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Key points:28

● Sea surface temperature assimilation improves upper ocean temperature, sea ice29

edge and marginal sea ice thickness simulations.30

● Simulated upper ocean temperatures improve more where vertical convection31

processes are more important.32

● Sea ice edge and thickness simulations are improved due to the correction of the SST33

bias.34

35

Abstract36

Sea ice data assimilation can greatly improve forecasts of Arctic sea ice37



evolution. Many previous sea ice data assimilation studies were conducted without38

assimilating ocean state variables, even though the sea ice evolution is closely linked39

to the oceanic conditions, both dynamically and thermodynamically. Based on the40

method of a localized ensemble error subspace transform Kalman filter, satellite-41

retrieved sea ice concentration and sea ice thickness are assimilated into an Arctic sea42

ice-ocean model. As a new addition, sea surface temperature (SST) data is also43

assimilated. The additional assimilation of SST improves not only the simulated44

ocean temperature in the mixed layer of the ocean substantially but also the accuracy45

of sea ice edge position, sea ice extent, and sea ice thickness in the marginal sea ice46

zone. The improvement in the simulated potential temperature in the upper 1000 m47

can be attributed to the enhanced vertical convection processes in the regions where48

the assimilated observational SST is colder than the simulated SST without49

assimilation. The improvements in the sea ice edge position and sea ice thickness50

simulations are primarily caused by the SST data assimilation reducing biases in the51

simulated SST and the associated coupled ocean-sea ice processes. Our investigation52

suggests that, due to the complex interaction between the sea ice and ocean,53

assimilating ocean data should be an indispensable component of numerical polar sea-54

ice forecasting systems.55
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1. Introduction60

Arctic sea ice has been decreasing significantly over the past three decades61

(Comiso et al., 2008; Gao et al., 2015). This change is accompanied by more frequent62

navigation activities in the Arctic Ocean (Rojas-Romagosa et al., 2016). The route63

distance saved between Northwestern Europe and Northeastern Asia through the64

Arctic Ocean can be as high as 50% compared to the traditional low-latitude shipping65

lanes. Along with economic benefits, potential risks still threaten marine safety in the66

Arctic Ocean all the time, such as thick floating ice, storms, and heavy fog. Arctic67

environmental forecasts have played an important role in guaranteeing the marine68

safety (Jung et al., 2016). Operational sea ice forecasts are carried out by many69

departments all over the world, for example, the U.S Navy Arctic Cap70

Nowcast/Forecast System (ACNFS; Posey et al., 2010) provides 7 days forecasts of71



sea ice concentration, sea ice thickness, sea ice drift, ocean temperature, ocean72

salinity and ocean current forecasts in northern hemisphere (poleward of 40 °N). The73

Canadian Global Ice Ocean Prediction System (GIOPS; Smith et al., 2016) provides74

global 10 days forecasts of ocean and sea ice states covering the Arctic Ocean75

including sea ice concentration, sea ice thickness and sea ice drift. The Mercator76

PSY4Q system (Lellouche et al., 2013) provides global 9 days forecasts of sea ice77

concentration, sea ice thickness, sea ice velocity, ocean temperature, ocean salinity78

and ocean current. The Danish Meteorological Institute HYCOM-CICE system79

(Madsen et al., 2015) provides 6 days forecasts of sea ice and ocean states covering80

the Atlantic Ocean north of 20 °S and the Arctic Ocean.81

In numerical synoptic-scale forecasting models, data assimilation is a critical82

component to reduce the uncertainties associated with initial fields and systematic83

model errors. Sea ice and ocean data assimilation schemes are widely used in state-of-84

the-art operational Arctic forecasting systems (Sakov et al., 2012; Posey et al., 2010).85

Observational data can be assimilated in a variety of methods. For example, the U.S86

Navy ACNFS uses a 3-Dimensional VARiational (3D-VAR) scheme to assimilate87

both sea ice and ocean observations. The Norwegian TOPAZ4 system (Sakov et al.,88

2012) uses an Ensemble Kalman Filter (EnKF; Evensen, 1994; Anderson, 2001) to89

assimilate sea ice concentration, sea ice drift, sea level anomaly, SST, as well as in90

situ profile observations of temperature and salinity. The Canadian GIOPS uses a91

combination of a 3D-VAR scheme to assimilate sea ice observations and a reduced92

order Kalman filter to assimilate ocean observations. In this study, we employ the93

ensemble Error Subspace Transform Kalman Filter (ESTKF; Nerger et al., 2012a),94

and focus on the effects of additional ocean data assimilation on a sea-ice prediction95

system.96

The location of the sea ice edge is extremely important for marine safety97

(Goessling et al., 2016). In the Arctic Ocean, due to the presence of a sea ice edge, the98

sea ice-ocean system is characterized by strong anisotropies and non-stationary99

features (Lisæter et al., 2003). Sakov et al. (2012) demonstrated that the correlation100

between sea ice concentration and sea surface salinity at the ice edge, is strongly101

anisotropic and changes dynamically. Because of the rapidly changing system, data102

assimilation schemes with stationary background covariances, such as 3D-VAR and103

optimal interpolation, may not be flexible enough to accurately capture the dynamics104

of the coupled sea ice-ocean system. In our study, we chose a data assimilation105



scheme from the family of EnKFs, which has the advantage of a non-stationary state106

error covariance, that we find suitable for assimilating sea ice and ocean data. Data107

assimilation almost trivially improves the forecasts of fields for which observations108

are assimilated. Furthermore, systems based on EnKF data assimilation schemes can109

be multivariate and can hence enhance also the forecast of unobserved variables if110

clear statistical correlations exist between them and the observed variables that reflect111

their physical relationship. For example, the assimilation of sea ice concentration112

improved sea ice thickness forecasts in the melting and freezing seasons due to the113

positive correlation between the sea ice concentration and the sea ice thickness (Yang114

et al., 2015a, 2015b; Yang et al., 2016). The assimilation of sea ice thickness115

improved the forecasts of the sea ice concentration and ocean surface characteristics116

(Lisæter et al., 2007; Yang et al., 2014; Fritzner et al., 2019; Zhang et al., 2018).117

Assimilating sea surface temperature also improved the sea ice thickness forecasts118

during the melting season (Liang et al., 2017).119

Mu et al. (2018b) introduced an ensemble ESTKF data assimilation scheme into120

the Massachusetts Institute of Technology general circulation model (MITgcm;121

Marshall et al., 1997) and assimilated sea ice concentration and thickness122

observations. They found that the sea ice thickness simulation substantially improved123

by the thickness assimilation, whereas the improvement in the simulated sea ice124

concentration was small. To further address this issue, we will simultaneously125

assimilate satellite-retrieved sea ice concentration, sea ice thickness, and SST126

observations into the MITgcm based on the ensemble ESTKF scheme with localized127

analysis. The remainder of this paper is organized as follows. Section 2 describes the128

model configuration, data assimilation scheme, data sets and the experiment design.129

Section 3 assesses the Arctic ocean and sea ice simulations with and without SST130

assimilation. Discussion and conclusion are given in section 4.131

132

2. Methods133

2.1 Coupled Regional Sea Ice-Ocean Model134

Our Arctic configuration of the MITgcm has an average horizontal resolution of135

18 km and covers the whole Arctic Ocean with open boundaries close to 55 °N in136

both the Atlantic and Pacific sectors (Losch et al., 2010). The ocean model includes137

384420 horizontal grid points, 50 vertical model layers with 28 vertical layers in the138

top 1000 m. The thickness of the ocean vertical layers increases from 10 m near the139



surface to 456 m near the bottom.140

The sea ice model within the MITgcm uses a viscous-plastic rheology and zero-141

layer thermodynamics with two thickness categories: open water and sea ice (Losch et142

al., 2010). The sea ice momentum equations are solved following Zhang and Hibler143

(1997). The sea ice model shares the same horizontal grid with the ocean model.144

The open boundary conditions are derived from a historical run of a global145

cubed-sphere configuration of the MITgcm (Menemenlis et al., 2008). The146

atmospheric forcing data are the 23 ensemble forecasts of the United Kingdom Met147

Office Unified Model (UKMO UM; Bowler et al., 2008; obtained from148

http://tigge.ecmwf.int/). Further details about the model configuration can be found in149

Mu et al. (2018b).150

151

2.2 Data assimilation scheme152

The data assimilation scheme used in this study is an ensemble-based Error153

Subspace Transform Kalman Filter (ESTKF; Nerger et al., 2012a) with localization.154

The ESTKF combines the high accuracy and efficiency of the Singular Evolutive155

Interpolated Kalman filter (SEIK; Pham, 2001) that has been used with the MITgcm156

by, for example, Mu et al. (2018a), with ensemble transformation of the Ensemble157

Transform Kalman Filter (ETKF; Bishop et al., 2001). The ESTKF provides158

consistent projections between the ensemble space and the error subspace with a159

minimal ensemble transformation of the ensemble members. To increase the impact of160

the ESTKF and to avoid that the ensemble spread is reduced too much by the analysis161

step, a horizontal localization scheme is applied in the ESTKF following Nerger et al.162

(2006). The localized filter changes the model fields at each model grid column163

separately using only observations within a specified influence radius (denoted164

localization radius) around this location. Further each observation is weighted to165

decrease the influence of each available observation with increasing distance between166

the analysis and observation locations. For a complete description of the algorithm see,167

e.g. Androsov et al. (2019).168

In this study, the localized ESTKF scheme is used as implemented in the Parallel169

Data Assimilation Framework (PDAF; Nerger and Hiller, 2013). A complete170

ensemble data assimilation cycle starts from an initial ensemble and normally171

includes three alternating steps: forecast, analysis, and adjustment. The ensemble172

includes many model state realizations that together represent the state estimate and173



its uncertainty. In the forecast step, all ensemble states, as a set of parallel runs, are174

driven by external forcing from a set of new restart files to the next time when new175

observations become available. In the analysis step, the model fields of each ensemble176

state are arranged into a model state vector. The model state vectors of all runs177

constitute an ensemble matrix. Then a loop over all surface grid points is performed178

for the local analysis. For each surface grid point to be updated, observations within179

the influence radius around the updating grid point are collected into an observation180

vector and a localization weighting algorithm is applied to the observation error181

covariance matrix. The data assimilation algorithm uses the ensemble matrix,182

observation vector and observation error covariance matrix. The analysis transforms183

the ensemble matrix holding the forecast state vectors into a matrix of analysis state184

vectors by incorporating the observational information into the model states. Note that185

most data assimilation schemes are purely mathematical methods without physical186

constraints. In the adjustment step, a post-assimilation algorithm is carried out that187

examines and modifies the analysis state vectors according to physical constraints and188

relationships among variables. Finally, a new set of ensemble states is initialized with189

the states from the physically constrained analysis matrix, and a new forecast step is190

started.191

192

2.3 Data sets193

The sea ice concentration and thickness data for the assimilation are the same194

and processed in the same way as in Mu et al. (2018b). Daily sea ice concentration195

observations are derived from the Special Sensor Microwave Imager Sounder (SSMIS)196

sea ice concentration data (Cavalieri and Parkinson 2012; Cavalieri et al., 2012;197

Kaleschke et al., 2001), which are provided by the University of Hamburg (obtained198

from http://icdc.cen.uni-hamburg.de/1/daten/cryosphere/seaiceconcentration-asi-199

ssmi.html). Daily sea ice thickness observations in thin ice area (< 1 m) are derived200

from the Soil Moisture Ocean Salinity (SMOS) sea ice thickness data (Tian-Kunze et201

al., 2014). The SMOS sea ice thickness data are retrieved from satellite brightness202

temperature combined with a sea ice thermodynamic model and a three-layer203

radiative transfer model (Kaleschke et al., 2010, 2012; obtained from204

http://icdc.cen.uni-hamburg.de/1/daten/cryosphere/l3c-smos-sit.html). The weekly sea205

ice thickness observations are derived from the European Space Agency satellite206

mission CryoSat-2 sea ice thickness data (Wingham et al., 2006; Laxon et al., 2013;207



Ricker et al., 2014; obtained from208

http://data.meereisportal.de/data/cryosat2/version2.0/). The CryoSat-2 sea ice209

thickness data are retrieved from radar altimetry measurements of sea ice freeboard.210

The estimated sea ice thickness uncertainties are included in the SMOS and CryoSat-211

2 data. Both the SMOS and CryoSat-2 sea ice thickness data are only available in212

winter time from November to April. The SSMIS sea ice concentration, the SMOS213

and CryoSat-2 sea ice thickness, as well as sea ice thickness uncertainties, are214

interpolated onto the MITgcm model grid. As the satellite data products are already215

gridded, we interpolate them onto model grid for convenience. We can assume the216

interpolation error is not larger than that for interpolating the model variable onto the217

data grid.218

Daily SST observations for assimilation are derived from the GHRSST Multi-219

Product Ensemble (GMPE) data, which are provided by the UKMO. The GMPE SST220

data is a near-real-time Level-4 satellite-retrieved product with a horizontal resolution221

of 0.25 degrees (obtained from http://marine.copernicus.eu/, product identifier:222

SST_GLO_SST_L4_NRT_OBSERVATIONS_010_005). Within the framework of the223

Group for High Resolution Sea Surface Temperature (GHRSST) project, the GMPE224

system produces daily global SST maps that computed as the median of a large225

number of SST products by various institutes around the world. Each product226

contributing to the GMPE product uses different observational data sets including227

both in situ and satellite SST data that are then combined with a model as a reanalysis228

product. Derived from multi-product ensemble data, the GMPE SST data product229

greatly reduces measurement uncertainties. The GMPE SST data cover the ice free230

area in the Arctic Ocean. Figure 1 shows days with available temperature observations231

and mean uncertainties of the observations in 2012 in the GMPE SST data. The SST232

observations are available for more than 300 days in the high latitude North Atlantic233

Ocean, the Labrador Sea, the Greenland Sea, the Norwegian Sea, the Barents Sea and234

the Bering Sea. The SST observations are available for 90 days to 210 days in most of235

the Arctic marginal seas, and for less than 60 days in the central Arctic Ocean. The236

mean uncertainties are lower than 0.4 °C in most of the areas where observations are237

available for more than 300 days. In most of the Arctic marginal seas the mean238

uncertainties are higher than 1 °C. Large uncertainties exist in the coastal areas of the239

Beaufort Sea, the Kara Sea and the Laptev Sea. The GMPE SST data, as well as its240

uncertainties, are interpolated onto the MITgcm model grid.241

http://marine.copernicus.eu/,


Here we use four kinds of in situ ocean observations in 2012 to validate the242

simulated potential temperature in ice free regions. (1) Argo standard depth level243

(Argo SDL) data are produced by International Pacific Research Center by244

interpolating global Argo temperature and salinity profiles onto 26 standard levels245

between 0 and 2000 m depths. They are available since October 2010 (obtained from246

http://apdrc.soest.hawaii.edu/projects/Argo/data/profiles/). (2) Glider data are247

collected by Autonomous Profiling Explorer (APEX) profiling float system and248

processed by French Research Institute for Exploitation of the Sea (IFREMER). They249

provide vertical temperature profiles in the high latitude North Atlantic Ocean. Most250

of the profiles reach 1000 m deep. (3) Shipboard Conductivity-Temperature-Depth251

(CTD) data, managed by the Norwegian Marine Data Center, provide vertical252

temperature profiles along the coast of Norway and Svalbard Island. Most of the253

profiles are hundreds of meters deep. (4) Along-trajectory data, collected by254

IFREMER, provide sea surface temperature records along the fixed seaway between255

Denmark and Greenland (The Glider, CTD, and along-trajectory data were obtained256

from http://marine.copernicus.eu/, product identifier:257

INSITU_ARC_TS_REP_OBSERVATIONS_013_037).258

Furthermore, additional data sets are used to evaluate the influence of the259

assimilation of SST data on the sea ice simulation in 2012: (1) sea ice edge260

observations in March and September derived from sea ice concentration data of the261

Advanced Microwave Scanning Radiometer (AMSR; Spreen et al., 2008; obtained262

from http://data.meereisportal.de/data/median_edge/) are used to compare with the263

simulated sea ice edge, defined as a marginal zone with 15% sea ice concentration. (2)264

Sea ice extent observations derived from the Multisensor Analyzed Sea Ice Extent-265

Northern Hemisphere (MASIE-NH; National Ice Center and National Snow and Ice266

Data Center, 2010; obtained from http://nsidc.org/data/masie/) data are used to267

compare with the simulated sea ice extent. The MASIE-NH data is provided daily by268

the National Ice Center Interactive Multisensor Snow and Ice Mapping System with a269

spatial resolution of 4 km. (3) Moored upward-looking sonar (ULS) ice draft270

observations from the Beaufort Gyre Exploration Project (BGEP; Proshutinsky et al.,271

2005; obtained from http://www.whoi.edu/beaufortgyre) are available at three272

positions in the Beaufort Gyre. They are used to compare with the simulated sea ice273

thickness. The ULS samples the ice draft with a precision of 0.1 m (Melling et al.,274

1995), and the ice draft can be converted to ice thickness by multiplying a factor of275

http://marine.copernicus.eu/,


1.1 (Nguyen et al., 2011).276

277

2.4 Experiment design278

To assess the effects of the SST assimilation on the simulated sea ice279

concentration and sea ice thickness, we run three experiments named CTRL,280

NoSSTasim and SSTasim. The experiment schematic is shown in Figure 2. In all281

cases the model ensemble includes 23 parallel runs. The CTRL run, aiming to build282

the reference and its variability which is used to generate the ensemble perturbations,283

is a purely prognostic experiment without any data assimilation. It is obtained by284

integrating the model from a historical restart file on 1 Oct 2011 until 31 Dec 2012285

driven by the mean UKMO ensemble forcing. Daily snapshots of the model states286

(sea ice concentration, sea ice thickness, upper 1000 m ocean temperature) during287

2012 are stored. After subtracting the mean value from the model states, a singular288

value decomposition (SVD) is computed from which the 22 leading singular values of289

the model states’ variability are used to generate the ensemble by second-order exact290

sampling (Pham, 2001).291

The NoSSTasim run assimilates the SSMIS sea ice concentration, the SMOS and292

CryoSat-2 sea ice thickness data as in Mu et al. (2018b). In this run the model state293

vector for the assimilation includes only include sea ice concentration and sea ice294

thickness. The observations are assimilated daily followed by an ensemble integration295

over 24 hours in which each run is forced by one of the 23 ensemble forecasts of the296

UKMO UM. Forecast error uncertainties of the ensemble can be represented by the297

UKMO UM 23 atmospheric forecasts, so that there is no need for additional ensemble298

inflation (Yang et al., 2015a).299

The SSTasim run assimilates the same sea ice data as in the NoSSTasim run and300

additionally the GMPE SST data. The assimilation cycle of the SSTasim run is301

analogous to that of the NoSSTasim run. Note that here the model state vector302

includes sea ice concentration, sea ice thickness and upper 1000 m ocean temperature.303

The observation vector includes sea ice concentration, sea ice thickness and SST.304

Within the mixed layer, the temperature is strongly correlated to the surface305

temperature, which can vary on short time scales. In contrast the temperature below306

the mixed layer develops more slowly. For this physical reason we decide to update307

the entire mixed layer along with the temperature of the surface level of the model is308

updated. The temperature at model layers below the mixed layer is not updated by the309



data assimilation for the reason that the different timescale and the non-Gaussian310

intermittency of deep convection cannot be properly represented by a prior error311

covariance. This corresponds to a vertical localization with a step function and a312

radius equal to the thickness of the mixed layer. The thickness of the mixed layer in313

the model varies in time and space, so that in some places only surface values are314

updated and in others almost the entire water column. The mixed layer depth is read315

from model outputs.316

The NoSSTasim and SSTasim runs run from 1 Jan 2012 to 31 Dec 2012. Storing317

daily snapshots allows us to evaluate the assimilation performance in both wintertime318

and summertime. The localization radius is set to 12 grid points, corresponding to319

approximately 216 km. The uncertainties of the SSMIS sea ice concentration data320

accounting for measurement and representation errors are assumed to be uniform with321

25% following Mu et al. (2018b). The post-assimilation process focuses on basic322

physical relationships among sea ice concentration, sea ice thickness and ocean323

temperature. Thus, sea ice thickness is set to 0 whenever the sea ice concentration is 0.324

Further, in the marginal sea ice zone, the sea ice concentration and thickness are set to325

0 whenever the surface ocean temperature is warmer than the surface freezing point,326

because the sea ice can only exist in the simulation where the SST is below surface327

freezing point. Besides these relationships, we further introduce an ocean surface328

salinity adjustment parameterization. During the analysis step, sea ice volume change329

can be generated or destroyed by the data assimilation algorithm. To conserve the net330

mass, this change in ice volume or thickness requires a corresponding volume change331

of the surface layer of opposite sign and since sea ice has no salinity in our332

experiments, conservation of salt in the surface layer implies that the amount of salt in333

the top layer Hocean, which is 10m in our experiments is the same before and after the334

analysis step:335

oceanoceanpreiceiceoceanoceanpost HSHHS   )(336

iceiceoceanocean

oceanoceanpre
post HH
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337

where Spost and Spre represent ocean top-layer salinity after and before data338

assimilation, ρocean and ρice represent ocean top-layer density and sea ice density, and339

ΔHice is sea ice thickness increment due to data assimilation. We use ρice= 880 kg*m-3340



and ρocean=1027 kg*m-3. Note that this procedure needs to be adjusted if sea ice is341

allowed to be saline.342

343

3. Results344

3.1 Overall assimilation effect345

The model state differences between simulations with and without data346

assimilation illustrate the data assimilation effects. Figure 3 shows the spatial347

distributions of root mean square difference (RMSD) between the experiments348

NoSSTasim and CTRL (left column) and between SSTasim and NoSSTasim (right349

column) for the model state variables sea ice concentration, sea ice thickness, and SST.350

The RMSDs are derived from calculating corresponding model states on daily basis in351

2012 and show how strongly the assimilation changes the fields.352

Similar to the impact of sea ice assimilation on the sea ice variables, the impact353

of the SST assimilation on the simulated SST is as expected (Figure 3b). The RMSDs354

between the model states with and without data assimilation correspond to the355

deviations between the assimilated observations and the model states without data356

assimilation, which are reduced by the data assimilation. The SST assimilation affects357

the SST in ice free regions with large differences around Svalbard, along the southern358

coast of Greenland, in the areas east of Iceland, in the Labrador Sea and Beaufort Seas359

(Figure 3b). This corresponds to the annual mean SST biases between the NoSSTasim360

run and the GMPE SST data which reach an amplitude of up to 4 °C in these regions361

(Figure 4). The sea ice assimilation affects the sea ice concentrations with large362

changes in the marginal sea ice zone both in the Atlantic and Pacific sectors (Figure363

3c), where the CTRL run is biased with a broader marginal sea ice zone than the364

SSMIS data (we discuss these biases in section 3.4). Large changes in the sea ice365

thickness exist in the regions of multiyear ice in the Arctic Ocean and along the366

eastern coast of Greenland where sea ice is exported from the Arctic (Figure 3e). In367

these areas, the simulated sea ice thickness in the CTRL run is overall thicker than368

that in the CryoSat-2 data (not shown).369

We note for the discussion in section 4 that the physical processes implemented370

in the sea ice-ocean model induce indirect effects of the assimilation: The SST371

assimilation affects the sea ice state and, vice versa, sea ice assimilation affects the372

SST. The assimilation of sea ice data has the largest effect on the SST in the marginal373

sea ice zones, such as the Greenland Sea and the Bering Sea (Figure 3a). The SST374



assimilation has strong effects on the sea ice concentration in the thin ice regions,375

such as the Greenland Sea, the Barents Sea, the Kara Sea and the Chukchi Sea (Figure376

3d). Sea ice thickness is affected notably by the SST assimilation along the eastern377

coast of Greenland (Figure 3f).378

Because the GMPE SST data is only available in ice free areas and a localized379

data assimilation scheme is used, we use the regional mean temperature south of 75380

°N to assess the temperature change (Figure 5a). Compared to the NoSSTasim run,381

the additional GMPE SST data assimilation cools the entire upper ocean down to382

1800 m depth. The maximum temperature reduction is close to -1 °C and occurs at383

220 m depth. The mean ocean salinity north of 75 °N as a function of depth is shown384

in Figure 5b. Assimilating sea ice data reduces the ocean surface salinity in the385

NoSSTasim run. Assimilating GMPE SST data further reduces the ocean surface386

salinity. The salinity change of the ocean surface layer penetrates to 80 m depth due to387

the model dynamics.388

389

3.2 Comparison with the Argo SDL data390

Most of the Argo profiles in Arctic and sub-Arctic regions are concentrated in the391

high latitude North Atlantic Ocean, the Labrador Sea, the Greenland Sea, the392

Norwegian Sea and the Bering Sea. The Argo SDL data set is available on the 26393

standard depth levels, specifically 1 level at 5 m, 3 levels from 10 m to 30 m, 5 levels394

from 50 m to 150 m, 3 levels from 200 m to 300 m, 12 levels from 400 m to 1500 m,395

and 2 levels from 1750 m to 2000 m, each with equal depth intervals of 10 m, 25 m,396

50 m, 100 m and 250 m, respectively. Here, we choose not to explore the seasonal397

differences of the SST assimilation influence, so we calculate the root mean square398

error (RMSE) of ocean temperature of the analysis ensemble mean relative to the399

Argo SDL observations over the full year taking into account all available400

observations within the model grid in 2012.401

Because in the CTRL run we only stored ocean temperature in the upper 1000 m,402

the CTRL run is evaluated only in the upper 18 standard depth levels (Figure 6a and403

6b). Figure 6c shows the number of Argo SDL data values for each standard depth.404

There are more than 5500 Argo SDL data values at each of the upper 18 levels. Below405

this the number decreases slowly to 3671 at 2000 m depth. The CTRL run simulates a406

warmer North Atlantic Ocean and Nordic Sea with the maximum mean bias407

exceeding 1 °C at 30 m depth (Figure 6b). The RMSE of ocean temperature of the408



CTRL run increases from 1.73 °C at 5 m depth to 2.22 °C at 75 m depth, and409

decreases to 1.2 °C at 900 m depth (Figure 6a). The ocean temperature RMSE of the410

NoSSTasim run are slightly smaller by 0.05 °C in the upper 500 m. We attribute this411

improvement to the ocean’s response to the more accurate sea ice distribution and ice412

edge position after assimilating sea ice parameters. The SST assimilation greatly413

improves the ocean temperature simulation from surface to 1750 m depth. Compared414

with the NoSSTasim run, the RMSE of ocean temperature of the SSTasim run has415

been reduced by 0.41 °C in upper 30 m, by 0.35 °C between 50 m and 250 m, by 0.2416

°C between 300 m and 400 m, and by 0.1 °C between 1000 m and 1500 m. The warm417

bias of the NoSSTasim run in the North Atlantic Ocean and the Nordic Sea has been418

corrected in the upper 1750m with maximal improvements of 0.7 °C in the upper 300419

m.420

The spatial distributions of the ocean temperature RMSE with respect to the421

Argo SDL data at 200 m depth are shown in Figure 7. The RMSE of the NoSSTasim422

run is large in the high latitude central Atlantic Ocean, the southern Norwegian Sea423

and the Bering Sea. In the SSTasim run, large improvements of ocean temperature424

simulation are found in the high latitude central Atlantic Ocean and the southern425

Norwegian Sea. To further describe the ocean temperature RMSE in different areas,426

the regional mean RMSE at 10 m, 200 m, and 1500m depth are listed in Table 1. In427

general, the RMSE of the NoSSTasim run with respect to the Argo SDL data is428

reduced by the additional assimilation of the GMPE SST data in the SSTasim run. The429

largest reductions are found where the RMSE is also very large, e.g. in the high430

latitude western Atlantic Ocean at 10m depth, or the high latitude central Atlantic431

Ocean at 200m depth. The only exception is the deep Bering Sea, where the RMSE is432

already quite small without SST assimilation and the RMSE in the SSTasim run is433

larger by 0.09 °C than that in the NoSSTasim run.434

435

3.3 Comparison with the Glider data436

All of the Glider profiles used in this study are located in the high latitude North437

Atlantic Ocean, the Labrador Sea, the Norwegian Sea and the Greenland Sea.438

Temperature profile observations were collected during ascending phase of the439

Gliders to enhance the accuracy of the geographic information received by satellites440

at the end of the ascent. Only profiles flagged as “good data” are used here for the441

model-data comparison. There are 1988 Glider profiles of which 1902 profiles reach442



below 800 m. 1507 modeled temperature profiles out of the 1988 profiles, that is443

approximately 75.8% of the profiles, are improved in the SSTasim run (Figure 8a).444

For the improved profiles, the mean RMSE with respect to the Glider observations445

decreases from 1.41 °C of the NoSSTasim run to 0.98 °C of the SSTasim run. For the446

remaining 24.2% of the profiles (Figure 8b), the mean RMSE with respect to the447

Glider observations increases from 1.02 °C of the NoSSTasim run to 1.45 °C of the448

SSTasim run. The mean RMSE with respect to all Glider observations decreases from449

1.32 °C of the NoSSTasim run to 1.1 °C of the SSTasim run.450

To further assess the model results, we categorize the relations between modeled451

and observed ocean surface temperature into four types (marked by different colors in452

Figure 8). Figure 9 shows the vertical temperature profile deviations which are453

classified according to the different types. Out of the 1507 improved temperature454

profiles, 1277 profiles (84.7%, blue in Figure 8a) are characterized by the situation455

that the simulated surface temperature of the NoSSTasim run is higher than the456

observed surface temperature of the Glider profile and that the simulated warm457

surface temperature bias decreases in the SSTasim run. The corresponding458

temperature profile deviations are shown as type IA in Figure 9. In this situation, the459

assimilation of the GMPE SST data reduces the simulated ocean surface temperature460

(Figure 9c) and consequently induces stronger vertical convection. Therefore, the461

information of lower surface temperatures can reach the deeper layers, and the462

simulated entire temperature profile improves (Figure 9d). However, if the modeled463

surface temperature of the NoSSTasim run is close to the Glider profile (Type DA in464

Figure 9a) and the modeled ocean surface cools in the SSTasim run (Type DA in465

Figure 9c) which leads to the amplification of surface temperature bias, the entire466

modeled temperature profile of the SSTasim run deteriorates (Type DA in Figure 9d)467

because too cold water (as imposed by the GMPE SST value) is convected by static468

instability. This happens for 291 in 481 deteriorated profiles (blue in Figure 8b).469

Another situation (orange in Figure 8a and 8b) occurs when the modeled surface470

temperature of the NoSSTasim run is lower than the observed surface temperature of471

the Glider profile (Type IC and DC in Figure 9a) and the modeled surface temperature472

increases in the SSTasim run (Type IC and DC in Figure 9c). This warming leads to473

more stability and cannot penetrate to the deeper layers. This phenomenon is474

especially clear in the deteriorated profiles (Type DC in Figure 9d). For the other two475

types (green and red in Figure 8), the effects of SST assimilation depend on the476



individual vertical temperature gradients of the observations and the simulated477

profiles. For example, if the model surface temperature of the NoSSTasim run is478

lower than the observed surface temperature of the Glider profile (Type IB and DB in479

Figure 9a) and the modeled surface temperature decreases in the SSTasim run (Type480

IB and DB in Figure 9c), the simulated temperature profile improves in the case of the481

model subsurface temperature of the NoSSTasim run being higher than the observed482

subsurface temperature of the Glider profile (Type IB in Figure 9d), but it deteriorates483

in the case of the model subsurface temperature of the NoSSTasim run being lower484

than the observed subsurface temperature of the Glider profile (Type ID in Figure 9d).485

We also compare model simulations with shipboard data. 1939 CTD profiles in486

the Norwegian Sea and the western Barents Sea, and 12786 records of ocean surface487

temperature were collected in 2012. Compared with the model simulations of the488

NoSSTasim run, 59% of the temperature profiles and 82% of the SST records are489

improved in the SSTasim run (not shown).490

491

3.4 Comparison with MASIE-NH and AMSR data492

The sea ice extent in 2012 is provided by the MASIE-NH data. The RMSE with493

respect to the MASIE-NH data decreases from 2.24 million km2 in the CTRL run, to494

2.15 million km2 in the NoSSTasim run, and 2.12 million km2 in the SSTasim run.495

Figure 10 shows the simulated and observed sea ice edge in March and September496

2012. In September (Figure 10a), the CTRL run overestimates the sea ice extent497

(defined as where sea ice concentration is larger than 15%) compared to the498

observations. The sea ice data assimilation in the NoSSTasim run improves the499

simulated sea ice edge. In the SSTasim run, there is a slight further improvement of500

the sea ice edge simulation. In terms of the integrated ice edge error (IIEE; Goessling501

et al., 2016) computed with respect to the AMSR data for September, the error502

decreases from 2.41 million km2 in the CTRL run, to 0.36 million km2 in the503

NoSSTasim run, and 0.25 million km2 in the SSTasim run. In March, the sea ice504

extent in the CTRL run is too small compared to observations. With data assimilation,505

the sea ice edge improves, especially in the Barents Sea, the Kara Sea and the Bering506

Sea (Figure 10b). The IIEE in March decreases from 1.95 million km2 in the CTRL507

run, to 1.57 million km2 in the NoSSTasim run, and 1.39 million km2 in the SSTasim508

run.509

In September, the ocean surface temperature in areas between the sea ice edge of510



the CTRL run and that of the NoSSTasim run is close to the freezing point, thus sea511

ice data assimilation can substantially improve the simulated sea ice edge (Figure512

10a). In March, however, there are large sea ice edge deviations between the runs and513

observations in the Labrador Sea (Figure 10b) where the ocean surface in the514

NoSSTasim run is too warm (Figure 4). The ocean surface warm bias between the515

data assimilation runs and in situ observations are also quite large (not shown), thus516

sea ice created by the data assimilation melts immediately. The simulated sea ice edge517

in the Labrador Sea indicates that to accurately simulate the sea ice edge it is518

necessary to simulate the correct ocean surface temperature. Even with SST519

assimilation, this appears to be unsuccessful in the Labrador Sea in our simulations.520

521

3.5 Comparison with BGEP ULS data522

Besides the sea ice edge, the sea ice thickness is another critical variable for523

marine safety of commercial vessels. Figure 11 shows the time evolution of modeled524

and observed sea ice thickness in 2012 at three locations in the Beaufort Sea. From525

January to April, SMOS and Cryosat2 sea ice thickness observations are available.526

Thus the modeled sea ice thickness of both the NoSSTasim and SSTasim run are the527

result of the combination of the assimilated satellite sea ice thickness observations528

and sea ice thickness dynamics implemented in the numerical model. Between May529

and October, there are no sea ice thickness observations, so the simulated sea ice530

thickness evolution is determined by the model physics and the correlation between531

sea ice concentration, sea ice thickness and SST. The thickness assimilation in winter532

preconditions the sea ice appropriately, so that the summer sea ice thickness is also533

simulated more accurately. The long sea ice memory is attributed to the relatively534

slow melting and freezing processes (Day et al., 2014; Mu et al., 2018b).535

Focusing on August to November, the sea ice data assimilation greatly reduces536

the sea ice extent where sea ice concentration is larger than 15% (Figure 10a).537

However, in the marginal sea ice zone in the Beaufort Sea where the sea ice538

concentration is below 15%, there are still patches of sea ice (Figure 11b, 11c). By539

assimilating SST data, these patches are removed when the ocean surface temperature540

is corrected (Figure 12).541

542

4. Discussion and conclusion543

In this paper, satellite-retrieved sea ice concentration, sea ice thickness and SST544



data are assimilated simultaneously into an Arctic sea ice-ocean model using a545

localized ensemble Kalman filter scheme. It is found that assimilating SST data in546

addition to sea ice concentration and sea ice thickness not only improves the upper547

ocean temperature simulation, but also improves the sea ice edge and sea ice extent548

simulations, as well as the sea ice thickness in the marginal sea ice zone. The effects549

of the SST data assimilation on upper ocean temperature improvements are not550

homogeneous. The improvements are significant in two situations: (1) when the551

simulated SST without data assimilation is warmer than the in situ observations, and552

when the assimilation reduces the SST warm bias. Hydrostatic instabilities favor the553

propagation of the cold surface signal induced by the SST assimilation downwards,554

and thus the entire upper ocean temperature simulation is improved. (2) When the555

simulated SST without data assimilation is colder than the in situ observations, and556

when the assimilation reduces the SST cold bias. In this situation, the improvements557

in the simulated ocean temperature due to the SST assimilation are restricted to the558

surface layers. The GMPE SST data used in this study is a median SST product from559

a multi-product ensemble. Stroh et al. (2015) suggested that state of the art SST560

products commonly have a cold temperature bias magnitude of less than -0.5 °C561

compared with in situ observations. The NoSSTasim run overestimates surface562

temperature in most areas of the North Atlantic Ocean and the Nordic Sea, the563

assimilation of the GMPE SST data corrects the model’s warm surface bias. The564

thermal relationship between model surface temperature and assimilated SST data in565

the North Atlantic Ocean and the Nordic Sea contributes to the positive results in this566

study.567

Assimilating sea ice concentration data can substantially improve the forecast of568

the sea ice edge location (Posey et al., 2015). Marginal sea ice is directly affected by569

horizontal heat advection of ocean surface currents. Thus the SST assimilation has the570

largest effects in the marginal sea ice zone (Figure 3d, 3f). Our results suggest that sea571

ice data assimilation only improves the sea ice edge simulation if ocean surface572

temperature is close to the freezing point. When the ocean surface temperature is573

unrealistically high, sea ice data assimilation cannot overcome this bias and574

consequently cannot simulate an accurate sea ice edge location (for example in the575

Labrador Sea in Figure 10b). During summer, assimilating sea ice data can correctly576

reduce the marginal sea ice zone, but when the surface water is too cold, continued577

freezing will form new ice. This process is suppressed by assimilating the correct SST578



data. As a consequence, SST data assimilation emerges as a key component in a sea579

ice forecasting system.580

In the Labrador Sea, there is a large systematic SST bias in the simulation581

without data assimilation. SST data assimilation corrects the bias only in part. The582

covariance relationship, on which the data assimilation scheme is based, cannot583

entirely correct this systematic bias. In other words, the effect of SST data584

assimilation is small if the systematic SST bias is too large. The bias needs to be585

reduced prior to data assimilation, for example by tuning model parameters.586

Because of the localization in the data assimilation algorithm and because the587

GMPE SST data are available only in ice free regions, the assessment of the upper588

ocean temperature and sea ice simulations is also mostly restricted to the ice free589

region or the vicinity of the sea ice edge. The sea ice data assimilation reduces sea ice590

extent and thickness. The freshwater volume increment of the surface layer leads to591

the decrease of the ocean surface salinity. Assimilating GMPE SST data diminishes592

the marginal sea ice in summertime, further reduces the ocean surface salinity (Figure593

5b). Temperature and salinity observations under sea ice in the central Arctic Ocean594

are so scarce that we do not assess the temperature and salinity simulation in the pack595

ice areas in this study avoiding a necessarily unrepresentative evaluation of the upper596

ocean.597

We have left aside the question of how the parameters of the data assimilation598

scheme affect the results. The parameters, such as the localized radius (Losa et al.,599

2012) and the uncertainties of the SSMIS sea ice concentration (Yang et al., 2014),600

will affect the solutions, but we anticipate that they will not lead to fundamentally601

different conclusions. Further the ensemble size has an influence on the results. While602

the chosen ensemble size of 23 members is sufficient for our application, larger603

ensembles will at least incrementally improve the results and should allow to use a604

larger localization radius, which can also contribute to improved results.605

Our results suggest that for accurate sea ice edge forecasts, not only the ice state,606

but also the upper ocean state needs to be known. In this sense, further systematic607

improvements of sea ice forecasts to support the safety of marine operations in the608

Arctic may only be possible if ocean surface observations also under the ice cover609

become available. Closed loop simulations could elucidate the effect of under ice610

ocean temperature data to be able to understand whether such an effort is worth the611

high costs.612
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Figure Captions819

Figure 1. (a) Number of days with available potential temperature observations and (b)820

mean uncertainties of the observations (°C) in 2012 in GMPE data. Values in the Gulf821

of Alaska and the Okhotsk Sea are set to zero.822

823

Figure 2. Setup of experiments: CTRL without data assimilation; NoSSTasim824

assimilating only sea ice data; SSTasim assimilating sea ice and SST data.825

826

Figure 3. Spatial distributions of the RMSD of SST in °C (upper row), sea ice827

concentration (middle row), sea ice thickness in m (lower row) between the828

NoSSTasim and CTRL runs (left column), between the SSTasim and NoSSTasim runs829

(right column).830

831

Figure 4. Spatial distribution of the annual mean SST bias in °C between the832

NoSSTasim run and the GMPE SST data. The values are averaged in 2012 when the833

GMPE data are available.834

835

Figure 5. Vertical distribution of (a) mean ocean temperature in °C south of 75 °N, (b)836

mean ocean salinity north of 75 °N for the SSTasim (red), NoSSTasim (blue), and837

CTRL (black) runs.838

839

Figure 6. Vertical distribution of (a) the RMSE and (b) mean bias of ocean840

temperature in °C with respect to the Argo SDL data for the SSTasim (red dots),841

NoSSTasim (blue dots), and CTRL (black crosses) runs, (c) number of the Argo SDL842

observations at each standard depth level.843

844

Figure 7. Spatial distribution of the RMSE of ocean temperature in °C with respect to845

the Argo SDL data at 200 m depth for (a) the NoSSTasim, and (b) SSTasim runs.846

847

Figure 8. Locations of the Glider profiles in 2012 where the RMSE of the entire848

temperature profile between the SSTasim run and the observed profile is (a) smaller849

or (b) larger than that between the NoSSTasim run and the observed profile. The850

colors denote the Glider locations where the surface temperature of the NoSSTasim851

run is (blue) higher than that of the Glider profile and also higher than that of the852



SSTasim run, (green) lower than that of the Glider profile but higher than that of the853

SSTasim run, (orange) lower than that of the Glider profile and also lower than that of854

the SSTasim run, (red) higher than that of the Glider profile but lower than that of the855

SSTasim run.856

857

Figure 9. Vertical distributions of temperature deviations in °C (a) between the858

NoSSTasim run and Glider profiles, (b) between the SSTasim run and Glider profiles,859

(c) between the SSTasim and NoSSTasim run, (d) between the absolute value of (a)860

and absolute value of (b). The labels IA to ID and DA to DD present the profile types861

shown in Figure 8a: IA-blue, IB-green, IC-orange, ID-red and Figure 8b: DA-blue,862

DB-green, DC-orange, DD-red.863

864

Figure 10. Sea ice edge in (a) September and (b) March in 2012. The purple patch865

denotes the area where the sea ice concentration from AMSR is larger than 15%. The866

lines denote the sea ice edge in the CTRL run (blue), in the NoSSTasim run (green),867

and in the SSTasim run (red).868

869

Figure 11. Time evolution of sea ice thickness in meters at three positions: (a) 75 °N,870

150 °W, (b) 78 °N, 150 °W, (c) 74 °N, 140 °W. The blue, green, red lines denote sea871

ice thickness of the CTRL run, the NoSSTasim run, the SSTasim run, respectively.872

The black solid and dashed lines denote sea ice thickness observations of BGEP ULSs873

which were deployed in the summers of 2011 and 2012. The black lines of BGEP874

ULS observations have been smoothed with the gray bar representing the875

observational uncertainty. The cyan and pink crosses denote the assimilated CryoSat-876

2 and SMOS sea ice thickness observations, respectively.877

878

Figure 12. September sea ice concentration in 2012 in marginal sea ice zone of (a) the879

NoSSTasim run, and (b) the SSTasim run. White areas represent concentrations above880

15% and ice free regions.881

882



883

Figure 1. (a) Number of days with available potential temperature observations and (b)884

mean uncertainties of the observations (°C) in 2012 in GMPE data. Values in the Gulf885

of Alaska and the Okhotsk Sea are set to zero.886

887

888



889

Figure 2. Setup of experiments: CTRL without data assimilation; NoSSTasim890

assimilating only sea ice data; SSTasim assimilating sea ice and SST data.891

892

893



894

Figure 3. Spatial distributions of the RMSD of SST in °C (upper row), sea ice895

concentration (middle row), sea ice thickness in m (lower row) between the896

NoSSTasim and CTRL runs (left column), between the SSTasim and NoSSTasim runs897

(right column).898



899

Figure 4. Spatial distribution of the annual mean SST bias in °C between the900

NoSSTasim run and the GMPE SST data. The values are averaged in 2012 when the901

GMPE data are available.902

903

904



905

Figure 5. Vertical distribution of (a) mean ocean temperature in °C south of 75 °N, (b)906

mean ocean salinity north of 75 °N for the SSTasim (red), NoSSTasim (blue), and907

CTRL (black) runs.908

909

910

911



912

Figure 6. Vertical distribution of (a) the RMSE and (b) mean bias of ocean913

temperature in °C with respect to the Argo SDL data for the SSTasim (red dots),914

NoSSTasim (blue dots), and CTRL (black crosses) runs, (c) number of the Argo SDL915

observations at each standard depth level.916

917

918



919

Figure 7. Spatial distribution of the RMSE of ocean temperature in °C with respect to920

the Argo SDL data at 200 m depth for (a) the NoSSTasim, and (b) SSTasim runs.921

922

923

924



925

Figure 8. Locations of the Glider profiles in 2012 where the RMSE of the entire926

temperature profile between the SSTasim run and the observed profile is (a) smaller927

or (b) larger than that between the NoSSTasim run and the observed profile. The928

colors denote the Glider locations where the surface temperature of the NoSSTasim929

run is (blue) higher than that of the Glider profile and also higher than that of the930

SSTasim run, (green) lower than that of the Glider profile but higher than that of the931

SSTasim run, (orange) lower than that of the Glider profile and also lower than that of932

the SSTasim run, (red) higher than that of the Glider profile but lower than that of the933

SSTasim run.934



935

Figure 9. Vertical distributions of temperature deviations in °C (a) between the936

NoSSTasim run and Glider profiles, (b) between the SSTasim run and Glider profiles,937

(c) between the SSTasim and NoSSTasim run, (d) between the absolute value of (a)938

and absolute value of (b). The labels IA to ID and DA to DD present the profile types939

shown in Figure 8a: IA-blue, IB-green, IC-orange, ID-red and Figure 8b: DA-blue,940

DB-green, DC-orange, DD-red.941



942

Figure 10. Sea ice edge in (a) September and (b) March in 2012. The purple patch943

denotes the area where the sea ice concentration from AMSR is larger than 15%. The944

lines denote the sea ice edge in the CTRL run (blue), in the NoSSTasim run (green),945

and in the SSTasim run (red).946



947

Figure 11. Time evolution of sea ice thickness in meters at three positions: (a) 75 °N,948

150 °W, (b) 78 °N, 150 °W, (c) 74 °N, 140 °W. The blue, green, red lines denote sea949

ice thickness of the CTRL run, the NoSSTasim run, the SSTasim run, respectively.950

The black solid and dashed lines denote sea ice thickness observations of BGEP ULSs951

which were deployed in the summers of 2011 and 2012. The black lines of BGEP952

ULS observations have been smoothed with the gray bar representing the953

observational uncertainty. The cyan and pink crosses denote the assimilated CryoSat-954

2 and SMOS sea ice thickness observations, respectively.955



956

Figure 12. September sea ice concentration in 2012 in marginal sea ice zone of (a) the957

NoSSTasim run, and (b) the SSTasim run. White areas represent concentrations above958

15% and ice free regions.959



Table 1. Regional mean RMSE of ocean temperature in °C with respect to the Argo960

SDL data. The high latitude western Atlantic Ocean (HLWAO) refers to the area961

enclosed by the longitudes 45°W to 70°W and the latitudes 55°N to 65°N. The high962

latitude central Atlantic Ocean (HLCAO) refers to the area enclosed by the longitudes963

20°W to 45°W and the latitudes 55°N to 65°N. The high latitude eastern Atlantic964

Ocean (HLEAO) refers to the area enclosed by the longitudes 20°W to 15°E and the965

latitudes 55°N to 65°N.966

HLWAO HLCAO HLEAO
Greenland

Sea

Bering

Sea

10 m
NoSSTasim 1.84 1.11 0.89 0.85 0.91

SSTasim 1.28 0.71 0.37 0.41 0.67

200 m
NoSSTasim 1.25 1.87 1.22 1.21 1.76

SSTasim 1.13 1.49 0.94 1.01 1.54

1500 m
NoSSTasim 0.72 1.03 1.13 0.80 0.12

SSTasim 0.60 0.96 1.00 0.68 0.21

967


