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ABSTRACT

The field of Arctic sea ice prediction on “weather time scales” is still in its infancy, and there is little understanding of the limits of
predictability. This is especially true for sea ice deformation along so-called Linear Kinematic Features (LKFs) including leads
that are relevant for marine operations. Here the potential predictability of the sea ice pack in the wintertime Arctic up to ten days
ahead is determined, exploiting the fact that sea ice-ocean models show skill at representing sea ice deformation at high spatial
resolutions. Results are based on ensemble simulations with a high-resolution sea ice-ocean model driven by atmospheric
ensemble forecasts. The predictability of LKFs as measured by different metrics drops quickly, with predictability being almost
completely lost after 4–8 days. In contrast, quantities such as sea ice concentration retain high levels of predictability throughout
the full 10-day forecast period. It is argued that the rapid error growth for LKFs is mainly due to the chaotic behaviour of
the atmosphere, and the low predictability of near surface wind divergence and vorticity; initial condition uncertainty for ice
thickness is found to be of minor importance as long as LKFs are initialized at the right locations.

Introduction
The rapid decline of Arctic sea ice has sparked considerable interest in predicting Arctic sea ice due to the projected increase in
Arctic maritime operations [1]. As for traditional weather prediction [2], skilful sea ice forecasts have the potential of saving
lives, support emergency management, prevent economic losses from hazardous environmental conditions; and they may also
create substantial financial revenue. Such forecasts are also needed to optimize shipping routes, which could be relevant for
minimizing pollution.

Recent years have seen substantial improvements in our understanding of Arctic sea ice predictability on seasonal time
scales [e.g. 3, 4, 5]. Outcomes from the Sea Ice Outlook, launched in 2008 as an open forum for predicting September Arctic
sea ice extent [e.g. 6], are a prominent example of the progress made. For marine operations, sea ice forecasts on shorter, daily
(“weather”) time scales are also critical, especially when it comes to preparation and decision making on the risk of exceptional
situations and for operational decision making. Very little is known, however, when it comes to short-term predictability of
Arctic sea ice [see 7, 8, for some recent studies], one reason being that previous predictability research was focussing mostly on
the atmosphere and non-polar regions [1].

When it comes to sea ice, past predictability studies have considered mostly the pan-Arctic sea ice extent, or the more
user-relevant location of the ice edge [4]. However, sea ice deformation is of critical importance for decision-making in
marine operations within the ice pack because deformation is related to sea ice pressure and leads. The initialization and
short-term forecasting of deformation features has thus been identified as a promising as well as challenging research task
[9]. Until recently, it was believed that classical sea ice models, employing viscous-plastic rheologies, would not be able to
represent deformation-related aspects such as leads which localize along so-called Linear Kinematic Features (LKFs). Here, we
determine the limits of predictability of Arctic sea ice on “weather time scales” (i.e. from 1–10 days), exploiting the fact that
sea ice-ocean models at very high horizontal resolutions are actually capable of representing observed aspects related to sea ice
deformation [1, 10, 11, 12]. Furthermore, we compare outcomes for sea ice parameters traditionally considered, such as sea ice
concentration, with the predictability of LKFs. Given the challenges that come with verifying LKFs due to their sharp and
elongated structures, we also consider various verification methods that differ in the degree to which small errors in predicting
LKF location are penalized.

This paper is organized as follows: The methods, including the experimental setup, the detection of LKF and the
determination of potential predictability are described in Section 2. This is followed by a presentation of the results and a
discussion and conclusions section.



Methods
0.1 Experiments
Our study is based on simulations with the Massachusetts Institute of Technology general circulation model (MITgcm) [13, 14]
with a viscous-plastic sea ice component [15]. We use an Arctic-wide grid at a horizontal resolution of ∼4.5 km with 50 vertical
layers, spanning one face of the cubed sphere, centered on the North Pole. The open boundaries in the Pacific and the Atlantic
are prescribed using monthly mean data taken from a global simulation [16]. Atmospheric forcing fields are taken from either
the ERA-Interim Reanalysis [17] or from individual members of the ECMWF Ensemble Prediction System (EPS) [18] as
detailed below.

A control simulation from 2001 to 2015 forced with ERA-Interim reanalysis data provides initial conditions for all ensemble
prediction experiments. Two sets of 15-member ensemble prediction experiments are considered: In the first set (AtmU
hereafter), we account only for atmospheric forcing uncertainty associated with the chaotic atmospheric nature: Different sea
ice-ocean model realizations are driven with different members of the ECMWF Ensemble Prediction System using the same
initial conditions for the sea ice-ocean system. In the second set (AtmU+IcU hereafter), we additionally take into account the
uncertainty of the initial conditions for sea ice. This is achieved by perturbing the initial sea ice thickness fields h as follows:

h′ = h · exp( f · ε) , (1)

where h′ is the perturbed sea ice thickness; f is a perturbation strength parameter; and ε is noise with zero mean and unit
variance, derived from white noise that was spatially smoothed with a Gaussian filter with 50 km standard deviation. We choose
f = 0.1 such that the resulting perturbations in Arctic sea ice thickness amount to a maximum of about 0.5 m (see Fig. 1a–b for
an example of the perturbed field for a particular day)—an estimate which is consistent with the observational uncertainty for
sea ice thickness [19]. Note that by perturbing thickness only, we leave the initial locations of LKFs essentially unchanged.

To reduce the impact of sampling uncertainty, each of the two ensemble experiments was conducted for six different cases
by initializing forecasts on the first and fifteenth of the months February, March, and April in 2005. We focus on the months
around the maximum ice extent because a continuum sea ice model with a 4.5-km grid spacing is thought to best represent a
dense ice pack with large floes, and because a larger area exhibits LKFs in winter and spring compared to summer and autumn.
The year 2005 was chosen because at that time the operational EPS was technically very similar to the ERA-Interim reanalysis
system. Note that for each of the configurations and each of the starting dates, fifteen ensemble members were integrated for
ten days (i.e. 10-day forecasts).

We follow a “perfect-model” approach in the sense that we do not quantify forecast errors with respect to actual observations,
but study how differences between individual ensemble members evolve, with one of the ensemble members being considered
the “truth”. Our analysis thus provides an estimate of potential predictability, which typically is regarded as an upper bound for
the skill that can be achieved in real operational forecasts [e.g. 4].

0.2 LKF detection
Our analysis requires an algorithm that diagnoses linear kinematic features (LKFs) from model output. Given that zones of
shear as well as convergence and divergence of sea ice are concentrated along LKFs, we opt for a simple method that is based
solely on the total deformation rate of sea ice: After taking the logarithm of total deformation, we subtract the local background
which is determined by applying a 2D Gaussian filter with a standard deviation of five grid cells (∼20 km). Grid cells are
considered to belong to an LKF if total deformation exceeds the background deformation by at least a factor of 100.2 ≈ 1.6
(Fig. 1.d). Note that this approach takes into account that atmospheric winds and coastal geometry impose spatial variations in
background deformation of the sea ice. The character of sea ice deformation and the diagnosed LKFs can be inferred from
Fig. 1c and d for 1 February 2005.

0.3 Measuring potential predictability
To quantify the difference between pairs of ensemble members (i.e. “forecast error”), we use the simple spatial Pearson
correlation as well as the more sophisticated Modified Hausdorff Distance [MHD; e.g., 20]. Applied to a pair of LKF patterns,
the MHD determines the average distance between any LKF grid cell to the closest such grid cell in the other pattern. In
contrast to the spatial correlation, which strongly penalizes even small errors in the predicted location of the LKFs, the MHD
can discriminate between small and large differences in LKF location. Given that MHD is constrained to binary fields, we use
it to determine the predictability of LKFs only. In contrast, spatial correlations are determined for LKFs plus several continuous
fields including sea ice total deformation anomaly, sea ice concentration anomaly, and the divergence of near-surface winds.

To determine potential predictability PP, we relate the above metrics, averaged over all possible pairs of ensemble members
and cases, to their climatological saturation levels. For the spatial correlation this can be expressed as follows:

PPρ = 1− 1−ρE

1−ρC
, (2)
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where ρE denotes the mean spatial correlation between ensemble members, and ρC is the climatological spatial correlation, that
is, the spatial correlation between pairs of states from the same time of the year but taken from different years of the control run,
averaged over all possible pairs of the years 2001 to 2015 from February to April. Similarly, potential predictability for MHD is
determined as follows:

PPMHD = 1−MHDE

MHDC
. (3)

Equations (2) and (3) are consistent with skill scores used elsewhere by the forecast verification community [e.g., 21].

0.4 Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable request.

Results
To provide a more intuitive insight to the predictability of LKFs, we first consider an individual forecast case. Fig. 2 shows
1-day and 4-day predictions of LKFs, initialized on 1 February 2005, from two ensemble members with atmospheric uncertainty
only (AtmU). There is evidence for relatively high potential predictability of LKFs during the first day of the forecast (Fig. 2a).
In weather prediction this time range spans what is usually referred to as nowcasting and the early short-range forecasting.
Visual inspection of Fig. 2b reveals a much larger difference between the two ensemble members 4 days into the forecast,
suggesting that the potential predictability in the early medium-range, at least for some of the simulated LKFs, is already quite
small.

More quantitative estimates of predictability are provided by combining all ensemble experiments for the 6 different
initialization times (Fig. 3). From the average spatial correlation coefficients for the pan-Arctic area (north of 54◦ N) a rapid
drop in skill with increasing lead time can be inferred (Fig. 3a), with correlation coefficients dropping below 0.6 (i.e. less than
36% of the variance explained) by day 2; by day 4 the correlation has dropped further to about 0.4. A comparison between
the experiment with atmospheric forcing uncertainty only (AtmU) and with both atmospheric and initial sea ice uncertainty
(AtmU-IcU) shows that it is primarily atmospheric uncertainty that is responsible for the rapid error growth. This is especially
true for lead times beyond 2 days or so.

Comparing LKF forecasts with a metric like the spatial correlation coefficient, which is widely used in forecast verification,
is difficult to interpret, because LKF forecasts represent binary information (either there is an LKF or not), and location errors,
whether small or large, are penalized alike. It is therefore useful to consider a metric such as the MHD that is better suited for
binary information and that can discriminate between small and large displacement errors. The MHD for all forecast cases along
with the corresponding potential predictability is shown in Figure 3b for the pan-Arctic region. Evidently, the MHD-based
potential predictability of LKFs remains above 0.6 for longer than that based on the spatial correlation coefficients. Even for
longer lead times up to 10 days the MHD metric indicates some potential skill in predicting LKFs. As for the spatial correlation
coefficient, atmospheric uncertainty dominates over initial sea ice uncertainty, especially beyond 3 days into the forecast.

So far, the discussion has focussed on the entire Arctic. However, it could be argued that the nature and hence predictability
of LKFs in the interior of the Arctic, where relatively thick ice prevails and the effect of surrounding coastlines decreases, is
different from regions near the sea ice margins. Figure 3c shows the MHD and corresponding potential predictability for the
central Arctic, which here is simply defined as being north of 80◦N and between 120◦E - 240◦E. It turns out that the potential
predictability in the central Arctic is slightly larger than for the pan-Arctic region, which we attribute to the presence of thicker
and more persistent sea ice. At the same time, however, the difference between the different ensemble experiments (thin lines
in Figure 3) is larger and noisier. One explanation for this is that fewer LKFs are found in the interior of the Arctic (Fig. 1)
compared to the sea ice margins [e.g. 10, their Fig. 2], so that the metrics are subject to more sampling variability; thus a larger
number of cases are required to obtain more robust statistics.

It is informative to put the predictability of LKFs into the context of that of other variables. The potential predictability for
(logarithmized) pan-Arctic sea ice deformation anomalies as determined by means of spatial correlation can be inferred from Fig.
3d. Here anomalies instead of full fields were considered in order to avoid that the model’s ability, to simulate climatological
patterns of sea ice deformation, contributes to the correlation (by analogy with the widely used 500 hPa geopotential height
anomaly correlation). Evidently, the sea ice deformation anomalies are much more predictable than LKFs, with potential
predictability going down to 0.6 by day 10 only. This is consistent with the fact that the full sea ice deformation fields include
larger spatial scales compared to LKFs (Fig. 1c and d). Note in this context that LKFs are obtained from sea ice deformation
by effectively applying a spatial high-pass filter. Interestingly, when the full deformation fields are considered instead of
LKFs, initial sea ice perturbations affect the predictions compared to atmospheric uncertainty even less. This suggests that the
prediction of larger-scale sea ice aspects is relatively insensitive to perturbations to the initial sea ice thickness at the considered
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time scale. For anomalies in sea ice concentration very similar results are found (Fig. 3e) with prospects for skilful forecasts up
to 10 days and beyond.

Atmospheric winds are the most important driver of sea ice changes on daily to subseasonal time scales. It is instructive,
therefore, to compare the predictability of sea ice with that of the atmospheric flow. The potential predictiability of the near
surface wind divergence, a parameter that is of particular relevance for the generation of leads, shows that the skill for the
atmosphere and LKFs is comparable up to about 4 days into the future (Figure 3f). Thereafter, the predictability of LKFs is
larger than that of the divergent wind, suggesting that sea ice provides additional memory that translates into predictability. In
general, however, a comparison of atmospheric and sea ice predictability is difficult to carry out due to the strong dependence
on the exact variable, metric, and spatial scale being considered [Fig. 3 a, d and e; 22, 23].

Discussion and conclusions
Experiments with a high-resolution sea ice-ocean model, forced with weather forecasts from the ECWMF ensemble prediction
system, have been used to determine the potential predictability of Arctic sea ice on “weather time scales” (1–10 day forecasts),
a time range for which skilful forecasts are of critical importance for marine stakeholders in tactical decision making. Our
study augments previous work, most of which focussed on longer-term seasonal and interannual prediction [e.g., 3]. Our results
highlight that the predictability of Arctic sea ice on short time scales is critically dependent on the parameter being considered.
sea ice concentration anomalies, for example, show high levels of predictability throughout the whole forecast range considered
in this study, whereas linear kinematic features (LKFs) such as leads are much less well predictable, especially beyond the first
2–4 days of the forecast.

Our results suggest that atmospheric uncertainty is more important in generating sea ice forecast error than initial sea ice
uncertainty. In this context it is worth noting that we have conducted additional experiments in which we varied the parameters
of the initial perturbations, coming to the conclusion that smaller-scale perturbations introduce spurious additional LKFs, and
that the chosen set of parameters appears appropriate. Nevertheless it cannot be excluded that our initial sea ice perturbations
are sub-optimal, in the way they reflect real uncertainties and in the way they project onto possible growing directions. However,
our results are consistent with the notion that sea ice dynamics are primarily determined by atmospheric winds.

Our study shows that the verification of forecasts of small-scale sea ice features (including determining exact limits of
predictability) poses challenges. Traditional measures such as the anomaly correlation coefficient, for example, are overly
sensitive to small errors in location. Hence, other less well-established methods such as Modified Hausdorff Distance need to be
exploited when it comes to user-relevant forecast verification. Future work on sea ice verification can benefit from the expertise
gained from the verification of other sharp features such as atmospheric fronts [e.g. 24]. Furthermore, estimates of deterministic
and probabilistic predictability may differ. Therefore, deterministic verification of forecasts, as done in this study essentially by
comparing pairs of ensemble members, should be augmented by probabilistic verification where ensemble-derived probabilities
are taken into account.

Simulated small-scale sea ice features depend heavily on the rheology used for the representation of sea ice dynamics.
It seems natural, therefore, to ask how model dependent the results from this potential predictability study are. The high
intermittency of sea ice deformation found in temporal scaling analyses of drift observations could not be reproduced with
viscous-plastic sea ice models at coarse grid resolutions [25] and only partly for models at higher grid resolution like the
one used here [12]. In this light, the potential predictability reported here may be actually slightly overestimated. Repeating
our experiments with a new genereration of rheologies that produce more intermittency in models [26, 27, 28] may provide
enhanced estimates of Arctic sea ice predictability on weather time scales.
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Figure 1. Sea ice thickness initial conditions (in m) on 1 February 2005 with a) atmospheric perturbations only (AtmU) and b)
additional sea ice perturbations superimposed (AtmU+IcU). Also shown for AtmU: c) sea ice deformation (in 1/day) and (d)
the binary map of Linear Kinematic Features (LKFs) associated with c). All results are based on six-hourly averaged fields.
This figure was genererted using ”Intel Python from Intel R© Parallel Studio XE Cluster Edition for Linux 2017 Initial Release”
that includes ”matplotlib-1.5.1” ( URL: https://software.intel.com/en-us/distribution-for-python”) and basemap-1.0.7 (URL:
http://matplotlib.org/basemap/).
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Figure 2. Predictions of Linear Kinematic Features (LKFs) at leads times of a) 1 day and b) 4 days for two randomly chosen
ensemble members with atmospheric perturbations only (AtmU). Both forecasts have been initialized on 1 February 2005 at 0
UTC. The LKFs of the two forecasts are marked in red and blue. Where they overlap they are gray, hence gray LKFs indicate
agreement between the two forecasts in terms of the predicted location of the LKFs; in contrast, red (first member) and blue
(second member) LKFs indicate mismatch between the two forecasts. For 1-day (4-day) forecasts the correlation between the
LKFs amounts to 0.9 (0.5); for the Modified Hausdorff Distance (MHD) values of 5.6 km (16.4 km) are obtained. This figure
was genererted using ”Intel Python from Intel R© Parallel Studio XE Cluster Edition for Linux 2017 Initial Release” that
includes ”matplotlib-1.5.1” ( URL: https://software.intel.com/en-us/distribution-for-python”) and basemap-1.0.7 (URL:
http://matplotlib.org/basemap/).

8/9



Figure 3. a) Spatial correlation coefficient (left axis) and potential predictability (right axis) for LKFs of pan-Arctic sea ice as
a function of forecast lead time for the ensemble experiment with atmospheric uncertainty only (AtmU, red curve) and the one
with atmospheric and initial sea ice uncertainty combined (AtmU+IcU, green curve). b) as in a), but for Modified Hausdorff
Distance (MHD in km) and corresponding potential predictability. c) as in b), but for sea ice in the central Arctic only
(80–90◦N, 120oE–240oE) d) as in a), but for sea ice deformation anomalies. e) as in a), but for sea ice concentration anomalies.
f) as in a), but for the divergence of near-surface winds with atmospheric forcing only and for the whole Arctic (blue) as well as
the central Arctic (purple). The dashed gray lines mark a common threshold of useful potential predictability for deterministic
metrics [29]. Results are based on all 6 cases (initial times) and 15 ensemble members. The thin curves represent the ensemble
means for each individual case.
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