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Abstract7

Most dynamic sea ice models for climate type simulations are based on the

viscous-plastic (VP) rheology. The resulting stiff system of partial differential

equations for ice velocity is either solved implicitly at great computational cost,

or explicitly with added pseudo-elasticity (elastic-viscous-plastic, EVP). A re-

cent modification of the EVP approach seeks to improve the convergence of the

EVP method by re-interpreting it as a pseudotime VP solver. The question of

convergence of this modified EVP method is revisited here and it is shown that

convergence is reached provided the stability requirements are satisfied and the

number of pseudotime iterations is sufficiently high. Only in this limit, the VP

and the modified EVP solvers converge to the same solution. Related questions

of the impact of mesh resolution and incomplete convergence are also addressed.
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1. Introduction11

The basis of most current sea-ice models is the assumption of viscous-plastic12

(VP) rheology connecting the ice deformation rates with stresses in the ice [1].13

The resulting set of equations is very stiff due to the non-linearity in the VP rhe-14

ology. Hence, they are computationally challenging and require efficient solution15

∗Corresponding author
Email addresses: madlen.kimmritz@awi.de (Madlen Kimmritz),

sergey.danilov@awi.de (Sergey Danilov), martin.losch@awi.de (Martin Losch)Preprint submitted to Elsevier April 28, 2015



methods to avoid the restriction to very small time steps in standard explicit16

methods. Partial linearisation allows the stiff part of the problem to be treated17

implicitly [2]; this requires using solvers but lifts the time step limitation. How-18

ever, because of linearisation, that is, splitting the operator into implicit and19

explicit parts and estimating viscosity using the previous Picard iterate, far too20

many (Picard) iterations (O(104)) are required to achieve method convergence,21

so that traditionally only a few iterations are made and convergence is sacri-22

ficed [3]. This motivated the implementation of fully nonlinear Jacobian-free23

Newton-Krylov (JFNK) solvers [4, 5, 6]. They converge faster but still remain24

an expensive solution.25

The elastic-viscous-plastic (EVP) method is an alternative to implicit meth-26

ods. It relaxes the time step limitation of the explicit VP method by introducing27

an additional elastic term to the stress equations. This allows a fully explicit im-28

plementation with much larger time steps than for the explicit VP method [7, 8]29

but requires subcycling within the external time step set by the ocean model.30

The effects of the additional elasticity term, however, are reported to lead to31

noticeable differences in the deformation field, and to lead to smaller viscosities32

and weaker ice [e.g., 5, 9, 10, 11]. In many cases these effects are linked to the33

violation of stability limits (analogous to the CFL-criterion for advection) asso-34

ciated with the explicit time stepping scheme of the subcycling process [7, 8].35

Their most frequent manifestation is grid-scale noise in the ice divergence field36

and hence in viscosities. While the numerical code as a rule remains stable and37

maintains smooth distributions of ice concentration and thickness, the noise in38

the ice velocity divergence may deteriorate solutions, in particular on meshes39

with fine or variable resolution [10]. In an effort to improve the performance of40

the EVP method, a modification of the time-discrete EVP model (EVP*) was41

proposed by adding an inertial time stepping term to the momentum balance42

[5]. This EVP* method was further reformulated by [11] as a “pseudotime”43

iterative scheme converging to the VP rheology. By construction, it should lead44

to solutions identical to those of the VP method provided it converges and re-45

mains stable. Yet, despite improvements in solutions, the convergence has not46
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been achieved [11].47

Here we reconsider the elementary analysis of stability of the EVP* method48

carried out by [11] and conduct a series of numerical simulations that are aimed49

at clarifying conditions under which the convergence can be achieved. This is50

the main question that we address in this paper. Additionally, we are going to51

illustrate the implications of our findings as the resolution is refined. We also52

explore the consequences of incomplete convergence (limited by the prescribed53

number of pseudotime steps) on the quality of the EVP* solution.54

We start with an introduction of the EVP* scheme as formulated in [11] and55

elaborate on the convergence conditions of a simplified one-dimensional (1D)56

scheme. Although this analysis largely follows that by [11], we arrive at new57

conclusions that help to formulate an optimal strategy. Subsequently, we discuss58

our results on the basis of experiments performed with the unstructured-mesh59

finite-element sea ice model FESIM [12], which is a component of the Finite-60

Element Sea ice–Ocean Model FESOM [13]. Finally, conclusions and outlook61

are presented.62

2. The EVP* method63

The horizontal momentum balance of sea ice is written as64

m(∂t + f×)u = aτ − Cdaρo(u− uo)|u− uo|+ F−mg∇H. (1)

Here m is the ice (plus snow) mass per unit area, f is the Coriolis vector, a the65

ice compactness, u and uo the ice and ocean velocities, ρo is the ocean water66

density, τ the wind stress, H the sea surface elevation, g the acceleration due67

to gravity and Fj = ∂σij/∂xi the contribution from stresses within the ice. We68

follow [11] in writing the VP constitutive law as69

σij(u) =
P

2(∆ + ∆min)
[(ε̇kk −∆)δij +

1

e2
(2ε̇ij − ε̇kkδij)], (2)

where70
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ε̇ij =
1

2
(∂iuj + ∂jui), and ∆ =

(
ε̇2d +

1

e2
ε̇2s

)1/2

.

The parameter e = 2 is the ratio of the major axes of the elliptic yield curve,71

ε̇d = ε̇kk is the divergence, and ε̇s = ((ε̇11 − ε̇22)2 + 4ε̇212)1/2 is the shear. Note72

that we use the replacement pressure, (∆/(∆+∆min))P , [14] in the formulation73

of the VP constitutive law to ensure that the stress is on elliptic yield curve when74

∆ . ∆min. The ice strength P is parameterized as P = hP ∗e−c(1−a), where h75

is the mean thickness, and the constants P ∗ and c are set to P ∗ = 27500 Nm−2
76

and c = 20.77

As mentioned above, the difficulty in the integration of (1) is the stiff charac-78

ter of the stress term, which requires prohibitively small time steps in an explicit79

time stepping scheme. The traditional approach is either implicit [2], where vis-80

cosities are estimated at the previous iteration and several iterations are made,81

or EVP ([7], [15]), which reduces the time step limitations by adding pseudo-82

elasticity. Discussion of the convergence issues can be found, for example, in83

[11] and is not repeated here.84

The suggestion by [11] is equivalent, up to detail of treating the Coriolis and85

ice-ocean drag terms, to formulating the EVP* method as:86

σp+1
ij = σpij +

1

α

(
σij(u

p)− σpij
)
, (3)

up+1 = up +
1

β

(∆t

m
∇ · σp+1 +

∆t

m
Rp+1/2 + un − up

)
. (4)

In (4), R sums all the terms in the momentum equation except for the rheology87

and the time derivative, ∆t is the time step of the ice model, the index n labels88

the time levels, that is, discrete moments in the real time, and the index p is89

that of pseudotime (subcycling step number). The Coriolis term in Rp+1/2 is90

treated implicitly in our implementation and the ice-ocean stress term is linearly-91

implicit (Cdρo|uo−up|(uo−up+1)). In (3), σij(u
p) implies that the stresses are92

estimated by (2) based on the velocity from iteration p, and σpij is the variable93

of the pseudotime iteration. The parameters α and β in the last formulae are94
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large numbers that are selected from stability considerations [11]. They replace95

the terms 2T/∆te and (β∗/m)(∆t/∆te), where T is the elastic damping time96

scale and ∆te the subcycling time step of the standard EVP formulation, and97

parameter β∗ has been introduced in [5]. After convergence of (3) and (4), the98

pseudotime terms drop out and the resulting solution is exactly the VP solution:99

m

∆t

(
un+1 − un

)
= ∇ · σ(un+1) + R∗, (5)

with R∗ := limp→∞Rp+1/2 and un+1 := limp→∞ up. We denote the number100

of iterations N over p needed to reach this limit within prescribed tolerance as101

Nc. If the scheme does not converge to the VP solution we set Nc = ∞. The102

new velocity un+1 of the next time level is then given by the velocity estimated103

at the last pseudotime step uN . Initial values for p = 1 are taken from the104

previous time level n.105

Note that the EVP* scheme as formulated above differs from the standard106

EVP in three aspects: (i) the decay rate is the same for all stress components, (ii)107

there is damping in the momentum equation and (iii) the time derivative in the108

momentum equation (the last two terms in parentheses in (4)) are estimated over109

the external time step ∆t instead of the subcycling one. These are rather subtle110

differences of which (i) contributes most favourably to convergence according to111

our experience.112

3. Analysis of the EVP* method113

We reconsider the elementary stability analysis of [11]. As a prototype we114

analyse the following 1D simplification115

σp+1 = σp +
1

α

( P

2∆p
∂xu

p − σp
)
, (6)

up+1 = up +
1

β

(∆t

m
∂xσ

p+1 + τ
∆t

m
+ un − up

)
. (7)
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Equations (6) and (7) can be understood as modelling the behaviour of 1D116

perturbations with respect to a smooth quasi-equilibrium state characterized117

by non-zero strain rates and, hence, non-zero ∆. We assume P/(2∆p) to be118

constant for this analysis. Thus, the 1D version of (3) and (4) would formally119

lead to similar prototype equations in the limit of the viscous regime ∆� ∆min.120

Following [11], we consider the homogeneous problem, that is, we neglect121

the forcing terms τ∆t/m and un. In contrast to the analysis in [11] we take into122

account the up term in the parentheses of (7). Keeping this term puts α and123

β on equal footing and leads to a different view on the numerical behaviour of124

the EVP* method. Eliminating σp+1 in (7) we get125

up+1 − 2up + up−1 +

(
1

α
+

1

β

)(
up − up−1

)
+

1

αβ
up−1 +

γ

αβ
up = 0 . (8)

Here γ = k2P∆t/(2∆pm) and −k2 is the eigenvalue of the operator ∂xx, k2 ≤126

π2/∆x2.127

To analyse the stability of pseudotime iterations we introduce the amplifi-128

cation factor λ = up+1/up. Equation (8) then becomes129

(λ2 − 2λ+ 1) +

(
1

α
+

1

β

)
(λ− 1) +

1

αβ
+

γ

αβ
λ = 0 , (9)

where the first term represents the numerical second derivative of u and the130

second term the numerical first derivative and the remaining terms correspond131

to zero order derivatives. As usual, the system is stable if |λ| ≤ 1. Because of132

α, β � 1 we can simplify equation (9) as133

λ2 − q · λ+ 1 = 0 (10)

with q = 2− γ/αβ, where γ/(αβ) is kept because it is not necessarily small. It134

can be shown that a stable (and slightly damped) solution of (9) corresponds to135

the stability limit |λ| = 1 of the simplified equation. Solutions of this equation136

are λ1,2 = (q ±
√
q2 − 4)/2. Except for |q| ≤ 2, one of these roots always137

has a modulus larger than one, which leads to the formal stability condition138

0 < γ/(αβ) < 4.139
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As |λ| = 1 for any λ in the stability range, we can write λ = e−iω with140

nondimensional frequency ω. Thus, stable solutions of the simplified equations141

correspond to oscillatory behaviour in the pseudotime subcycling. Recalling142

that λ1,2 = (q ±
√
q2 − 4)/2, the frequency ω is small if q is close to 2, which143

corresponds to γ/(αβ)� 1, but approaches ±π for q close to −2, which corre-144

sponds to values of γ/(αβ) close to 4. This upper linear stability limit implies145

a sign change in each pseudotime step and convergence will be unlikely for146

the original equations, which are essentially nonlinear. We further argue that147

regimes with γ/(αβ) & 1 should be avoided, because oscillations will be too fast148

to be properly “resolved” by the pseudotime stepping.149

Assuming that frequencies are small, we can describe such oscillations di-150

rectly by examination of equation (9) and without considering the approximated151

equation (10). Expanding λ in series of lowest admissible order (i.e. 2nd order152

approximation for representatives of 2nd order derivatives, etc.) we obtain153

ω2 +

(
1

α
+

1

β

)
iω − 1

αβ
− γ

αβ
= 0 . (11)

The roots of equation (11) are154

ω1,2 = −1

2
i

(
1

α
+

1

β

)
±

(
−1

4

(
1

α
− 1

β

)2

+
γ

αβ

)1/2

. (12)

In the limit of weak ice (small γ) we can neglect γ/(αβ), leading to purely155

imaginary ω1 = −i/α and ω2 = −i/β. Thus, perturbations are damped with156

decay rates of 1/α for (6) and 1/β for (7). We infer that α and β should be157

similar for similar convergence of (6) and (7), and that the number of iterations158

should be several times larger than max{α, β} in order to reach it. Generally,159

ω1,2 are complex-valued and oscillations are superimposed on the decay. There160

are no oscillations for Re(ω) = 0, that is161

γ

αβ
≤ 1

4

(
1

α
− 1

β

)2

. (13)

This condition is symmetric with respect to α and β. Choosing α/β � γ or162
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β/α � γ for large α, β formally eliminates oscillations. This is consistent with163

[11], but with the difference that now both parameters play the same role.164

There is no need in making α and β substantially different. On the contrary,165

in two dimensions the vectors ∇ · σ and u need not be collinear. In this case166

the component of u orthogonal to ∇ · σ will not be affected by the update of167

σ in the subcycling, but its convergence will be defined solely by β. Moreover,168

as the decay rates of the perturbations in weak ice regions are 1/α and 1/β,169

convergence in these regions is optimal when α and β are similar. Since these170

parameters can be on the order of several hundred in practice, the right hand171

side of condition (13) is very small or even equals to zero when α = β. This172

condition is therefore much more limiting and difficult to achieve than the weaker173

constraint γ/(αβ) � 1, which now follows from (12) if the second term in the174

square root term dominates. Summarizing, slow decaying oscillations should be175

allowed, which corresponds to the parameter range176

γ/(αβ)� 1, (14)

and the parameters α and β should be of similar size (α ∼ β).177

Since γ may be large (γ ≈ 5× 104 for a mesh with 10 km resolution, a time178

step of 1 h, ice thickness of 1 m, ∆ = 10−7 s−1 and P ∗ of 3 × 104 Nm−2),179

maintaining stability requires a sufficiently large product αβ so that both pa-180

rameters should be about several hundred. Convergence in oscillatory regimes181

requires the number of iterations N to be several times 2(1/α+ 1/β)−1.182

Our considerations also agree with the results of Exp1-Exp4 in [11] (their183

Table 2 and Fig. 4): Exp1 and Exp3 converge smoothly as the product αβ184

is sufficiently large, but do not reach convergence because N = 300 is by far185

insufficient for the selected values of β = 3000 and 947. Exp. 2 and 4 show186

a much faster initial convergence rate due to smaller values of β, and later on187

develop uncontrolled oscillations as the product αβ is not sufficiently large to188

guarantee stability.189

We stress that the above analysis is based on simplified equations, so that190
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its implications should be interpreted at a qualitative level. In summary, in191

order to achieve both stability and convergence one has to take sufficiently large192

α ∼ β, and N much larger than any of them. The condition αβ � γ should193

be considered as a rule of thumb. The quantity γ scales with the mesh size as194

1/∆x2 for fixed ∆t. If ∆t itself varies as ∆x, the scaling becomes 1/∆x. The195

implications for αβ as the mesh is refined are then straightforward.196

4. Numerical experiments197

In this section we demonstrate experimentally (i) that the EVP* method198

converges, and (ii) that the convergence depends on the selection of the param-199

eters α and β. We further examine the effect of spatial resolution and implica-200

tions of using N that is smaller than needed for convergence. The experiments201

presented below are carried out with the finite-element sea ice model which is202

a component of FESOM [12, 16]. FESOM is an A-grid model with the velocity203

and scalar degrees of freedom collocated at the vertices of the computational204

mesh, and linear representation of velocity and scalar quantities on triangles. In205

this case all velocity derivatives and, hence, strain rates and stresses, as well as206

∆ are elementwise constant, which facilitates the computations implied by (3).207

The divergence of stresses in the momentum equation is computed following the208

finite-element method through projection on test functions and integration by209

parts. The VP solver uses linearised equations and iteratively solves those with210

a biconjugate gradient stabilized (BiCGSTAB) method. The time stepping im-211

plementation follows the idea of [2]. Scalar quantities (ice and snow thicknesses212

and concentration) are advected by a flux-corrected transport (FCT) scheme213

[17].214

4.1. Experimental setup215

Following [8] we consider a uniform and regular triangulation of the domain216

[0 ◦, 10 ◦]× [30 ◦, 40 ◦] in spherical coordinates with the bottom left (south-west)217

corner at (xmin, ymin) = (0◦, 30◦). Ice is driven by the ocean with the velocity218

(in m/s)219
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uo = 0.1(2y − ymin)/Ly, vo = −0.1(2x− xmin)/Lx,

with domain lengths Lx = Ly = 10 ◦. Wind stress forcing is computed as220

τ = Caρaua|ua|,

with Ca = 0.00225. Here ρa is the air density and the wind velocity ua (in m/s)221

is taken as222

ua = 5 + (sin(2πt/T )− 3) sin(2πx/Lx) sin(πy/Ly),

va = 5 + (sin(2πt/T )− 3) sin(2πy/Ly) sin(πx/Lx),

with T = 4 days. The initial ice thickness h is 2 m, initial ice compactness in-223

creases linearly from 0 in the west to 1 in the east. In this configuration, the wind224

pushes the ice into the northeast corner. In our simulations the ice transport is225

switched on, so ice gradually piles up in the corner until it becomes sufficiently226

thick to be virtually stopped. Simulations show that a small regularization pa-227

rameter ∆min requires large values for α and β, which immediately implies slow228

convergence; for this reason we use the common choice ∆min = 2 · 10−9 s−1 [1].229

4.2. Impact of α and β230

In our first experimental set up we use a spatial resolution of 1 ◦ and a time231

step of 3600 s. In order to get a first impression of the impact of α’s and β’s232

magnitude, we begin with the case α = β for different choices of α. Table 1233

lists Nc, i.e. the numbers of substeps N which are needed to reach convergence.234

The convergence is measured by the Euclidian norms of the residuals of the235

stress and momentum equations eσ(p) := α(
∑
c(σ

p+1
c − σpc )2)1/2 and eu(p) :=236

β(
∑
i |u

p+1
i − upi |2)1/2, where summation is over cells c and vertices i. After237

convergence, the solution of the EVP* scheme satisfies the equations of the VP238

method, so it should be converged to the VP solution. To be specific, we will239

assume convergence when the residuals decayed by 10−12. Figure 1 depicts the240
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development of eσ and eu at time levels 1 and 144 (6 days). Since the transport241

scheme is switched on, ice has deformed after 144 time steps and is thicker and242

stronger, so that the convergence is more difficult.

Figure 1: Global residuals eσ and eu for α = β ∈ {25, 50, 500} as a function of the pseudotime

step. Results for α = β ∈ {5000, 50000} are similar to α = β = 500 with larger Nc. The

residual eσ for n = 1 starts at iteration p = 2, as the initial value for σ, in contrast to u, has

to be determined in the first subcycling step and is not given initially.

243

As discussed in Section 3 for the simplified 1D scheme, we expect low stability244

and consequently the loss of convergence for low α, for example for α = β = 5.245

Further, for larger α = β = 25 we reach convergence for the first time level,246

but do not at n = 144, which is already indicated by the noisy behaviour and247

relatively large magnitude of eσ at the end of the first subcycling. The criterion248

γ/(αβ)� 1 can be violated for insufficiently high α, β, as the ice is in the viscous249

regime close to the wall and because a small ∆ implies a large γ. Bearing this250

in mind and taking into account the magnitude of eσ at the end of iterations251

at n = 144 we speculate that for the still moderate α = β = 50, convergence252

may also be lost later after even thicker ice will have accumulated. The second253

and the third panels of Figure 1 reveal that the larger α and β, the better the254

convergence behaviour at the expense of an increasing Nc needed to reach it.255

According to Table 1, Nc increases linearly in α in agreement with our analysis256

of the simplified 1D scheme.257

In the case of convergent subcycling, the initial residuals, i.e. eσ(1) and258

eu(1), are smaller after many time steps (Figure 1). However, the convergence259

of the EVP* solution is still exponential, as expected from the form of equations260
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(6) and (7). Note that the overall convergence is far too slow to be practical261

except for cases with moderate α, β.262

We now relax the condition α = β. Setting α < β means a stronger relax-263

ation in the stress equations than in the momentum equation, and vice versa.264

The number of subcycling steps Nc that are necessary to reach convergence for265

our tests are given in Table 2. Comparing the pairs with the same product αβ266

between Table 1 and Table 2 suggests that Nc is generally larger for α 6= β than267

for α = β, consistent with the analysis in Section 3.268

Figure 2: Residuals for (α, β) with αβ = 2.5 · 105 (left), and α = 5000 and β ∈ {5, 50, 5000}

(right) as a function of the pseudotime step at n = 144. For each color in one panel, thick

lines of that color belong to eσ and thin lines to eu.

There is some asymmetry in the behaviour with respect to α and β (Table 2269

and Figure 2) that cannot be explained by the analysis of Section 3. In partic-270

ular, for fixed αβ we get a faster convergence for α < β than for α > β (left271

hand side panel of Figure 2). Moreover, for β ≤ α and α fixed, the convergence272

is still dictated by α and we find a value of Nc which coincides with that in273

H
HHH

HHHH
n

α = β
5 25 50 500 5000 5 · 104

1 ∞ 950 1900 1.9 · 104 1.6 · 105 1.4 · 106

144 ∞ ∞ 1500 1.5 · 104 1.3 · 105 1.2 · 106

Table 1: Nc for different choices of α = β at the first time level (first row) and at the 144th

time level (second row). Nc =∞ denotes a lack of convergence.

12



H
HHH

HHHH
n

(α, β)
(5,500) (500,5) (50,5000) (5000, 50)

1 8000 1.8 · 104 7.25 · 104 1.75 · 105

144 6000 1.5 · 104 5.5 · 104 1.4 · 105

Table 2: Nc for different choices of α and β at the first time level (first row) and at the 144th

time level (second row).

simulations with α = β (right hand side panel of Figure 2). This behaviour is274

not observed for α ≤ β. This asymmetry shows the limitations of the linear275

analysis above (particularly, we neglected the strong nonlinearity in the stress276

equation) and stresses its qualitative character.277

In summary, convergence is reached provided αβ is sufficiently large and278

there is no advantage of selecting α 6= β.279

4.3. Impact of spatial resolution280

We evaluate the impact of spatial resolution with four regular meshes of281

the given domain with resolutions ∆x ∈ {0.05◦, 0.1◦, 0.5◦, 1◦}. In order to282

avoid the Courant stability criterion, we reduce the time step to ∆t = 180 s and283

examine the iteration process of the first time level only. Figure 3 shows the284

convergence behaviour for the simulations with α = β ∈ {100, 5000}. In order285

to consider the residuals independently of the number of degrees of freedom,286

we formulate them in root mean square sense. For α = β = 100 (left panel of287

Figure 3) increasing the mesh resolution can lead to a loss of the convergence288

even at the first time level (see also Section 3). In our simulations there is no289

convergence if the resolution is finer than 0.1◦. The convergence is recovered290

by increasing α and β, but still the residuals stagnate after 105 subcycles for291

the two finer meshes at some low level (right hand side panel of Figure 3). This292

happens despite the high values selected for α and β and rather small external293

time step. We did not explore the origin of this stagnation with high α as the294

reached degree of convergence is sufficient for most practical purposes.295
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Figure 3: Weighted residuals for α = β = 100 (left) and for α = β = 5000 (right) as a

function of the pseudotime step. The weighting is meant in the root mean square sense, that

is ẽσ = (e2σ/ncells)
1/2 and ẽu = (e2u/nnodes)

1/2, ncells and nnodes denote the number of cells

and nodes, respectively. For each color in one panel, thick lines of that color show ẽσ and thin

lines show ẽu.

4.4. “Practical” convergence for different α = β296

While large α and β are required for stability, a reduction by twelve orders297

of magnitude in the residuals at each time level is often neither required, nor298

practical. Instead, it is plausible to suppose that, provided that the last iterate299

of the previous time level is used as the initial guess for the current time level,300

sufficient accuracy can be reached across a sequence of time levels if the forcing301

changes slowly compared to the time step length. Here we illustrate the impact302

of choosing N � Nc on a mesh with ∆x = 0.1◦, ∆t = 30 min at T = 30 days303

(n = 1440). The reference solution is a VP solution obtained with the implicit304

VP solver of the sea ice model with 1000 Picard iterations at each time level.305

The corresponding solution components are shown in the upper four panels of306

Figure 4. Different EVP*-solutions are shown in the bottom four panels of the307

same figure.308

In Figure 5, we present the residuals of EVP*-solutions at the last time level309

(n = 1440) for different α = β ∈ {100, 250, 500} and N ∈ {100, 500, 20000}.310

In Table 3 we summarize the deviations (errors) of the EVP*-solutions from311

the reference VP solution as l2 norms. Strong ice is expected only where the312

concentration is close to one. Therefore we restrict the l2-norms to regions313
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with avp > 0.9. For α = β = 100 the errors are independent of N and there314

is no convergence, consistent with noisy divergence and ∆ fields in Figure 4315

(third row). These errors are at least one order of magnitude larger than for316

the remaining cases. For α = β = 250, the errors are reduced in going from317

N = 100 to N = 500, but remain (nearly) the same with an even increased318

N = 20, 000. The still insufficient magnitudes of α and β are also reflected319

in some small-amplitude noise in the fields of divergence and ∆. The noise is320

too small to be visible in Figure 4 (bottom row), but can be recognized in the321

deviations from the reference solution in Figure 6 (top row). For α = β = 500,322

the solutions converge (Figure 5) and hence the errors decrease with increased323

N (Table 3). In contrast to the case α = β = 250 (Figure 6 (top row)) we do324

no longer observe noise in the solution (Figure 6 (bottom row)).325

In Figure 6, we observe for increasing N that the solution for α = β = 250 is326

unstable in the south-east corner where ∆ ∼ ∆min, but it converges faster than327

the formally more stable solution of α = β = 500. This behaviour illustrates how328

the convergence of the EVP* scheme is controlled by 1/α and 1/β: large values329

of α and β lead to stable but slowly converging solutions, whereas small values330

of α and β lead to faster convergence in the case of weak stability requirements.331

To explore the behaviour of the scheme in the regime with fewer subcycles in332

greater detail, we compare partially converged EVP*-solutions to the reference333

solution for the divergence field and the ice concentration a in Figure 6 and334

Figure 7 respectively. The behaviour of h and ∆ leads to similar conclusions335

(not shown). According to Table 3, changing α (and β) from 100 to 250 reduces336

the already small mean error by one order of magnitude. The remaining errors in337

concentration a are found near the ice edge (because of large spatial gradients338

in concentration) and in the bottom right corner of the domain (top row of339

Figures 7). IncreasingN reduces the residual errors near the ice edge, but cannot340

remove the error in the lower right corner. Apparently, EVP* does not converge341

to the reference VP-solution in this area, but note that the differences to the342

reference solution are very small (order 10−3 or 0.1% ice cover). Increasing α to343

500 (bottom row of Figure 7) slows down the convergence (due to the smaller344
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α = β N ||ea|| ||eh|| ||evel|| ||ediv|| ||e∆||

100 100 7.0 · 10−3 3.0 · 10−2 5.2 · 10−3 1.2 · 10−7 6.8 · 10−8

100 500 7.0 · 10−3 3.0 · 10−2 5.0 · 10−3 1.2 · 10−7 6.8 · 10−8

100 20000 7.0 · 10−3 3.0 · 10−2 5.0 · 10−3 1.1 · 10−7 6.7 · 10−8

250 100 9.7 · 10−4 2.2 · 10−3 3.9 · 10−4 1.2 · 10−8 4.1 · 10−9

250 500 4.9 · 10−4 1.2 · 10−3 1.2 · 10−4 3.1 · 10−9 1.3 · 10−9

250 20000 4.7 · 10−4 1.2 · 10−3 9.3 · 10−5 2.4 · 10−9 1.3 · 10−9

500 100 1.5 · 10−3 4.0 · 10−3 6.2 · 10−4 2.2 · 10−8 7.8 · 10−9

500 500 3.4 · 10−4 9.0 · 10−4 2.6 · 10−4 6.3 · 10−9 1.5 · 10−9

500 20000 1.4 · 10−4 7.5 · 10−4 4.9 · 10−5 2.1 · 10−9 6.1 · 10−10

Table 3: Mean deviations of the EVP* solutions from the VP reference solution with 1000

Picard iterations at day 30 after subcycling with N subcycling steps. The error for the mean

thickness is measured as ||eh||2 :=
∑
i(hevp,i − hvp,i)2/nn with summation over the nodes

where avp > 0.9 and nn the number of such nodes, same for the concentration and velocity;

for the divergence and ∆ summation is over elements and errors are per element.

correction parameters α−1 and β−1), so that for N = 100 and 500 some of the345

errors are even a bit larger than for α = 250, but the largest differences in the346

bottom right corner are removed and EVP* converges to the reference solution.347

Note that the solutions for the ice concentration a and thickness h appear348

smooth even for α = 100 (not shown), but the convergence is poor. The diver-349

gence fields, however, (and similarly ∆), are very noisy for α ≤ 250 and this350

noise cannot be removed with more subcycles (top row of Figure 6). In fact, the351

noise is most likely responsible for the loss of convergence. Increasing α to 500352

leads to smooth divergence fields even for small N . The errors in the divergence353

fields decrease with larger N (bottom row of Figure 6).354

Figures 6 and 7 illustrate that acceptable EVP*-solutions can be obtained355

for a moderate number of subcycles N < Nc. The value of α (and β) determines356

the stability and hence smoothness of the solution. Once α and β are sufficiently357

high to guarantee stability, the convergence is strictly exponential, so that larger358

N lead to more accurate (albeit more expensive) solutions.359
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Finally, we consider states of stress of the EVP* and reference VP solutions360

plotted in Fig. 8. The black and grey dots in the plots relate to the regions where361

a < 0.7 and a ≥ 0.7 respectively. For the reference solution (the bottom panel)362

the stresses are either on the elliptic yield curve, or correspond to points inside363

it, as expected for the VP rheology. For the EVP* solutions the stresses tend to364

the VP behaviour with increasing α and β, in agreement with the convergence365

behaviour seen in Figure 5. The distribution of the black dots in the first column366

of Figure 8 for N = 100 illustrates the reduction of the convergence rate with367

increasing parameters α and β for fixed N . These dots correspond to weak ice368

that is more sensitive to the details of convergence because it continues to move369

under variable winds. With α = β = 250 and N sufficiently large (N = 500),370

most of the states of stress are either inside or on the yield curve.371

Thus, once again, the improvement in the EVP* solutions is gained by increasing372

the parameters α and β. Once they are sufficiently large, increasing N further373

improves the quality of the EVP* solution. However, the larger α and β, the374

slower is the convergence of the entire system.375

5. Conclusions376

Our analysis of the EVP* scheme [5, 11] clarifies some aspects that have not377

been addressed in [11]. We derived the formal stability condition γ/αβ < 4.378

However, this is associated with oscillations. The stability condition of [11],379

γ/αβ ≤ 2, only ensures that the absolute value of the frequency is less than380

π/2, which implies two iterations before the change in sign. As nonlinearity is381

an intrinsic part of the EVP* equations, the much stronger condition γ/αβ � 1382

needs to be ensured, such that the oscillations, that develop in the system, are383

of low frequency and are therefore resolved by the pseudotime stepping. In384

contrast to [11], we show that the roles of α and β are similar. The choice385

α = β is most convincing, because otherwise there are two convergence rates in386

regions with weak ice, one set by α and the other one by β. Additionally, in387

two dimensions the velocity vector u is not necessarily aligned with the stress388

17



divergence vector ∇·σ and the component perpendicular to ∇·σ will thus tend389

to converge at a rate defined by β. Hence, the parameters α and β should be390

sufficiently large and sufficiently similar.391

Our analysis as well as the experiments show that the larger α and β, the392

larger is the number Nc of iterations needed to reach convergence on each time393

level. In practice, iterations with Nc cycles are too expensive, and a compromise394

between stability and accuracy has to be found. The link between Nc, α and395

β was already apparent in the experiments of [11], where either N was far too396

small to reach convergence for large α and β, or the product αβ was too small397

to ensure stability.398

Ice concentration a and thickness h are affected less severely by incomplete399

convergence and instabilities than the divergence and ∆. The EVP* solutions400

for a and h were smooth and rather close to the VP reference solution in our401

simulations even for values of α, β and N that were too small to satisfy stability402

and convergence criteria, but derivatives of the velocity field suffered from noise403

unless α and β were sufficiently large. Only in the case when stability is reached,404

increasing N improves the accuracy of velocity derivatives.405

Refining the mesh makes the EVP* scheme less stable and may require406

increased α and β, which in turn would lead to slower convergence.407

We stress once again the qualitative character of our analysis. However,408

it illustrates that the EVP* scheme can converge to the VP solution, even if409

achieving full convergence may prove difficult. While in practice uncertainties410

(e.g., in forcing) may lead to errors that by far exceed the errors due to incom-411

plete convergence of the EVP* scheme, it is important to be aware of the effects412

of the method parameters on the solution.413

The method can be extended to include variable parameters α and β. They414

may depend on spatial coordinates in order either to improve convergence or415

preserve stability or both or they can depend on the convergence rate itself:416

small values of α and β lead to fast convergence in the beginning and larger417

values damp instability later in the interaction. These extensions and their418

evaluation are left to future work.419
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Figure 4: Upper four panels: the mean ice thickness, concentration, divergence and the

field of ∆ for the reference solution (VP solver with 1000 Picard iterations) after 30 days

(n = 1440). Lower four panels: Patterns of divergence (left) and ∆evp (right) for α = β = 100

and N = 20, 000 (third row) and for α = β = 250 and N = 100 (fourth row).
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Figure 5: The behaviour of eσ and eu as a function of pseudotime step for different values of

α = β and N at time level n = 1440 (30 days).

Figure 6: Differences in the divergence field ∇ · u where a > 0.9 between selected EVP*-

solutions and the reference VP solution. α = β = 250 (top row) are sufficient to maintain

stability over the northern part of the domain. The increase in N reduces the error there, but

does not help over the southern part. Larger α, β handle this issue (bottom row).
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Figure 7: Differences in the ice concentration a for a > 0.9 between selected EVP*-solutions

and the reference VP solution. The EVP*-solutions are for α = β = 250 (top row) and for

α = β = 500 (bottom row) for different N ∈ {100, 500, 20000} (from left to right). Small

differences in the southeast corner can only be removed by using larger α.
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Figure 8: Normalized states of stress for different EVP* solutions (three rows) and for the

reference VP solution (bottom panel). The black (grey) dots correspond to regions where

a < 0.7(≥ 0.7). The light grey curve plots the ideal elliptic curve. For high α and N the

EVP* state of stress is rather close to that of reference VP solution. Insufficiently high α result

in different pattern of grey dots (top row), but insufficiently high N for larger α emphasizes

the contribution of pseudotime terms for weak ice.
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