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Abstract 

The impact of assimilating weekly CryoSat-2 sea ice thickness data together with 

daily SMOS sea ice thickness and daily SSMIS sea ice concentration data on the sea 

ice fields of a coupled sea ice-ocean model of the Arctic Ocean is investigated. The 

sea-ice model is based on the Massachusetts Institute of Technology general 

circulation model (MITgcm) and the assimilation is performed by a localized Singular 

Evolutive Interpolated Kalman (LSEIK) filter coded in the Parallel Data Assimilation 

Framework (PDAF). A period of three months from 1 November 2011 to 30 January 

2012 is selected to assess the skill of the assimilation system in the cold season. 

Compared to the unassimilated solution and a solution where only sea ice 

concentration is assimilated, the model-data misfits are substantially reduced in areas 

of both thick and thin ice. The sea ice thickness estimates agrees significantly better 

with in situ observations in the central Arctic Ocean than the sea ice thickness 

obtained from assimilating SMOS data alone, while the sea ice concentration shows 

very small improvements. The sea ice fields obtained by the joint assimilation of 

SMOS and CryoSat-2 data also have lower errors in thickness and concentration than 

those obtained from directly assimilating a statistically merged SMOS and CryoSat-2 

sea ice thickness product. These lower errors suggest that model dynamics play a 

significant role in data blending. 
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1. Introduction 

State of the art sea ice models rely on parameterizations for many physical processes. 

To minimize the uncertainties of model predictions especially for short-term 

forecasts, sea ice concentration data have been assimilated into coupled sea ice-ocean 

models by different assimilation methods (Lisæter et al., 2003; Lindsay and Zhang, 

2006; Stark et al., 2008; Massonnet et al., 2013; Yang et al., 2015). Day et al. (2014) 

showed accurate sea ice thickness initialization to be also important for summer sea 

ice concentration and extent forecasts. There are, however, only a few studies 

addressing the topic of ice thickness data assimilation, because (1) the in situ 

observations of sea ice thickness are sparse in space and time, (2) satellite 

measurements from which basin-scale Arctic sea ice thickness can be derived are only 

available for the last decade, and (3) the processing of the data is still a field of 

ongoing research (Ricker et al., 2014, 2017). For example, Lisæter et al. (2007) 

demonstrated the importance of ice thickness assimilation on sea ice variables and 

ocean fields in a coupled sea ice-ocean model in a study with an ensemble Kalman 

filter and synthetic CryoSat sea ice thickness data. Yang et al. (2014) assimilated the 

near-real-time Soil Moisture Ocean Salinity (SMOS) satellite-based sea ice thickness 

data (Tian-Kunze et al., 2014) into a coupled ice-ocean model using an ensemble-

based localized singular evolutive interpolated Kalman (LSEIK) filter (Pham et al., 

1998; Nerger et al., 2006). However, the SMOS sea ice thickness retrieval is only 

applicable for thin ice (< 1 m) (Tian-Kunze et al., 2014). The impact of SMOS sea ice 

thickness was further investigated during both the early melting and freezing seasons 

(Xie et al., 2016). Both Yang et al. (2014) and Xie et al. (2016) showed that 

assimilating SMOS ice thickness strongly improves simulated first-year ice, while 

thick (multi-year) ice was not significantly improved. 

The European Space Agency (ESA) satellite mission CryoSat-2, launched in 

2010, is dedicated to obtaining the thickness of perennial sea ice (Wingham et al., 

2006). Regularly updated CryoSat-2 thickness data products (Laxon et al., 2013; 
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Ricker et al., 2014; Tilling et al., 2015) now allow studies of interannual changes in 

the thick ice area and, moreover, serve for climate modelling studies. These thickness 

data are derived from radar altimetry measurements that are used to derive sea ice 

freeboard, the height of the ice surface above the water level. Freeboard is then 

converted into sea ice thickness, assuming hydrostatic equilibrium and employing an 

effective approach on snow loading (Laxon et al., 2013). Due to the larger freeboard 

of thick ice, better performance is expected for multi-year sea ice thickness (Ricker et 

al., 2014), so that SMOS data and CryoSat-2 data complement each other. The novel 

CryoSat-2 thickness data provide a good opportunity to investigate the impact of 

assimilating multi-year ice thickness on the quality of sea ice reanalysis.  

The two complementary datasets were recently combined with an optimal 

interpolation scheme (Ricker et al., 2017). This combined CS2SMOS dataset covers 

both thin ice and thick ice in the Arctic. However, optimal interpolation is a purely 

statistical method that does not take into account any physical processes.  

We extend the study of Yang et al. (2016) with the aim to improve 24h-forecasts 

of perennial sea ice thickness. To achieve this, the weekly averaged CryoSat-2 ice 

thickness is assimilated into our forecasting system in addition to the Special Sensor 

Microwave Imager Sounder (SSMIS) sea ice concentration and SMOS sea ice 

thickness data (Yang et al., 2016). To account for atmospheric uncertainties we follow 

Yang et al. (2015, 2016) and use the same ensemble atmospheric forcing from the 

THORPEX Interactive Grand Global Ensemble (TIGGE) dataset (Park et al., 2008; 

Bougeault et al., 2010). The same autumn-winter seasonal transition period from 1 

November 2011 to 30 January 2012 is chosen to simplify comparisons with Yang et 

al. (2015, 2016). To assess the role of model dynamics in data blending we further 

compare the performance of the forecasting system assimilating SMOS and CryoSat-2 

datasets individually with the combined CS2SMOS data product and the results of 

assimilating the CS2SMOS dataset directly.  

The paper is organized as follows: In section 2, the model and atmospheric 

forcing are described. Further, the data assimilation method and the observational data 

used for the assimilation and evaluation are introduced. In addition, the configurations 

of each experiment are shown. In section 3, the assimilation experiments are 

evaluated. The role of model dynamics in data blending is discussed in section 4. 
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Conclusions of this study are made in section 5. 

2. Forecasting system 

2.1. Model description  

The forecasting system uses the Massachusetts Institute of Technology general 

circulation model (MITgcm, Marshall et al., 1997). The Arctic regional configuration 

has been widely used to study both sea ice and oceanic processes (Losch et al., 2010; 

Nguyen et al., 2011; Mu et al., 2017). The sea ice dynamics uses a viscous plastic 

rheology (Hibler, 1979; Zhang and Hibler, 1997), the thermodynamics follows 

Parkinson and Washington (1979) with a one-layer, zero heat capacity formulation. 

To allow ice growth also for thick ice, there are 7 thickness categories with a 

prescribed homogenous distribution between 0 and 2h (h = mean thickness, averaged 

over the ice covered part of the grid cell) that is scaled with the mean ice thickness 

(Hibler, 1984). In this way, there is always thin ice of thickness (2/7)h available. Note 

that the mean sea ice thickness of the model output in the paper is the grid-cell mean 

thickness (i.e. thickness weighted by concentration). Snow is treated following Zhang 

et al. (1998) and snow thickness is an additional prognostic variable that moves with 

the ice. The same 7-thickness-category distribution is also used for snow. This 

parameterization usually leads to thicker sea ice (up to 1 m) and reduces a thin ice 

bias in the model (Castro-Morales et al., 2014). Arakawa C grids are used for both the 

ocean and sea ice with an average spacing of approximately 18 km. Model parameters 

for sea ice and ocean were optimized by Nguyen et al. (2011). The model resolves 

near surface processes with 28 unevenly spaced layers in the top 1000 m and 22 

thicker, but also unevenly spaced, layers below 1000 m. The bathymetry is derived 

from the National Centers for Environmental Information (formerly the National 

Geophysical Data Center (NGDC)) 2-minute gridded elevations/bathymetry for the 

world (ETOPO2; Smith and Sandwell, 1997). Monthly oceanic boundary conditions 

for the Atlantic and Pacific sections are provided by a global model with the same 

horizontal resolution (~18 km) as the regional model (Menemenlis et al., 2008). The 

monthly mean river runoff is based on the Arctic Runoff Data Base (ARDB) as 

prepared by P. Winsor (Nguyen et al., 2011). For more details of the model 

configuration the reader is referred to Losch et al. (2010) and Nguyen et al. (2011). 

2.2. Atmospheric forcing 
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Following Yang et al. (2016), the same model is forced by atmospheric ensemble 

forecasts of the UK Met Office Unified Model (UKMO; Bowler et al., 2008) 

available in the TIGGE archive (http://tigge.ecmwf.int). 23 sets of perturbed 

forecasts’ fields are used to force 23 ensemble members of the model states for an 

approximation of the forecast error statistics, so that there is no need for any 

additional ensemble inflation. The reader is referred to Yang et al. (2015) for more 

details on data processing for the model. 

2.3. Data preparation 

Observations of sea ice concentration used for assimilation are provided by the 

NSIDC (http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html). They are 

derived from Defense Meteorological Satellite (DMSP) F17 SSMIS passive 

microwave data using the NASA team algorithm (Cavalieri et al., 2012). The daily 

sea ice concentration data are provided in polar stereographic projection at a grid cell 

size of 25 × 25 km, and are then linearly interpolated onto the model grid. Following 

Yang et al. (2016), a uniform constant value of 0.25 is used as observation error to 

account for measurement and representation errors (Janjić et al., 2017). 

For sea ice thicknesses below 1.0 m, observational data have been derived from 

the SMOS brightness temperatures (Tian-Kunze et al., 2014; http://icdc.zmaw.de, 

version 2). The sea ice thickness data have a horizontal grid resolution of 12.5 km. 

They are interpolated onto the model grid and then assimilated into the forecasting 

system following Yang et al. (2014). The data assimilation uses the uncertainties 

provided by this daily product as assumed observation errors.  

To improve thick sea ice estimates, sea ice thickness data derived from CryoSat-2 

radar altimetry measurements (Ricker et al., 2014; http://data.meereisportal.de/data, 

version 1.2) are assimilated in addition to the SMOS data. The CryoSat-2 sea ice 

thickness retrievals are provided as weekly means, projected onto the EASE-Grid 2.0 

(Brodzik et al., 2012) with a grid resolution of 25 km. The estimated thickness 

uncertainties provided in the dataset are also used directly in the data assimilation. 

Both, the CryoSat-2 ice thickness data and its uncertainties are interpolated onto the 

model grid. For synchronization with the daily availability of the SSMIS-derived sea 

ice concentration and SMOS-derived sea ice thickness, the weekly mean sea ice 

thickness data from CryoSat-2 are assimilated every day of the week.  

http://icdc.zmaw.de/
http://data.meereisportal.de/data


6 

 

The complementary character of the uncertainties of the observed thickness 

ranges of the two datasets makes it possible to combine the weekly CryoSat-2 and 

daily SMOS data with an optimal interpolation scheme into a merged product 

(CS2SMOS), which covers the entire thickness range (Ricker et al., 2017; 

http://data.meereisportal.de/data). The data merging is carried out on a weekly basis to 

accommodate the different temporal resolutions of the individual retrievals. While 

SMOS obtains Arctic-wide thin ice thickness within a day, CryoSat-2 data do not 

provide full Arctic coverage and need to be collected over one month to retrieve a full 

coverage of the Arctic. The CS2SMOS sea ice thickness data provide a full coverage 

of the Arctic domain including the North Pole, and are projected onto the 25 km 

EASE-Grid 2.0. For the data assimilation, the CS2SMOS sea ice thickness data and 

its uncertainties are interpolated onto the model grid. The weekly CS2SMOS data are 

assimilated every day of the week as the CryoSat-2 data. 

To assess the model skill in 24-hour predictions of sea ice concentration, we use 

the near-real-time data from the Ocean and Sea Ice Satellite Application Facility 

(OSISAF, Eastwood et al., 2011; http://www.osi-saf.org) from the European 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The 

data are distributed on a 10 km polar stereographic grid. Because the OSISAF data in 

the study period are processed with a different algorithm, a hybrid of the Bootstrap 

algorithm (Comiso, 1986) and the Bristol algorithm (Smith, 1996), and derived from a 

different passive microwave sensor, SSM/I, on board a different satellite, DMSP F15, 

the OSISAF dataset can be considered independent of the NSIDC SSMIS dataset. 

For further model evaluation, we follow Yang et al. (2014) and compare the 

model sea ice thickness to independent observations of ice draft provided by the 

Beaufort Gyre Exploration Project (BGEP) upward-looking sonar (ULS) moorings 

located in the Beaufort Sea (http://www.whoi.edu/beaufortgyre) and to sea ice 

thickness data obtained from autonomous ice mass balance (IMB) buoys (Perovich et 

al., 2013; http://imb.erdc.dren.mil). The error in the ULS measurements of ice draft is 

about 0.1 m (Melling et al., 1995). Drafts are converted to thickness by multiplying 

with a factor of 1.1, which is approximately the ratio of the mean seawater (1024 

kg/m
3
) and sea ice densities (910 kg/m

3
) (Nguyen et al., 2011). Note that this simple 

draft-thickness conversion introduces additional uncertainties due to nonlinearities in 
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the conversion caused by different ice types, ice densities, and snow loading. These 

effects are neglected in this study. The IMBs use two acoustic rangefinders to monitor 

the position of the ice bottom and the snow/ice surface to estimate the sea ice 

thickness. The accuracy of both sounders is 5 mm (Richter-Menge et al., 2006). The 

trajectory of the ice mass balance buoy IMB_2011K and the locations of the three 

moorings BGEP_2011A, BGEP_2011B, and BGEP_2011D are shown in Figure 1. 

BGEP_2011A and BGEP_2011D are in a region of thin ice during the entire 

assimilation period. In contrast,  BGEP_2011B is in the vicinity of thick ice regimes 

and partly samples sea ice with thickness of above 1m, where the SMOS data have 

large errors or are not applicable. 

 

Figure 1. Locations of ULS moorings BGEP_2011A (dot; 74°59.816'N, 149°58.149'W), 

BGEP_2011B (triangle; 78°0.3950'N, 149°58.462'W) and BGEP_2011D (square; 73°59.649'N, 

139°59.043'W), and buoy trajectory from 1 November 2011 to 30 January 2012 of IMB_2011K 

(black line). 

2.4. Data assimilation 

For data assimilation, we use the SEIK filter (Pham, 2001) as coded in the Parallel 

Data Assimilation Framework (PDAF, Nerger and Hiller, 2013; http://pdaf.awi.de). 

The SEIK filter is a variant of an ensemble-based Kalman filter (Evensen, 1994). It 

uses an ensemble of model states to estimate the uncertainty in the model state. The 

data assimilation is performed sequentially by alternating short ensemble forecasts (24 

hours in our case) and analysis steps in which the observations are assimilated to 

correct the ensemble states. In the analysis step, a correction term calculated from 

deviations between observations and forecast is added to the ensemble averaged 
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forecast field. In a general form, this can be written as  

       (     ).   (1) 

Here,    is the analysis field given by the ensemble mean state,    is the forecast 

field,   is the observation, and   is the observation operator, a matrix that extracts the 

observed part of the model field. The Kalman gain   is calculated by 

                   (2) 

where    is the sample covariance matrix of the ensemble and   is the observational 

error covariance matrix. As an ensemble-based Kalman filter, the SEIK filter uses a 

computationally efficient formulation of the equations above that avoids storing the 

full matrix    (Evensen, 1994; van Leeuwen and Evensen, 1996). The SEIK filter, 

however, takes into account that the degrees of freedom for the analysis correction are 

given by the rank of the ensemble covariance matrix, which is at most the ensemble 

size minus one, and hence leads to a lower computing cost compared to the ensemble 

Kalman filter. 

Note that the model sea ice thickness is in fact the grid-cell averaged ice 

thickness, or ice volume divided by the grid-cell area,   , where   is the mean 

thickness in the ice covered part and   is the fractional ice cover of the grid cell. The 

observation operator   (eq. 1), extracts   and    from the model output and maps it to 

the concentration and thickness data. On the other hand, CryoSat-2 ice thickness data 

refer to the mean ice thickness of ice covered area. Nevertheless, comparing    to 

CryoSat-2 data is mostly uncritical, because the thick sea ice that CryoSat-2 can 

accurately measure is primarily in 100% ice cover. The SMOS retrieval relies on 

radiometer measurements and thickness estimates are sensitive also to ice 

concentration (Tian-Kunze et al., 2014). Therefore, in contrast to CryoSat-2, the 

SMOS data corresponds to the mean thickness of the whole grid cell, including open 

water. Thus, comparing to    is actually appropriate in the marginal ice zone. 

However, we acknowledge potential uncertainties due to these assumptions. 

The LSEIK filter (Nerger et al., 2006) is the localized variant of the SEIK filter. 

With localization, the filter still applies corrections at each single grid point, but takes 

into account only observations within a specified radius around the updated grid 

point. In addition, a quasi-Gaussian weight function (Gaspari and Cohn, 1999) is used 

to generate the weight of each observation for the analyzed grid point so that 
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observations are down-weighted with increasing distance from the grid point to be 

updated (Hunt et al., 2007).  

       The ensemble-based data assimilation after an ensemble initialization is a 

sequence of three phases: ensemble forecast; analysis (Eq. 1) given available 

observations; and ensemble transformation for reinitialization. This sequence is 

repeated for whenever new data become available.  

In the following we detail the LSEIK data assimilation phases and set up for our 

application: 

Time period. The data assimilation is performed with the sea ice-ocean forecasting 

system from 1 November 2011 to 30 January 2012 assimilating sequentially the 

observational data and reinitializing the system every 24 hours.   

Initialization. To approximate the initial model state error covariance matrix, daily sea 

ice concentration and grid-cell averaged sea ice thickness snapshots of model 

integrations from October to December 2011 are collected (resulting in 92 state 

vectors) and decomposed into empirical orthogonal functions (EOFs) after subtracting 

the mean state over the integration period (Yang et al., 2015). The ensemble of sea ice 

concentration and sea ice thickness states are then generated by second-order exact 

sampling (Pham, 2001). For this, the leading 22 EOFs are multiplied with a random 

matrix that is constructed given the standard deviation in the set of EOFs and a mean 

state. The data assimilation system is initialized on 1 November 2011. At this time, 

the ensemble is generated from the state of the free model run and variance of the 

EOFs and saved in restart files (one file per ensemble member). The initialization 

could include more states, for example, from previous years, but each regular analysis 

step also adds information to the covariance matrix so that in long integrations, the 

initialization affects the assimilation only in the beginning. 

Forecast. The initialized model trajectories evolve in time over the next 24 hours of 

model integration being forced by an ensemble of 23 UKMO atmospheric 24h 

forecasts until the next sea ice thickness and/or sea ice concentration observations 

become available for forecast evaluation and assimilation. During the forecast phase, 

the ensemble propagates the forecast errors due to uncertainties in the initial 

conditions and atmospheric forcing. Sea ice or ocean model errors or parameter 

uncertainties are not considered explicitly (Shlyaeva et al., 2016).  
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Analysis and reinitialization. Given the observations, the LSEIK computes a corrected 

state of sea ice concentration and thickness (Eq. 1) and updates the state error 

covariance matrix estimated from the obtained ensemble of model states. The analysis 

is carried out for each model grid point given the observations only within the radius 

of 126 km (~7 grid points). This radius was determined in a parameter study (Yang et 

al., 2014) to give optimal estimates. After the analysis, the updated fields are written 

into the model restart files. The model restarts a new forecast from the adjusted restart 

files and continues the ensemble integration.  

2.5. Experimental design 

The performance of the forecasting system after including the CryoSat-2 data in 

the assimilation is investigated in five experiments (Table 1): Exp_Ctrl is a purely 

prognostic experiment forced by UKMO control forecast fields without any data 

assimilation. Exp_SSMIS assimilates only SSMIS sea ice concentration data. 

Exp_SM repeats the experiment by Yang et al. (2016) and assimilates SSMIS sea ice 

concentration data and SMOS sea ice thickness data. To also constrain thicker sea ice, 

Exp_SM&CS2 assimilates both SMOS and CryoSat-2 datasets. Exp_CS2SMOS 

assimilates the combined CS2SMOS data directly. The assimilation of SSMIS sea ice 

concentration data is also implemented in both Exp_SM&CS2 and Exp_CS2SMOS. 

In all assimilation experiments, sea ice concentration and thickness form the same 

state vector and both variables are updated in the analysis step. 

Table 1. List of experiments and assimilated datasets 

(Data used for assimilation are represented by dots) 

Experiments 
Sea ice concentration Sea ice thickness 

SSMIS SMOS CryoSat-2 CS2SMOS 

Exp_Ctrl     

Exp_SSMIS ●    

Exp_SM ● ●   

Exp_SM&CS2 ● ● ●  

Exp_CS2SMOS ●   ● 
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Figure 2. Temporal evolution of (a, b) RMSE with respect to the OSISAF ice concentration data 

and of (c) the integrated ice-edge error (IIEE) for Exp_Ctrl (grey solid), Exp_SSMIS (blue solid), 

Exp_SM&CS2 (black solid), Exp_SM (red dashed) and NSIDC SSMIS (black dashed) from 1 

Nov 2011 to 30 Jan 2012. Note that subplot (a) is calculated over the valid SMOS area and 

subplot (b) is calculated over the valid CryoSat-2 area. Date format is dd/mm. 

 

 (a) (b) 

 
(a) 

(c) 

(b) 



12 

 

 

Figure 3. Differences between Exp_SM&CS2 and Exp_SM (a) sea ice concentration and (b) sea 

ice thickness (m) averaged over 1 Nov 2011 to 30 Jan 2012. 

3. Results 

3.1. Sea ice concentration 

To analyze the impact of the data assimilation we examine the mean of the daily 

ensemble forecast just before the analysis step. For each daily forecast, we follow 

Yang et al. (2016) and calculate the root-mean-square error (RMSE) of sea ice 

concentration (ranging from 0 to 1) with respect to the independent OSISAF 

concentrations, where concentrations are larger than 0.05 in either the model or the 

observations. During the calculation, the valid SMOS area is where the assimilated 

SMOS sea ice thickness is below 1.0 m and the valid CryoSat-2 area is where the 

current weekly CryoSat-2 sea ice thickness is available. 

For reference, the RMSEs of NSIDC SSMIS with respect to the OSISAF sea ice 

concentration data over the valid SMOS and CryoSat-2 area are shown respectively in 

Figure 2(a, b). Averaged over all three months, the RMSE for the valid SMOS area is 

0.053, while it is 0.031 for the valid CryoSat-2 area. It also shows that the RMSE of 

NSIDC SSMIS over the valid CryoSat-2 area almost reaches the RMSEs of the 

assimilated model simulations. 

Compared to Exp_Ctrl, the assimilation of SSMIS sea ice concentration in 

Exp_SSMIS, Exp_SM and Exp_SM&CS2 reduces the differences between the 

forecasts and independent observations (Figure 2(a, b)). The assimilation of sea ice 

thickness data combined with sea ice concentration data (Exp_SM and 

Exp_SM&CS2) further reduces the RMSEs with respect to OSISAF data over the 

valid SMOS data area compared to Exp_SSMIS (Figure 2(a)).  

The assimilation of the ice concentration data reduces the mean RMSE by 0.090 

in the SMOS data region (Figure 2(a)), but only by 0.009 in the CryoSat-2 data region 

(Figure 2(b)). This difference is expected because the CryoSat-2 area includes much 

thicker ice that always coincides with high ice concentration. High ice concentrations 

limit the potential for sea ice concentration improvements, but sea ice concentration 

forecasts in the pack are arguably less interesting than in areas of low ice 

concentration. 
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The additional assimilation of the CryoSat-2 sea ice thickness (Exp_SM&CS2) 

does not reduce the RMSE of the sea ice concentration neither over the valid SMOS 

area nor over the valid CryoSat-2 area. The difference of the mean sea ice 

concentrations between Exp_SM&CS2 and Exp_SM (Figure 3(a)) shows that the 

effects of assimilating CryoSat-2 thickness data are small (< 0.05 in concentration) 

but systematic: assimilating CryoSat-2 slightly decreases the ice concentration in the 

thick ice area and increases the ice concentration near the ice edge. In areas where 

there are no thickness data available, the RMSE improves a little (by about 0.01) 

compared to Exp_SSMIS (Figure not shown). 

As an additional metric we use the integrated ice-edge error (IIEE) defined in 

Goessling et al. (2016). It is computed from counting the area of model grid cells, 

where the model and satellite data disagree in the presence of sea ice. This metric 

changes with time, but with after assimilating SSMIS concentration data, the mean 

IIEE is reduced by approximately 38% (0.204 million km
2
) (Figure 2(c)). The 

assimilation of thickness data does not contribute very much to reducing the IIEE. 

Note that assimilating ice thickness leads to larger RMSE during the first 10 days 

of the experiment (Figure 2(a, b)). This can be explained by the initial thickness bias 

of Exp_Ctrl that maps into the concentration updates via the covariance between 

thickness and concentration in the covariance matrix  . The initial concentration bias 

is generally well below 0.2. The initial thickness has a small bias near the North Pole, 

but larger biases of easily 1.0 m towards the ice edge and the marginal seas, which is 

a first-order error. As a consequence, the almost instantaneous adjustment to observed 

concentration in Exp_SSMIS is slowed down by the thickness bias in experiments 

Exp_SM and Exp_SM&CS2. For the sea ice thickness, this initial adjustment is not 

obviously observed as shown in section 3.2 below.  

3.2. Sea ice thickness 

The RMSE of sea ice thickness is calculated with respect to SMOS and CryoSat-2 sea 

ice thickness separately over the valid data area of each dataset (Figure 4). 

Assimilating SSMIS concentration data improves the fit to thickness data only 

marginally (Figure 4; see also Yang et al., 2014). The improvement is nearly zero for 

the CryoSat-2 covered area (Figure 4(b)), where ice concentrations are near 1.0 while 

ice thickness still increases considerably. As a consequence, the covariance between 
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concentration and thickness is small (Yang et al., 2014). Both Exp_SM and 

Exp_SM&CS2 improve the sea ice thickness forecasts compared to Exp_Ctrl and 

Exp_SSMIS. The mean RMSE in the valid SMOS area (Figure 4(a)) reduces from 

0.726 m in Exp_Ctrl, to 0.191 m in Exp_SM and 0.236 m in Exp_SM&CS2. Thus, 

the performance of Exp_SM is better than Exp_SM&CS2 over the thin ice area. This 

is due to the fact that CryoSat-2 sea ice thickness is sometimes also available in the 

thin ice area and the RMSE is calculated only with respect to SMOS sea ice thickness. 

In any case, the difference between Exp_SM and Exp_SM&CS2 is small in the thin 

ice area. The assimilation of CryoSat-2 data improves the sea ice thickness forecasts 

in the thick ice area (Figure 4(b)). The mean RMSE reduces from 0.838 m in 

Exp_Ctrl to 0.653 m in Exp_SM and then 0.383 m in Exp_SM&CS2. The 

improvement of the thick ice forecast is much larger than the thin ice forecast 

differences between Exp_SM&CS2 and Exp_SM. 

The effect of assimilating CryoSat-2 sea ice thickness in addition to SMOS data 

is also illustrated in the map of thickness differences (Figure 3(b)). Compared to 

Exp_SM, Exp_SM&CS2 reduces the ice thickness in the thick ice area and increases 

the thickness along the sea ice edge from the northeast of Greenland to north of 

Svalbard. This is consistent with the sea ice thickness observations of CryoSat-2 in 

these areas. The smaller deviations close to the North Pole stem from missing satellite 

data. 

Figures 5 and 6 show maps of differences between the sea ice thickness estimates 

of Exp_SM and Exp_SM&CS2 and the assimilated observational datasets SMOS and 

CryoSat-2. The model-data misfit is smaller in the thin ice area (i.e. compared to 

SMOS data) for Exp_SM (Figure 5), but for Exp_SM&CS2 the overall agreement 

with CryoSat-2 data is much better, especially in the thick ice area (Figure 6). That is 

caused by either no data assimilated in Exp_SM (in thick ice area) or a conflict 

between the data products in the region east of Greenland and the Baffin Bay. These 

regions are challenging for satellite remote sensing. In the Fram Strait, ice regimes are 

characterized by a composite of thinner first-year ice and thicker multiyear ice, 

rapidly advected southwards. CryoSat-2 data are more trustable here, since SMOS 

does not register the thick ice. However, certainly at lower latitudes, CryoSat-2 

measurements are not repeated daily over the same area. Therefore, uncertainties in 
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areas of strong ice drift are significant. In the Baffin Bay, sea ice during the freeze-up 

in autumn is very thin. In addition, the CryoSat-2 product is potentially biased in the 

Baffin Bay, since the conversion from ice freeboard to thickness (Laxon et al., 2013) 

is based on a snow climatology that is not well constraint in this area. Therefore, 

SMOS is more reliable in the Baffin Bay in autumn. On the other hand, in spring, ice 

thickness can exceed 1.0 m and then also the SMOS ice thickness uncertainty will 

increase. 

To evaluate the performance of the sea ice assimilation experiment 

Exp_SM&CS2, the 24-hour ice thickness forecasts are compared with independent 

thickness observations from in situ ULS and IMB buoys (Figure 7). The forecasted 

ice thicknesses are linearly interpolated from the model grid to the locations of the in 

situ observations. The assimilation of CryoSat-2 sea ice thickness reduces the 

overestimation of the thickness at BGEP_2011B (Figure 7(b)), and still maintains the 

good performance of Exp_SM at the other three locations. The RMSE of 

Exp_SM&CS2 calculated from daily means at BGEP_2011B is 0.36 m, that of 

Exp_SM is 0.84 m and that of Exp_Ctrl without assimilation is 1.03 m (Table 2). The 

assimilation of SSMIS concentration alone (Exp_SSMIS) does not improve the 

RMSE with the in-situ data over that of the control (Exp_Ctrl) (Table 2). The RMSE 

of Exp_SM&CS2 and Exp_SM (based on daily means in Table 2) are very similar at 

BGEP_2011A, BGEP_2011D and IMB_2011K. The considerable improvement of 

Exp_SM&CS2 compared to Exp_SM at BGEP_2011B is mostly caused by data gaps 

in the SMOS data for thicknesses larger than 1.0 m. The assimilation of CryoSat-2 sea 

ice thickness fills these gaps. In the absence of data gaps, Exp_SM and 

Exp_SM&CS2 are comparable in these specific locations. 

In addition, time series of spatially averaged ensemble spread, measured by the 

ensemble standard deviations (STDs), of 24h ice concentration and thickness 

forecasts are calculated (Figure not shown). For the ensemble spread of sea ice 

concentration, only grid points with ice concentration larger than 0.05 are considered. 

The time series show that similar to Yang et al. (2015), the prior uncertainty modeled 

by the ensemble of atmospheric forcing results in a stable model ensemble spread 

after two weeks. The spread represents the posterior model uncertainties which are an 

implicit part of the forecast. 
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Figure 4. Temporal evolution of RMSE between Exp_Ctrl (grey solid), Exp_SSMIS (blue solid), 

Exp_SM&CS2 (black solid), Exp_SM (red dashed) and (a) SMOS sea ice thickness (0-1.0 m), (b) 

CryoSat-2 sea ice thickness from 1 Nov 2011 to 30 Jan 2012. Note that for thickness over the 

valid CryoSat-2 area (b), the RMSE are computed relative to weekly CryoSat-2 data. 

 

 

Figure 5. Mean sea ice thickness deviation (m) of (a) Exp_SM and (b) Exp_SM&CS2 from SMOS 

sea ice thickness averaged from 1 Nov 2011 to 30 Jan 2012. 

 

(a) 

(b) 

 (a) (b) 
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Figure 6. Mean sea ice thickness deviation (m) of (a) Exp_SM and (b) Exp_SM&CS2 from the 

respective weekly CryoSat-2 sea ice thickness averaged from 1 Nov 2011 to 30 Jan 2012. 

 

 

Figure 7. Time series of sea ice thickness (m) at (a) BGEP_2011A, (b) BGEP_2011B, (c) 

BGEP_2011D, and (d) IMB_2011K from 1 Nov 2011 to 30 Jan 2012. The magenta squares 

represent weekly CS2SMOS data after they have been linearly interpolated onto the locations of 

the in situ observations. Note that the errors in measurements are estimated as 0.1 m at 

BGEP_2011A, BGEP_2011B and BGEP_2011D and 1 cm at IMB_2011K. 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

 (a) (b) 
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Table 2. RMSE (m) between the forecast experiments and the in situ measurements of the ULS 

moorings BGEP_2011A, BGEP_2011B, and BGEP_2011D, and the IMB buoy IMB_2011K.  

Experiment  BGEP_2011A BGEP_2011B BGEP_2011D IMB_2011K 

Exp_Ctrl 

Daily 

means 

1.26 1.03 0.98 1.15 

Exp_SSMIS 1.24 1.05 1.15 1.03 

Exp_SM 0.24 0.84 0.35 0.11 

Exp_SM&CS2 0.23 0.36 0.38 0.12 

CS2SMOS 
Weekly 

means 

0.25 0.22 0.28 0.16 

Exp_SM&CS2 0.17 0.21 0.29 0.11 

Exp_CS2SMOS 0.20 0.23 0.25 0.12 

 

4. The role of model dynamics in data blending 

Ricker et al. (2017) exploited the complementary character of SMOS and CryoSat-2 

retrievals and combined them with an optimal interpolation into a pan-Arctic sea ice 

dataset (CS2SMOS). In this section we compare this statistically combined dataset to 

our Exp_SM&CS2 results, which can be viewed as a dynamically consistent 

combination of three datasets (SSMIS sea concentration, SMOS and CryoSat-2 sea 

ice thickness). In this way we can assess the additional information that may be 

contained in the physics of the sea ice-ocean model in our data assimilation system. 

Further, we assimilate CS2SMOS directly (Exp_CS2SMOS in Table 1) and compare 

this to jointly assimilating the separate SMOS and CryoSat-2 datasets in 

Exp_SM&CS2 (Section 3). 

First we compare our Exp_SM&CS2 solution to the CS2SMOS dataset. Mostly, 

the 3 months mean sea ice thickness difference fields agree within 0.10 m; larger 

differences above 0.50 m are found mostly in the Chukchi Sea, east of Greenland, and 

in Baffin Bay, that is, in areas with a fragmented ice cover and individual floes 

(Figure 8(a)). The weekly CS2SMOS data at the in situ observation points are shown 

in Figure 7. For CS2SMOS, the RMSEs with respect to those observations are 0.25 

m, 0.22 m, 0.28 m and 0.16 m for BGEP_2011A, BGEP_2011B, BGEP_2011D and 

IMB_2011K, respectively (Table 2). For Exp_SM&CS2, the corresponding RMSEs, 

which are calculated from weekly means of 24-hour forecasts in order to compare 

with RMSEs of the weekly CS2SMOS data, are on average lower with 0.17 m, 0.21 

m, 0.29 m and 0.11 m (Table 2).  
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Figure 8. (a) Sea ice thickness difference (SITD) (m) between CS2SMOS and Exp_SM&CS2, (b) 

sea ice concentration difference (SICD) and (c) sea ice thickness difference (m) between 

Exp_CS2SMOS and Exp_SM&CS2 averaged from 1 Nov 2011 to 30 Jan 2012. The mean sea ice 

thickness fields of that time are shown in Figure S1. 

 

When we assimilate the CS2SMOS dataset directly and compare to 

Exp_SM&CS2 and CS2SMOS, the main differences of sea ice concentration between 

Exp_CS2SMOS and Exp_SM&CS2 are near the sea ice edge in the marginal ice zone 

(Figure 8(b)). By comparison, the difference of sea ice thickness in the same marginal 

ice zones (Figure 8(c)) is smaller than in other areas, mainly because sea ice is so thin 

in the marginal ice zones that the differences between Exp_CS2SMOS and 

Exp_SM&CS2 are not visible with the chosen color scale. For Exp_CS2SMOS, the 

ice is thinner around Greenland and in the Canadian Arctic Archipelago where ice is 

mostly perennial, but it is thicker over the SMOS data region with mostly thin ice 

(Figure 8(c)).  

The amplitude of the RMSE differences calculated over the valid SMOS area and 

the valid CryoSat-2 area are below 0.02 for the concentration (Figure 9(a, b)) and 

below 0.15 m for sea ice thickness (Figure 9(c, d)). For the sea ice concentration 

fields (Figure 9(a, b)), Exp_SM&CS2 has smaller RMSEs than Exp_CS2SMOS for 

most of November 2011 to January 2012. For the sea ice thickness forecasts, the 

RMSEs are smaller for Exp_SM&CS2 over the whole simulation period (Figure 9(c, 

d)). As the RMSEs in Table 2 show, the Exp_CS2SMOS also has on average larger 

errors with respect to the in situ observations compared to Exp_SM&CS2. 

Generally, the joint assimilation of Exp_SM&CS2 reduces the model-data misfit 

with respect to OSISAF sea ice concentration and SMOS (< 1.0 m) and CryoSat-2 sea 

 (a) (c) (b) 
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ice thickness more than assimilating CS2SMOS (Exp_CS2SMOS). Further, in the 

thickness difference between Exp_CS2SMOS and Exp_SM&CS2 (Figure 8(c)) the 

strong differences, for example in the Chukchi Sea and in Baffin Bay, are reduced 

when compared with Figure 8(a), implying that the model rejects the CS2SMOS data 

where they are inconsistent with the model dynamics. The small thickness differences 

between Exp_SM&CS2 and SMOS dataset in the Chukchi Sea (less than 0.1 m, 

Figure 5(b)) support the conclusion that the assimilated solution with model dynamics 

is more reliable than CS2SMOS alone. These results also demonstrate that the SMOS 

data have smaller errors in the Chukchi Sea and Baffin Bay during our study period 

and further are more consistent with the model dynamics. 

 

 

Figure 9. RMSE-differences between Exp_CS2SMOS and Exp_SM&CS2 calculated as 

RMSE(Exp_CS2SMOS) - RMSE(Exp_SM&CS2), for (a, b) sea ice concentration (SIC) and (c, d) 

thickness (SIT) (m). The RMSE is calculated over the valid SMOS area for subplot (a) and (c) and 

over the valid CryoSat-2 area for subplot (b) and (d) in analogy to Figures 2 and 4. The grey bars 

indicate that RMSE(Exp_CS2SMOS) are larger than RMSE(Exp_SM&CS2), and vice versa for 

the black bars. Note that for thickness over the valid CryoSat-2 area (d), the RMSE are computed 

relative to weekly CryoSat-2 data. 

 

5. Conclusions 

 

 (a) 

 (b) 

 
(c) 

 

(d) 
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Exploiting the complementary character of the CryoSat-2 thickness data to that of the 

SMOS data, a new multi-parameter multi-variate assimilation of thickness and 

concentration data leads to smaller overall root-mean-square differences with 

independent data than assimilating only SMOS thickness and SSMIS concentration 

data. The CryoSat-2 data fill gaps in thick ice regions where SMOS data are 

unavailable. Our results also suggest that combining thickness and concentration data 

with an assimilation model provides more reliable thickness estimates than a purely 

statistical combination where the model dynamics tend to reject unphysical features in 

the data. 

Compared to the model fields without data assimilation, all assimilation 

experiments show, as expected, considerable improvements of sea ice concentration 

and sea ice thickness forecasts. The forecasting system needs to spin up for about 10 

days before the assimilation of thickness leads to consistent sea ice concentration 

improvements. The simultaneous assimilation of CryoSat-2 and SMOS sea ice 

thickness data does not significantly improve the sea ice concentration compared to 

assimilating the thin-ice data from SMOS alone, but the model agrees better with in-

situ thickness data when the ice is thick and still maintains the good agreement with in 

situ thickness observations when the ice is thin. The small effect on ice concentration 

can be explained by the fact that the sea ice concentration in thick multi-year ice 

regions is always close to 100% during the cold season. The effects on thick ice show 

that the perennial sea ice thickness cannot be corrected by assimilating only the 

SMOS sea ice thickness data, because it provides reliable thickness estimates only for 

ice thicknesses below 1.0 m. 

Compared to the assimilation of the statistically combined CS2SMOS dataset, we 

found that the joint assimilation of SMOS and CryoSat-2 results in smaller RMSEs 

over most of the simulation period. This suggests that our assimilation system with 

SMOS and CryoSat-2 thickness data allows extra model information to positively 

affect the simulated sea ice thickness. Both, the joint assimilation of SMOS and 

CryoSat-2 data and the assimilation of CS2SMOS lead to smaller errors in the 

Chukchi Sea than in the CS2SMOS data product. This suggests that the model 

dynamics play an important role in the assimilation and have the potential to reduce 

bias in satellite retrievals. However, our analysis is limited by sparse in-situ data and 
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their corresponding uncertainties, so that longer simulation periods that span more in-

situ data are required to improve the validation analysis in the future. 

This work is a step towards our final goal of establishing a sea ice-ocean 

forecasting system with multi-variate data assimilation for the daily, weekly (Yang et 

al., 2015), sub-seasonal (Yang et al., 2014) or even seasonal (Day et al., 2014) Arctic 

sea-ice prediction as well as for further general investigation of the Arctic variability. 

The 3-month integration and relatively localized in situ observations are not sufficient 

for a robust validation of the entire Arctic. Nevertheless, we have shown the potential 

for generating a sea ice thickness reanalysis dataset. The next step is to extend the 

study period to the time covered by the thickness datasets. This will give access to 

more verification datasets and will let us explore the performance of the system in 

summer months when only ice concentration data are available. In the absence of 

thickness data in summer, we still expect some success also for the thickness fields, 

because sea ice thickness can be corrected by the assimilation of sea ice concentration 

due to the good correlations between sea ice concentration and thickness in summer. 

The influence of the assimilation on the ocean state and the snow thickness as well as 

accounting for uncertainties in internal sea ice model parameters (Shlyaeva et al., 

2016) are subjects for future research. Additional data, such as near real-time sea ice 

drift data (e.g., Lavergne et al., 2010) or sea surface temperature, will be assimilated 

to better constrain the model.  
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