRP (Fig. 6). The corresponding patterns of the residuals for431

the u component of the momentum balance are depicted in Figure 7. The resid-432

uals in the NoRP case are grid scale noise on the order of machine precision, but433

for RP the regions with very low values of ∆� ∆min (compare with Figure 5)434

appear to act as the sources of propagating pseudo-elastic waves. These waves,435

which, by construction, do not appear in the VP solver, are supported because436

sea ice in the viscous regime is also compressible (Hunke and Dukowicz, 1997).437

Potentially they lead to grid scale noise. The fact that they are coming from438

the regions with very small ∆ point to the involvement of RP in the source439

mechanism.440

As the waves in the residual fields are still apparent for very large values441

of α = β up to 5 · 104 (not shown here), we claim that convergence down442

to machine accuracy of the mEVP and aEVP schemes is generally lost if the443

replacement pressure is used. A plausible reason for the differing convergence444

behaviors of NoRP and RP can be seen by considering the stress contribution445

in the momentum in the case when ∆� ∆min. In the RP case, the ice strength446

is multiplied with ∆/∆min and fluctuates in the process of iterations. It stays447

constant for NoRP, thus providing balance with external forcing. No persistent448

elastic waves appear in the NoRP scheme which supports this attempt of a449

qualitative explanation.450

The formal loss of convergence, however, does not necessarily imply that the451

solutions are compromised. The residual reduction in the first 500 sub-cycling452

steps is of the same order in both the RP and NoRP cases (Figure 6). Thus, the453

elastic waves in both schemes are likely damped to a comparable extent during454

the first 500 sub-cycling steps. The choice of α = β = 300 and NEVP = 500455

ensures a convergence towards the VP solution for both the RP and NoRP cases.456
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Figure 8 shows snapshots of ∆ for ∆min = 2 · 10−9 s−1 of the JFNK and the457

mEVP scheme at the end of the first month. In the CAA and for RP, the mEVP458

solution shows slightly larger values of ∆ than in the reference solution; note459

that the patterns of ∆ for RP and NoRP are very similar over the major part460

of the domain. Differences occur in regions with low values of ∆. Although the461

EVP solutions might be close to the JFNK solutions even if their convergence462

is impaired by using RP, applying an EVP method requires awareness of its463

potentially critical tendency to have wave signals in the residuals.464

If one minimizes the difference between RP and NoRP by choosing smaller465

values of ∆min larger values of the stability parameters and hence more iterations466

are necessary. For example, for ∆min = 2 · 10−11 s−1, values of α = β should467

be as large as 3000 to ensure a stable mEVP scheme. Large α and β slow468

down convergence, so that for values of 3000, 500 sub-cycling steps are not469

sufficient to get acceptable solutions. Even with NEVP = 5000, ∆ is too small470

in areas of almost immobile ice for both mEVP and aEVP compared to the471

reference solution (not shown), so that even more—too many—sub-cycling steps472

are required for acceptable convergence. In summary, too low values of ∆min473

make the momentum equations harder to solve, so that the EVP schemes become474

prohibitively expensive and loose their advantages.475

5. Discussion476

The discussion of the replacement pressure was prompted by the observation477

that the convergence of mEVP and aEVP solvers is compromised in realistic478

configurations when the replacement pressure is used. In both cases, the conver-479

gence rate for RP is affected by the stronger singularity (non-differentiability)480

of the internal ice strength term in the viscous regime, that is, by the additional481

non-linear factor ∆/(∆ + ∆min). With lower values of ∆min the system does482

not enter the viscous regime as often, so that the RP and NoRP cases are more483

similar.484

The JFNK solver is also sensitive to the use of the replacement pressure,485

19



that is, it requires more iterations with replacement pressure than without.486

The observed increase in the number of iterations with the reduction of ∆min487

is consistent with the general sensitivity of the JFNK solver to details of the488

regularization (e.g., Lemieux et al., 2010). The notably less efficient convergence489

in the RP case is a new behavior that has not been reported so far. It is related490

to the presence of the ∆/(∆+∆min) multiplier in the internal ice strength term.491

The mEVP and aEVP solvers converge through the propagation of decaying492

pseudo-elastic waves. For NoRP, the ice strength is constant within one time493

step, thus providing balance with external forcing in situations when immobile494

ice is being pushed against the coastline. In the viscous regime when ∆� ∆min,495

the RP ice strength is scaled effectively with ∆/∆reg and hence changes from496

iteration to iteration, so that no stable balance with the forcing can develop.497

As a result, the areas in the CAA of very small ∆ are sources of wave noise that498

propagates and occupies a large portion of the ice-covered domain. Any sub-499

stantial reduction of ∆min that would minimize areas of viscous regularization500

cannot be recommended because it would require larger α, β, and NEVP. We501

saw that in spite of the formal lack of convergence of the EVP solvers in the502

RP case the solutions appear useful. This statement may change with higher503

spatial resolution when linear kinematic features may be (partly) resolved and504

the ice fields become highly heterogeneous and variable (e.g. Wang and Wang,505

2009, Losch et al., 2014, Wang et al., 2016).506

The NoRP approach appears to have numerical advantages, but solutions507

with and without RP are also different. On the one hand, the RP method leads508

to thicker ice especially in areas where ice “gets stuck” in narrow straits and509

bays and is already unrealistically thick. This behavior can be explained by the510

factor ∆/(∆ + ∆min) that tends towards zero in nearly immobile ice with no511

strain. The RP is then too small to resist further (slow) compression and ice512

piles up, for example when pushed towards the coast. On the other hand, the513

unphysical aspect of the NoRP method leads to unforced motion of ice that the514

RP method was designed to avoid. In addition, in our simulations, the more515

plausible behavior in onshore wind conditions without replacement pressure, i.e.516
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larger compressive strength, leads to ice fields sea-ward of the Nares Strait that517

appear unrealistic.518

In our simulations, the NoRP solutions are more sensitive to the value of519

∆min than the RP solution. For smaller values of ∆min, the differences between520

RP and NoRP solutions are smaller (Fig. 5). Further, with ∆min = 2 ·10−11 s−1,521

both solutions agree with the RP solution with ∆min = 2 · 10−9 s−1, indicating522

that the RP solutions are preferable. In particular, the spurious ice trough in523

the Nares Strait in the NoRP solution disappears with smaller ∆min. The sen-524

sitivity of the solutions to details of the stress parametrization also raises the525

question of the general validity of the VP rheology. The replacement pressure526

is one parameterization among many in a sea ice model. Like any other pa-527

rameterization it requires careful tuning with the help of observations. Such a528

multi-dimensional tuning exercise, which would require comprehensive observa-529

tional data set, inverse methods and data assimilation techniques, is beyond the530

scope of this manuscript531

The very similar performance of mEVP and aEVP and the apparent agree-532

ment with the reference with very low NEVP (much lower than suggested by α533

and β) came as a surprise. Most likely, it can be explained by the relatively534

smooth ice distributions of our coarse resolution experiments. On finer meshes,535

the ice thickness and concentration is expected to be permeated by numerous536

linear kinematic features (leads in the limit of high resolution) (e.g. Wang and537

Wang, 2009, Losch et al., 2014, Wang et al., 2016). In this case, the sea ice is538

characterized by larger gradients, making the solution of the momentum equa-539

tions more difficult to obtain. For the EVP schemes this means that large values540

of NEVP consistent with α and β may become necessary to reach a sufficient541

degree of convergence.542

The numerical efficiency of the solvers is difficult to compare. Lemieux543

et al. (2012) report similar computational efficiency of the JFNK and the EVP544

method, with comparably slow convergence, in their serial computations with545

grid spacings between 80 km and 10 km. Refining the meshes will require in-546

creasing NEVP for the explicit schemes; for the JFNK solver, a higher resolution547
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can lead to more Krylov and Newton iterations. Lemieux et al. (2010) found548

a higher failure rate of the JFNK solver with higher resolution; their highest549

resolution is 10 km. We speculate that convergence becomes a technical issue550

when the grid spacing is fine enough to resolve multiple highly localized de-551

formation zones (leads). In our experience, this starts with a grid spacing of552

∼ 5 km. In parallel applications, the EVP solvers are expected to scale better553

than any implicit solver, but even for the JFNK solver, which involves many554

global communications, good scaling behavior was found for up to 1000 CPUs555

on a 1680× 1536 grid with 4.5 km grid spacing (Losch et al., 2014).556

When only low accuracy is sufficient, the mEVP and aEVP solutions ob-557

tained with NEVP as low as 50–300 are faster than a converged JFNK solution.558

However, the convergence of the linear EVP schemes is slow (linear) and the559

quadratic convergence of the JFNK solver will be required as soon as high560

numerical accuracy is needed. As the resolution is refined and more local fea-561

tures are resolved, the underlying problem becomes more difficult to solve and562

the number of iterations required for acceptable convergence of the mEVP and563

aEVP solvers may increase substantially; likewise, the computational efforts of564

the JFNK solver will increase. For a grid spacing of 4.5 km, very small time565

steps on the order of seconds were required to make the JFNK-solver converge566

(Losch et al., 2014). In exploratory test simulations with this grid, the mEVP567

solver did not converge for the tested values of α and β. Most likely, much568

higher values of α and β are required which in turn will require more iteration569

cycles NEVP. It is even unclear whether or not convergence of any scheme is570

even possible at very high resolution, so that any definite statements about the571

relative efficiency of different numerical schemes have to be postponed. In any572

case, the relative cost of the sea ice component increases together with the re-573

quired accuracy, that is, the number of sub-cycles for mEVP and aEVP and574

with iterations in the JFNK solver. In the light of the current practice of just a575

few non-linear iterations in sub-optimal solvers or non-converging EVP imple-576

mentations (e.g. Losch and Danilov, 2012), any improvement towards smoother577

solutions and stable solvers should be seen as a step forward.578
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6. Conclusions579

Both the modified and the adaptive EVP solvers (mEVP, aEVP) can, in580

realistic simulations of Arctic sea ice at a coarse resolution of 27 km, generate581

solutions that are close to a converged reference VP solution obtained with582

a JFNK solver. Both mEVP and aEVP solvers can even be run with NEVP583

much smaller than formally required for numerical convergence and still arrive584

at solutions that differ from the reference solution only in details that for most585

practical applications will go unnoticed. For example, in the interior Arctic,586

the mean absolute ice thickness differences, where ice concentrations are larger587

than 80%, are smaller than 1.5 cm; for the ice concentration, they are smaller588

than 0.5%, and for the velocity they are less than 1 mm s1. Only in the dynamic589

margical ice zone, where temporal variability is high and models can diverge590

from each other, the mean absolute differences in the ice concentration and in591

ice velocities reach 1.6% and 1 cm s1 on average. We do not expect, that these592

conclusions can be extrapolated to finer resolution and more variable forcing593

fields, but in any forced sea-ice ocean only simulations at coarse resolution,594

the differences between solvers are likely to remain small. In coupled climate595

simulations with atmospheric feedbacks, however, these differences may grow596

and become more significant. We also show that in practice the advantage of597

locally smaller α and β in the aEVP solver does not lead to large improvements598

in the solution. We give preference to aEVP, because this solver usually reduces599

the equation residual more than mEVP with the same number of iterations and600

because the extra computational effort is low.601

We found that without replacement pressure (NoRP) all solvers are more602

stable and converge faster than with replacement pressure (RP). The replace-603

ment pressure can be a source of noise in the residuals of the EVP solvers,604

eventually impeding full convergence. Hence, from the purely numerical point605

of view, the NoRP scheme with a moderately small value of ∆min = 2 · 10−9 s−1
606

offers the advantage of faster convergence, but this is not necessarily supported607

by physical arguments. We refrain from giving any new recommendations about608
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the value of ∆min or the use of RP based on physical arguments, but any user of609

sea ice models should be aware of the parameter choices and their consequences.610
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Figure 1: Absolute values of the residuals in the momentum equation for the zonal velocity
component (in m s−1) after one month of integration at the end of January 1993 for the
mEVP (with α = β = 300) and the aEVP scheme for NEVP = 50 (panels (a) and (b)) and
NEVP = 500 (panels (c) and (d)). The residuals have the same units as the velocity.
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Figure 2: The α field in the aEVP computation with NEVP = 500 at the end of 31/03/93
(panel (a)) and 30/09/93 (panel (b)). Time series of maximal and root mean square values of
α at the last sub-cycling in the aEVP scheme of each month (panel (c)).
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Figure 3: Differences mEVP-JFNK with α = β = 300 (panels (a), (b), (e), (f)) and aEVP-
JFNK (panels (c), (d), (g), (h)) using NEVP = 50 (panels (a) – (d)) and NEVP = 200 (panels
(e) – (h)) for March 1997 of the ice thickness (in cm) in monthly mean (left column) and the
∆ field (in s−1) on the last time level in March 1997 (right column).
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Figure 4: Mean absolute deviations in the ice thickness field (in cm) of the aEVP scheme and
the mEVP scheme using α = β = 300 for NEVP = 50 and 100 (panel (a)) and or NEVP = 200
and 500 (panel (b)) from the reference solution.
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Figure 5: The plots in this figure focus on the Northern CAA and the Lincoln Sea. Graphs
(a) – (f) show mean values of ice thicknesses (in m) in March 1997, panels (g) – (l) snapshots of
the ∆ fields (in s−1) at the end of March 1997. The left column show RP solutions, the center
column NoRP solutions, and the right column the differences between them. The panels (a)
– (c) and (g) – (i) belong to computations with ∆min = 2 · 10−9 s−1, panels (d) – (f) and
(j) – (l) to those with ∆min = 2 · 10−11s−1. The maximum thicknesses for RP are 12 m (for
∆min = 2 · 10−9s−1) and 12.2 m (for ∆min = 2 · 10−11 s−1). For NoRP, the corresponding
values are 8 m and 10.5 m. Land shading is omitted in favor of a better visibility of the
discretized solutions in the straits.
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Figure 6: The residuals of the momentum equation (in m s−1) with ∆min = 2 · 10−9 s−1

of the aEVP scheme (a) and the mEVP scheme (b) on time level 5 with RP (gray line) and
NoRP (black line). The panels (c) and (d) zoom into the first 500 sub-cycling steps of the
plots (a) and (b), respectively. The mEVP scheme uses α = β = 300.

Figure 7: Residuals of the u-equation (in m s−1) at the end of time level 5, using the aEVP
scheme with 200000 sub-cycling steps and ∆min = 2 · 10−9 s−1 for RP (panel (a)) and NoRP
(panel (b)).
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Figure 8: Snapshots of the ∆ field (in s−1) on the last time level of January 1993 using
∆min = 2 · 10−9 s−1, RP (left) and NoRP (center) and their absolute differences (right) for
the JFNK scheme (panels (a) – (c)) and the mEVP scheme using α = β = 300, NEVP = 500
(panels (d) – (f)).
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