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Abstract18

Exploiting the complementary character of CryoSat-2 and Soil Moisture and Ocean Salin-19

ity (SMOS) satellite sea ice thickness products, daily Arctic sea ice thickness estimates20

from October 2010 to December 2016 are generated by an Arctic regional ice-ocean model21

with satellite thickness assimilated. The assimilation is performed by a Local Error Sub-22

space Transform Kalman filter (LESTKF) coded in the Parallel Data Assimilation Frame-23

work (PDAF). The new estimates can be generally thought of as combined model and24

satellite thickness (CMST). It combines the skill of satellite thickness assimilation in the25

freezing season with the model skill in the melting season, when neither CryoSat-2 nor26

SMOS sea ice thickness is available. Comparisons with in-situ observations from the Beau-27

fort Gyre Exploration Project (BGEP), Ice Mass Balance (IMB) Buoys and the NASA28

Operation IceBridge demonstrate that CMST reproduces most of the observed tempo-29

ral and spatial variations. Results also show that CMST compares favorably to the Pan-30

Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) product, and even ap-31

pears to correct known thickness biases in PIOMAS. Due to imperfect parameterizations32

in the sea ice model and satellite thickness retrievals, CMST does not reproduce the heav-33

ily deformed and ridged sea ice along the northern coast of the Canadian Arctic Archipelago34

(CAA) and Greenland. With the new Arctic sea ice thickness estimates sea ice volume35

changes in recent years can be further assessed.36

1 Introduction37

Arctic sea ice extent as an indicator of climate change has been monitored by satel-38

lites for decades. On the one hand, the linkages between the Arctic ice extent and mid-39

latitude climate have been documented several times (Francis et al., 2009; Kumar et al.,40

2010; Liu et al., 2012; Overland & Wang, 2010; Serreze et al., 2007). On the other hand,41

sea ice thickness may be a more important observable than extent or concentration be-42

cause it is more directly related to sea ice volume. It is, however, more difficult to ob-43

serve from space. The sparsity of thickness data results in an incomplete closure of the44

surface energy and freshwater budgets in the Arctic Ocean (Haine et al., 2015). There45

are ongoing efforts to construct consistent time series of Arctic sea ice thickness from satel-46

lite remote sensing data. Freeboard measurements by satellite altimeters on the Ice, Cloud,47

and land Elevation Satellite (ICESat) and CryoSat-2 can be used to obtain sea ice thick-48

ness estimates assuming hydrostatic equilibrium (Kwok et al., 2009; Laxon et al., 2013).49
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Thin ice thickness can be retrieved by exploiting the brightness temperature observa-50

tions at the L-band frequency of 1.4 GHz from the Soil Moisture Ocean Salinity (SMOS)51

satellite (Tian-Kunze et al., 2014). To bridge the gap between ICESat and ICESat-2 (sched-52

uled for launch in 2018), the NASA IceBridge airborne campaigns are conducted every53

year in spring from 2009 providing valuable information of ice and snow thickness in dif-54

ferent regions of the Western Arctic (Kurtz et al., 2013). This airborne data record can55

also be used for validation of satellite-derived sea ice thickness.56

Often, retrieval algorithms result in large uncertainties in derived satellite data prod-57

ucts. There are different assumptions for snow loading and empirical parameters as well58

as intrinsic limitations of different satellite sensors (radar/laser altimetry, radiometry)59

so that there can be large differences between different products (Wang et al., 2016). The60

uncertainties of different products also differ depending on the used methods and the prop-61

erties of the sensed ice cover. In spite of these uncertainties, satellite data products re-62

solve ice thickness changes on basin and regional scales. In addition, uncertainties can63

be reduced by combining different ice thickness data products. For example, the com-64

plementary character of the uncertainties in CryoSat-2 and SMOS ice thickness prod-65

ucts makes it possible to combine the data with an optimal interpolation scheme into66

a merged product CS2SMOS with better spatial and temporal coverage than the indi-67

vidual data sets (Ricker et al., 2017). With this combination the overall uncertainties68

in Arctic sea ice thickness can be reduced by implementing the individual advantages69

of each product. The CS2SMOS dataset covers the entire Arctic and provides ice thick-70

ness and the related uncertainties during the freezing season. The drawbacks of the CS2SMOS71

dataset are that the data are not available during the melt season in spring and sum-72

mer and that the optimal interpolation method is purely statistical and does not con-73

tain any information from physical processes (Mu et al., 2018).74

For a continuous long-term ice thickness record, numerical model estimates can be75

used to fill the gaps in the satellite products, especially during summer. The Pan-Arctic76

Ice-Ocean Modeling and Assimilation System (PIOMAS) provides sea ice thickness and77

volume records that have been evaluated and tuned with submarine data and ICESat78

derived ice thickness (Zhang & Rothrock, 2003; Schweiger et al., 2011). PIOMAS data79

have become a reference dataset especially for thickness time series in the Arctic, but80

the data appear to overestimate thin ice thickness in the Beaufort Sea and underesti-81

mate thick ice around the Canadian Arctic Archipelago (CAA) area compared to Ice-82
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Bridge thickness (Wang et al., 2016). These biases are also found to be generally sys-83

tematic within other models (Johnson et al., 2012). Most of state-of-the-art ocean-sea84

ice models do not represent landfast ice areas properly. Further, many models have bi-85

ases in the ice growth rate especially during the early freezing period (Johnson et al.,86

2012). Assimilating sea ice thickness data from satellite-based remote sensing is expected87

to reduce these sea ice thickness biases in the model. For example, Lisæter et al. (2007)88

showed in idealized experiments with synthetic CryoSat data that sea ice and ocean state89

variables improve with sea ice thickness data assimilation. A series of studies also showed90

that the assimilation of SMOS ice thickness significantly improves the first-year ice es-91

timates (Yang et al., 2014, 2016b; Xie et al., 2016). Assimilating CryoSat-2 ice thick-92

ness data in addition to SMOS ice thickness into an ice-ocean model in the cold season93

lead to a reliable pan-Arctic sea ice thickness estimate that is consistent with in-situ ob-94

servations (Mu et al., 2018) .95

Both SMOS and CryoSat-2 thickness retrieval algorithms fail in the presence of wa-96

ter on the ice, for example in melt ponds, so that these data are restricted to the cold97

season. To include the melting season, we extend the study of Mu et al. (2018) to cover98

the entire CryoSat-2 period from October 2010 to December 2016. The weekly averaged99

CryoSat-2 ice thickness is assimilated into the model using a new Kalman filter (more100

details in Section 3.3) in addition to the daily Special Sensor Microwave Imager Sounder101

(SSMIS) sea ice concentration and SMOS sea ice thickness data. The sea ice thickness102

assimilated in the freezing season is expected to provide a good initial state for sea ice103

thickness in the melt season when thickness data are not available (Day et al., 2014). First104

results confirm this expectation (Blockley & Peterson, 2018). The assimilated sea ice con-105

centration in summer has some potential to correct potential sea ice thickness biases by106

means of their covariance (Yang et al., 2015a, 2015b, 2016a). Therefore, the new dataset107

is expected to cover the entire Arctic without the temporal gaps in CS2SMOS and with108

satellite sea ice thickness information that is not included in PIOMAS.109

The paper is organized as follows: In section 2, we describe the satellite-based sea110

ice thickness observations, model and in-situ measurements that are used for assimila-111

tion and evaluation. In section 3, we detail the method to establish our model thickness112

estimates. The evaluation metrics and comparisons between different products and in-113

situ observations are presented in section 4. The results are discussed in section 5 and114

conclusions are drawn in section 6.115
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2 Sea Ice Thickness Data116

2.1 Soil Moisture Ocean Salinity (SMOS) Thickness Data117

The SMOS satellite was launched by the European Space Agency (ESA) in 2009118

and provides brightness temperature. A thermodynamic sea ice model and a single-layer119

emissivity model are used to retrieve ice thickness from the brightness temperature (Tian-120

Kunze et al., 2014). A daily ice thickness product with a spatial resolution of 12.5 km121

on the National Snow and Ice Data Center (NSIDC) polar-stereographic grid projection122

is available at the Integrated Climate Data Center (ICDC) at the University of Ham-123

burg (http://icdc.cen.uni-hamburg.de/). Because of the specific assumptions of the124

retrieval algorithm, data with an uncertainty > 1 m or with a ratio between retrieved125

and maximum retrievable sea ice thickness near 100% are flagged and not used. In prac-126

tice, this means that only the SMOS data with thickness < 1 m are used for assimila-127

tion.128

In this study, the SMOS v3.1 ice thickness data are used covering the period 2010-129

2016. The daily product also contains uncertainty estimates. These are used as assumed130

observation errors during the data assimilation. Data and uncertainties are linearly in-131

terpolated onto the model grid.132

2.2 CryoSat-2 Thickness Data133

CryoSat-2, also launched by the ESA in 2010, is dedicated to retrieve thickness of134

perennial sea ice (Wingham et al., 2006). The thickness data are derived from sea ice135

freeboard data, which are obtained from radar altimeter range measurements. Assum-136

ing hydrostatic equilibrium and employing a pragmatic approach on snow loading (Laxon137

et al., 2013), freeboard can be converted into sea ice thickness. The relative uncertain-138

ties are smaller for thick ice than for thin ice because of the relatively larger freeboard139

of thick ice (Ricker et al., 2014).140

Weekly CryoSat-2 ice thickness data from the Alfred Wegener Institute (AWI), Helmholtz141

Centre for Polar and Marine Research (v1.2) are available for the period 2010–2016 (Ricker142

et al., 2014, http://data.meereisportal.de). This dataset is available on the EASE-143

Grid 2.0 (Brodzik et al., 2012) with a grid resolution of 25 km. It is then interpolated144

to our model grid. The uncertainties provided with the data are also used as the assumed145
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observation errors during data assimilation. However, due to the 30 day sub-cycle of CryoSat-146

2, weekly means of ice thickness have significant data gaps where orbit coverage is in-147

complete.148

2.3 CS2SMOS149

The complementarity of the data coverage as well as the sea ice thickness uncer-150

tainties between CryoSat-2 and SMOS inspired a statistically merged product (CS2SMOS)151

(Ricker et al., 2017, http://data.meereisportal.de). The weekly CS2SMOS sea ice152

thickness data cover the entire Arctic including the North Pole and are projected onto153

the 25 km EASE-Grid 2.0. Compared to airborne thickness data, CS2SMOS represents154

an improvement over CryoSat-2 thickness in the thin ice regimes. CS2SMOS thicknesses155

also have a low bias in the mixed first-year and multi-year ice regimes. The uncertain-156

ties provided in the dataset can be used to approximate the data error statistics. In this157

study, the CS2SMOS v1.3 ice thickness product is used for comparison. The data are158

interpolated bi-linearly onto the model grid.159

2.4 Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)160

The PIOMAS (Zhang & Rothrock, 2003) consists of the Parallel Ocean Program161

(POP) and a 12-category thickness and enthalpy distribution sea ice model. The sys-162

tem is forced by 10 m surface winds, 2 m surface air temperature, cloud cover, downwelling163

longwave radiation, specific humidity, precipitation, evaporation and sea level pressure164

from the NCEP/NCAR reanalysis. Sea ice concentration from the NSIDC near-real time165

product and sea surface temperature (SST) from the NCEP/NCAR Reanalysis are in-166

troduced into the system by nudging and optimal interpolation (Zhang & Rothrock, 2003;167

Schweiger et al., 2011). Daily sea ice thickness estimates are provided from 1978 to present168

on the PIOMAS grid (http://psc.apl.uw.edu/data/). In this study, the PIOMAS v2.1169

ice thickness data set is used for comparison.170

2.5 Beaufort Gyre Exploration Project (BGEP)171

Starting in 2003, the Beaufort Gyre Exploration Project based at the Woods Hole172

Oceanographic Institution (BGEP, http://www.whoi.edu/beaufortgyre) deploys upward-173

looking sonar (ULS) moorings every year at three locations BGEP A, BGEP B and BGEP D174
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(Figure 4). The ULS can measure the ice draft with an error of about 0.1 m (Melling et175

al., 1995). Drafts are converted to thickness by multiplying with a factor of 1.1 that is176

calculated as the ratio of the mean seawater and sea ice densities (Nguyen et al., 2011).177

Note that this draft-thickness conversion is very simple. The uncertainties caused by the178

absence of sufficient information about different ice types, ice densities, and snow load-179

ing are ignored in the study. In contrast to the IceBridge thickness data (section 2.7),180

the BGEP long-term ice thickness observations provide a year-round reference for the181

comparisons between different ice thickness products.182

2.6 Ice Mass Balance (IMB) Buoys183

IMB buoys have been deployed for more than two decades and provide a compre-184

hensive Lagrangian dataset on sea ice evolution along their drift trajectories (Perovich185

et al., 2009, http://imb-crrel-dartmouth.org). The acoustic sounder above ice and186

the underwater sonar altimeter below ice autonomously measure the ice growth and ab-187

lation. The uncertainty of sea ice thickness measured by each acoustic sounder is within188

5 mm (Richter-Menge et al., 2006). These long-term (some buoys collected data for nearly189

two years) and consistent observations of sea ice thickness support the evaluation of dif-190

ferent sea ice thickness products.191

The deployment positions of IMB buoys are considered strategically for some key192

locations or in collocation with other instruments. Note that, generally, IMB buoys tend193

to be deployed on thick and level ice floes to achieve the longest possible time series. As194

a consequence, comparing the Lagrangian observed thickness and the Eulerian model es-195

timates is not entirely consistent and can be ambiguous.196

2.7 Operation IceBridge197

NASA's Operation IceBridge (https://www.nasa.gov/mission pages/icebridge/)198

conducts airborne surveys on polar ice in the Arctic and Antarctic. On these flights, a199

Snow Radar and the Airborne Topographic Mapper (ATM) onboard the aircraft mon-200

itors snow and ice thickness (Kurtz et al., 2013) of ice sheets, ice shelves and sea ice to201

bridge the gap between ICESat and ICESat-2 since 2009.202

We use IceBridge sea ice thickness data from 2011 to 2013 obtained from IceBridge203

L4 Sea Ice Freeboard, Snow Depth, and Thickness (IDCSI4) data set, Version 1 (Kurtz204
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et al., 2015, http://nsidc.org/data/idcsi4). An experimental Quicklook product of205

IceBridge thickness from 2012 to 2016 are not used because of the potentially larger un-206

certainties. The sea ice thickness data and their uncertainties in IDCSI4 are estimated207

over a 40 m length scale. The IceBridge campaigns for the Arctic conducted during March208

and April provide valuable estimates of approximate maximum ice thickness of the year.209

3 The Model Sea Ice Thickness Estimates210

3.1 The Arctic Regional Sea Ice-Ocean Model211

We use a regional, pan-Arctic sea ice-ocean model (Losch et al., 2010; Nguyen et212

al., 2011; Yang et al., 2014; Mu et al., 2017) based on the Massachusetts Institute of Tech-213

nology general circulation model (MITgcm, Marshall et al., 1997). The sea ice dynam-214

ics use a viscous plastics rheology (Hibler III, 1979; Zhang & Hibler, 1997). The sea ice215

thermodynamics use a one-layer, zero heat capacity formulation (Semtner Jr, 1976; Parkin-216

son & Washington, 1979). The sea ice package in the MITgcm also provides an ice thick-217

ness distribution (ITD) model (Ungermann et al., 2017). We do not use the ITD model218

because the redistribution of the ice thickness in different categories under sea ice thick-219

ness assimilation is not straightforward. Snow thickness is a prognostic variable follow-220

ing Zhang et al. (1998). The model sea ice thickness estimates are grid-cell averaged ice221

thickness. This quantity is also called effective ice thickness (Schweiger et al., 2011). Both222

the ocean and sea ice model are discretized on an Arakawa C grid with a grid spacing223

of 18 km. In the vertical direction, there are 50 unevenly spaced layers in the ocean model224

to resolve the halocline in the Arctic Ocean. The bathymetry is derived from the Na-225

tional Centers for Environmental Information (formerly the National Geophysical Data226

Center (NGDC)) 2-minute gridded elevations/bathymetry for the world (ETOPO2, Smith227

& Sandwell, 1997). A global model (Menemenlis et al., 2008) provides monthly oceanic228

boundary conditions for the regional model. Model parameters for sea ice and ocean were229

optimized by Nguyen et al. (2011) using a Green function method and further tuned in230

this study. The albedos for sea ice are set to 0.75 and 0.56 for dry or wet conditions, and231

those for snow are set to 0.84 and 0.70. Additional important parameters are the lead232

closing parameter Ho = 0.6074 and the sea ice strength parameter P ∗ = 2.264×104 Nm−2.233

The ocean model uses free-slip lateral boundary conditions, while for the sea ice model234

no-slip lateral conditions are applied. For more details of the model configuration the235

reader is referred to Losch et al. (2010) and Nguyen et al. (2011).236
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3.2 Atmospheric Forcing237

Following Yang et al. (2015a) and Mu et al. (2018), the atmospheric ensemble fore-238

casts of the United Kingdom Met Office (UKMO) Ensemble Prediction System (EPS)239

(Bowler et al., 2008) available in the TIGGE archive (http://tigge.ecmwf.int) are240

used to drive the ice-ocean model. There are 23 ensemble members during 1 January 2010241

to 15 July 2014, and 11 ensemble members during 6 November 2014 to 31 December 2016,242

because the ensemble of UKMO EPS changed from MOGREPS-15 version 14 (UM ver-243

sion 8.3) to MOGREPS-G version 15 (UM version 8.5) with a reduced number of ensem-244

ble members but with higher horizontal resolution (from N216 to N400). Unfortunately,245

there is no UKMO EPS ensemble during this transition from 16 July 2014 to 5 Novem-246

ber 2014. The UKMO EPS uses an Ensemble Transform Kalman Filter (ETKF) and the247

scheme of Shutts (2005) to take into account the initial uncertainties and the effect of248

model uncertainties (Bowler et al., 2008). The ensemble forecasts have been shown to249

effectively represent the atmospheric uncertainties of the forecasting system (Yang et al.,250

2015a; Mu et al., 2018).251

The following 6-hourly variables in each forecast were used to generate the fields252

to force the ice-ocean model: 2 m dew point temperature, 2 m temperature, 10 m surface253

winds, surface pressure, total cloud cover and total precipitation. There is no precipi-254

tation output at 0000 UTC, and an additional redistribution of the accumulated precip-255

itation is needed to obtain the 6-hourly mean precipitation required by the model. Other256

necessary fields, which are not available in the TIGGE archive, are computed by formu-257

las using existing data. The specific humidity is calculated from dew point temperature258

and surface pressure following Hess (1959). The downward shortwave radiation is cal-259

culated from dew point temperature, cloud and astronomical parameters according to260

Parkinson & Washington (1979). The downward longwave radiation is calculated based261

on 2 m temperature and cloud clover (Parkinson & Washington, 1979).262

3.3 Satellite Data Assimilation263

The Parallel Data Assimilation Framework (PDAF, Nerger & Hiller, 2013, http://264

pdaf.awi.de) is used for assimilating thickness and concentration data. For the sea ice265

thickness, the daily SMOS ice thickness data thinner than 1.0 m and the weekly mean266
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CryoSat-2 ice thickness data are assimilated simultaneously into the model as described267

in Mu et al. (2018).268

The sea ice concentration data for data assimilation were processed at IFREMER269

and are provided by ICDC (http://icdc.cen.uni-hamburg.de/). The ARTIST Sea270

Ice (ASI) algorithm is applied to brightness temperatures measured with the 85 GHz SSM/I271

and/or SSM/IS channels (Kaleschke et al., 2001; Spreen et al., 2008). The 85 GHz chan-272

nel is subject to the weather conditions. To reduce this influence, a 5-day median filter273

is applied to the data before publishing (Kern et al., 2010). The spatial resolution of the274

sea ice concentration data is 12.5 km × 12.5 km in a polar stereographic projection. Fol-275

lowing Yang et al. (2016a, 2016b), a uniform constant value of 0.25 fractional sea ice area276

is assumed as observational uncertainties accounting for measurement and representa-277

tion errors (Janjić et al., 2017) in the study.278

A model ensemble (section 3.1) is driven by the atmospheric ensemble data sets279

derived from the UKMO ensemble forecasts to generate perturbed model states every280

day. The uncertainties in the model caused by parameters and imperfect physical pro-281

cesses are not considered explicitly (Shlyaeva et al., 2016). A variant of the ensemble Kalman282

filter, the local version of Error Subspace Transform Kalman Filter (LESTKF), is ap-283

plied in the study. The LESTKF provides consistent projections between the ensemble284

space and the error subspace (Nerger et al., 2012), and outperforms the Local Singular285

Evolutive Interpolated Kalman filter (LSEIK) that was used in Mu et al. (2018). The286

sea ice concentration and the sea ice thickness form the state vector. In each analysis287

step, the LESTKF corrects the forecast state vector of each model in the ensemble tak-288

ing into account the model uncertainties, which are calculated from the ensemble of model289

states, and the uncertainties of sea ice concentration and thickness. During this process,290

only satellite observations within a radius of 126 km around each model grid point are291

considered. This localization radius has been found optimal in Yang et al. (2014) and292

was also used in Mu et al. (2018). For the analysis step, the observations are weighted293

with distance from the grid point by a quasi-Gaussian weight function (Gaspari & Cohn,294

1999). After the analysis step, the ensemble mean sea ice thickness can be thought of295

as combined dynamic model and satellite thickness (CMST) estimates. The reader is re-296

ferred to Mu et al. (2018) for more details of the data assimilation procedure.297
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During the period without UKMO ensemble forcing data, the model is forced by298

the UKMO unperturbed forcing. Ensemble inflation, which is not necessary with the en-299

semble forcing, is achieved in the LESTKF with a forgetting factor of 0.97 (Yang et al.,300

2015a).301

4 Results302

We use the root-mean-square deviation (RMSD), the bias and the correlation co-303

efficient as the evaluation metrics for comparing ice thickness data. The RMSD between304

two vectors X and Y is calculated as RMSD =
√
E[(X − Y )2], the bias (B) is calcu-305

lated as B = E[X−Y ], and the correlation coefficient (C) of two vectors is calculated306

as C = E[(X − EX)(Y − EY )]/(σxσy), where E is the expectation operator, σx and307

σy are the standard deviations of the vectors X and Y , respectively. The centered RMSD308

used for Taylor diagrams is CRMSD =
√
E[((X − EX)− (Y − EY ))2]. The standard309

deviations and the CRMSDs are then normalized by dividing with the standard devi-310

ations of the references, so that (CRMSD/σref)
2 = (σ/σref)

2 +1−2 Cσ/σref is always311

satisfied in the Taylor diagrams and all statistics for different references can be shown312

in the same plot. All statistics are calculated over the overlapped temporal and spatial313

coverage for different datasets.314

Sea ice thickness estimates of each product in section 2 are restricted to the CryoSat-315

2 years 2010 to 2016 for all comparisons. For the comparisons with BGEP ice thickness,316

SMOS, CryoSat-2, CS2SMOS, PIOMAS, and CMST data are interpolated onto the lo-317

cations of the three BGEP moorings. For the comparisons with IMB buoy thickness, the318

above datasets are interpolated onto the daily IMB buoy trajectories. IceBridge thick-319

ness and uncertainties are binned and averaged within each grid cell of our model be-320

fore comparing.321

4.1 Spatial Distribution of Ice Thickness322

Arctic sea ice volume usually reaches its maximum in April in PIOMAS. Evalu-323

ating the spatial distributions of sea ice thickness during this maximum gives valuable324

insights into the resolved spatial variability of any sea ice product. The SMOS data, how-325

ever, and consequently the CS2SMOS product do not cover the entire April, so that we326

use March sea ice thickness in each dataset for comparison instead.327
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Figure 1. Comparison of sea ice thickness in March averaged from 2011 to 2016 between

CMST, CS2SMOS, and PIOMAS. (a) CMST sea ice thickness (m) and (b) difference (m) be-

tween CMST and CS2SMOS, and (c) difference (m) between CMST and PIOMAS.

328

329

330

The March CMST averaged over the years 2011 to 2016 has a thickness below 1.5 m331

along the northern coast of the American Continent and over the Barents Sea, the Kara332

Sea, the Laptev Sea and the Baffin Bay (Figure 1a). The central Arctic is covered by333

thicker ice around 2.0 m with multi-year thick ice above 3.0 m north of the CAA. The334

RMSD of mean March sea ice thickness between CMST and CS2SMOS is 0.16 m (Fig-335

ure 1b). CMST estimates thicker ice (deviations above 0.25 m) in the shallow Siberian336

Seas, north of the CAA and east of Greenland where the uncertainties of CS2SMOS are337

large (Ricker et al., 2017, their Figure 9). The detailed comparisons to in-situ observa-338

tions of sea ice thickness north of the CAA and east of Greenland will be shown in sec-339

tion 4.2.3.340

March CMST is generally thinner than PIOMAS thicknesses except along the east-341

coast of Greenland, north of Ellesmere Island, and parts of the transpolar drift close to342

Fram Strait (Figure 1c). Differences reach easily 0.5 m in the marginal ice area and in343

the shelf seas. The RMSD between CMST and PIOMAS is 0.41 m. Compared to ICE-344

Sat ice thickness and in-situ ice thickness measurements, PIOMAS tends to overestimate345

the thin ice and underestimate the thick ice (Schweiger et al., 2011). Our results sug-346

gest that our data assimilated model corrects some of these biases present in PIOMAS.347

The sea ice thickness frequency distributions of the CMST, CS2SMOS, and PIOMAS354

(Figure 2) support this impression. The thickness frequency distributions of CMST and355

CS2SMOS are very similar except for the thinnest category and the 1.0 - 1.5 m bin. Con-356

sequently the mean thickness of ice north of 65◦N is almost exactly the same with 1.74 m357
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Figure 2. Histograms of sea ice thickness frequency distributions in March averaged from

2011 to 2016 for CMST (black), CS2SMOS (orange) and PIOMAS (red). The statistics are

calculated over the overlapping area of the three datasets.

348

349

350

(and equivalently volume of 13.7 × 103 km3) for CMST and CS2SMOS. The similarity358

of these two estimates is not very surprising, because they both use the same SMOS and359

CryoSat-2 data. In PIOMAS, the mean thickness is 1.97 m and the ice volume is 15.48×360

103 km3. The larger mean thickness is consistent with Figure 1c and also apparent in the361

ice thickness frequency distribution with more ice in thicker categories and less ice in thin-362

ner categories (Figure 2).363

Climate models tend to underestimate extreme events (Flato et al., 2013), so that364

simulating the record minimum of Arctic sea ice extent in September 2012 represents a365

powerful benchmark test for any sea ice ocean model. The sea ice thickness fields in Septem-366

ber 2012 (Figure 3) of CMST and PIOMAS have similar patterns, but for CMST the367

ice is generally thicker in the central Arctic and along the north coasts of Greenland and368

the CAA. Some of these systematic differences, for example in the central Arctic, can369

already be found in March (not shown, but Figure 1c shows the six-year average). The370

mean thickness, taking into account only ice thicker than 0.05 m, is 1.28 m for CMST and371

0.77 m for PIOMAS. The gradients of sea ice thickness in the marginal ice area (Figure 3)372

are larger in CMST than in PIOMAS, that is, the thicker ice extends further into the373

marginal ice zone. PIOMAS has a lower ice extent than the observations (Figure 3), al-374
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Figure 3. Sea ice thickness (m) in September 2012 for (a) CMST and (b) PIOMAS. Note

that the black contoured line indicates sea ice concentration of 15% retrieved from AMSR-E

using the Bootstrap algorithm by University of Bremen.

351

352

353

though sea ice concentration data are also used to constrain the model. There are no in-375

dependent thickness observations to decide which of these two thickness fields are more376

realistic, but the similar differences between ICESat and PIOMAS from October to Novem-377

ber in the period 2003 to 2007 (Schweiger et al., 2011, their Figure 6) suggest that there378

is not enough ice in the PIOMAS solution. It is plausible that the thicker ice in March379

in CMST (Figure 1a), which is mainly due to the assimilation of CryoSat-2 data, pre-380

conditions the system to lead to thicker and hence more realistic ice in September.381

4.2 Comparison with In-situ Observations382

4.2.1 Comparison to BGEP ULS Data383

The annual cycle and the inter-annual variability of ice thickness are reproduced384

both in CMST and PIOMAS at all three mooring locations BGEP A, BGEP B and BGEP D385

(Figure 4). As PIOMAS, the CMST estimate also reproduces the rapid decline of ice thick-386

ness during melt seasons, when no satellite thickness data are available. All data that387

went into CS2SMOS are also assimilated into CMST, so it is not surprising that CMST388

is closer to CS2SMOS than PIOMAS. When the satellite data do not agree with the in-389

situ ULS-data (e.g., in winter of 2012/2013 at BGEP A, BGEP B, and BGEP D or in390

winter of 2013/2014 at BGEP A), the CMST does neither and the PIOMAS thickness391
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is closer to the in-situ data. At other times (e.g., most of the record in the freezing sea-392

son) the satellite thickness corrects CMST and leads to a better fit to the in-situ data393

than those of PIOMAS thickness estimates. PIOMAS tends to have a positive bias rel-394

ative to satellite thickness during ice growing periods. This is consistent with the find-395

ing that the initial growth rates in numerical models are generally too large compared396

to observations possibly because they are too sensitive to the demarcation thickness pa-397

rameter H0 (Johnson et al., 2012). The assimilation of ice thickness reduces the lower398

ice growth rate in CMST estimates. However, the satellite thickness assimilated in late399

April (e.g., in 2015 and 2016 at BGEP B) also introduces biases, which leads the model400

to be not able to reach its local annual thickness maximum.401

CMST captures the high fluctuation of sea ice thickness at BGEP A in 2014 (specif-414

ically the period marked in green in Figure 4) although with higher values compared to415

observations, while at BGEP D, CMST reproduces too thick ice. This different behav-416

ior is because sea ice concentration and thickness are not correlated very well in nature417

over the melting hiatus periods. The assimilation will occasionally generate abnormal418

values of thickness in the marginal ice zones due to abrupt ice concentration increase trig-419

gered by wind convergence. In the absence of thickness data, ice thickness is still cor-420

rected by ice concentration data by means of the error-covariance between thickness and421

concentration. This covariance is approximated in LESTKF so that the CMST thick-422

ness during summer cannot be as reliable as in winter and biases can also develop. When423

thickness data become available again, these biases are quickly corrected. This is very424

obvious in the thickness time series in October, 2013 at BGEP D. In 2014, ensemble forc-425

ing was not available from June to October. Interestingly, large summer biases develop426

that are probably caused by the suboptimal “ersatz” procedure of applying a forgetting427

factor (Yang et al., 2015a).428

The fit of CMST, PIOMAS, and CS2SMOS to the BGEP ULS-data is summarized429

in Figure 5. At all three locations (BGEP A, BGEP B, BGEP D), PIOMAS thickness430

correlates slightly better with the in-situ observations than CMST and CS2SMOS (Fig-431

ures 5a and 5b). CMST correlates better with observations than CS2SMOS (Figure 5b).432

No product can reproduce the daily variability of the observed thickness shown in Fig-433

ure 4, but the standard deviations of the PIOMAS estimates are closer to the observa-434

tions (1.0 m) at all three locations.435
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Figure 4. Time series of sea ice thickness (m) for BGEP ULS data (blue), SMOS (magenta),

CS2SMOS (orange dot), PIOMAS (red), CryoSat-2 (green square), and CMST (black) at BGEP

moorings BGEP A, BGEP B and BGEP D. The short period without ensemble forcing for

CMST is marked in green on the time axis. Locations of ULS moorings BGEP A (75◦N, 150◦W),

BGEP B (78◦N, 150◦W) and BGEP D (74◦N, 140◦W) are represented by dot (•), square (�)

and triangle (N), respectively.
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Figure 5. Normalized Taylor diagram (a, b) and RMSD versus bias (c, d) for CMST (+),

PIOMAS (◦) and CS2SMOS (×) with respect to BGEP observations at BGEP A (red), BGEP B

(magenta) and BGEP D (black). (a, c) are computed over the period when BGEP ULS-data

are avaiable and (b, d) are computed for the CS2SMOS period (i.e. without melting season).

In Taylor diagrams the normalized standard deviation is on the radial axis and the correlation

coefficient is on the angular axis. The observations are indicated by red dots.
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409

410

411

412
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The CMST biases relative to the ULS-data are smaller than for PIOMAS (Figures 5c436

and 5d). The positive biases of PIOMAS suggest that PIOMAS overestimates the thick-437

ness especially in the freezing season. The RMSD of PIOMAS thickness is a little smaller438

than for CMST at BGEP D, when the summer season is included (Figure 5c), but much439

larger at BGEP B (Figures 5c, 5d, and 4b). The biases of CMST and CS2SMOS are sim-440

ilar, but note that here CMST has a lower RMSD than CS2SMOS. Comparison between441

Figures 5c and 5d also suggests that larger deviations with respect to observations for442

CMST are mostly in the melting season, which can also be found directly in Figure 4.443
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4.2.2 Comparison to IMB Buoy Data444

Lagrangian buoy data are very useful for studying local growth and melt processes445

together with 1-D column models of ice thermodynamics (e.g., Cheng et al., 2014). It446

is less straightforward to compare the grid averaged results of an Eulerian ice-ocean model447

to Lagrangian point observations. This is particularly true for sea ice thickness that is448

always subject to large scale dynamic deformation processes and/or local ridging. That449

the complex mixture of leads, first-year ice and multi-year ice often occur over distances450

of only tens of meters makes the situation even worse (Perovich & Richtermenge, 2006).451

Therefore we do not expect a very good agreement between gridded sea ice thickness vari-452

ability and IMB buoys data along each trajectory.453

Still, IMB buoy data provide information about temporal and spatial variability454

of sea ice thickness that can be used to evaluate model results given the appropriate met-455

ric. For our comparisons, we selected 32 IMB buoys with sufficiently long observation456

records during the period from October 2010 to December 2016. To improve the agree-457

ment between IMB buoy data and gridded products, the thickness biases can be adjusted458

in the buoy data to focus on the subsequent thickness evolutions (Lei et al., 2014). The459

underlying assumption is that the ice surface and oceanic heat flux are the same for the460

IMB buoy data and the gridded (model) data. This assumption works best when ther-461

modynamic processes dominate and snow does not confound the heat balance. During462

initial inspection, we also found systematic differences between IMB buoy data, CMST463

and PIOMAS along the buoy trajectories. Figure 6 shows four selected cases that illus-464

trate the systematic biases. These differences can be reduced by removing the mean thick-465

ness of each data set (not shown, but Figures 6a and 6d are obvious examples). There-466

fore, we compute the CRMSD, which removes the mean of time series, and the standard467

deviations of the time series, which measure the variability of sea ice thickness, as eval-468

uation metrics. The metrics are summarized in Taylor diagrams (Figure 7).469

In general, CMST standard deviations are closer to observations than PIOMAS stan-475

dard deviations; the CRMSDs are also smaller for CMST, but PIOMAS correlates bet-476

ter with IMB buoy data (Figures 7a and 7c). The mean normalized standard deviation477

of CMST is 1.63, while that of PIOMAS is 2.00; the mean normalized CRMSD for CMST478

is 3.37 and that for PIOMAS is 3.63. The correlations for CMST and PIOMAS are 0.66479

and 0.76, respectively. Some of these statistical differences between CMST and PIOMAS480
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Figure 6. Sea ice thickness (m) time series: IMB buoy data (blue), SMOS (magenta),

CryoSat-2 (green squares), CS2SMOS (orange dots), CMST (black), and PIOMAS (red) on

each IMB buoys trajectory shown in the top left corner. The deployment location of the IMB is

indicated by a red dot on the trajectory. The statistics for IMB buoy data, CMST, and PIOMAS

are also shown in each plot. The date format is mm/dd/yyyy.
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are expected, because the sea ice thickness assimilation adds information that should im-481

prove realism of the model on average, but at the same time can also introduce abrupt482

jumps when new data become available. Assimilating data that are not consistent with483

the model can hence lead to lower correlations. The better standard deviations of CMST484

suggest that CMST reproduces the thickness variability of IMB buoy data better than485

PIOMAS on longer time scales.486

We now discuss four representative time series (Figure 6). Along the trajectories491

of buoys 2011J (Figure 6a, 8 months, August 2011 to May 2012) and 2013G (Figure 6d,492

7 months, September 2013 to May 2014), CMST is mostly constrained by CryoSat-2 thick-493

ness data and hence close to CS2SMOS, but the IMB buoy data, as in many other cases494

not shown, implies much thicker ice. In these cases, we assume that the IMB buoy lo-495

cation on the floe does not necessarily represent a large spatial average and the mean496

cannot be compared to the gridded model data. Instead the buoy provides useful infor-497

mation on sea ice thickness evolution. The CRMSD of CMST with respect to 2011J is498
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Figure 7. Taylor diagrams of (a) CMST and (c) PIOMAS with respect to all available IMB

buoy data from October 2010 to December 2016. The green dotted lines indicate the normalized

CRMSD. The trajectories of all the IMB buoys are shown in (b). The reference observations are

indicated by “obs” in red.

487

488

489

490

0.13 m, while that of PIOMAS is 0.36 m. The PIOMAS thickness is larger than the es-499

timates by CMST and satellite data and overestimates the trend in the buoy data. At500

buoy 2013G, CMST, PIOMAS and CS2SMOS are very similar. Still, the CRMSD of CMST501

with respect to 2013G is 0.11 m and that of PIOMAS is 0.25 m implying a slightly bet-502

ter thickness variability in CMST.503

In some cases, the data assimilation rejects satellite thickness data that are incon-504

sistent with the model dynamics. At buoy 2011K (Figure 6b, 7 months, August 2011 to505

April 2012), this happens between February 1st 2012 and April 1st 2012, when CrySat-506
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2 thickness data tends to be too large. As a consequence, the CMST thickness, some-507

what fortuitously, agrees better with the IMB buoy data than CS2SMOS and PIOMAS,508

both of which also overestimate the thickness. In contrast, ice thickness in CMST is first509

too low and then becomes too large in September 2011, which we attribute to the as-510

similation of ice concentration with inaccurate covariances between thickness and con-511

centration. Buoy 2013F (Figure 6c, 22 months, August 2013 to June 2015) recorded thick-512

ness for nearly two years. Both CMST and PIOMAS show plausible seasonal thickness513

variability, but PIOMAS tends to overestimate thickness after the summer of 2014 and514

the CMST thickness drops sharply in spring 2015 probably due to the impact of assim-515

ilating SMOS thickness data which also drops very quickly. The CRMSDs of CMST and516

PIOMAS are similar with values of 0.27 m and 0.24 m.517

Another example of a strong jump in thickness in CMST can be found in 2011J518

in mid-October (Figure 6a). Here, the jump is associated with the availability of thick-519

ness data. During summer, the model without thickness assimilation (because there are520

no data available in summer) develops a bias and is inconsistent with the thickness data521

in October. Data assimilation quickly corrects this bias leading to the observed jump522

in the time series. This phenomenon can only be avoided by a data assimilation scheme523

that also takes into account future observations, for example a Kalman smoother (Evensen524

& Van Leeuwen, 2000), or full 4D-VAR state estimation as in ECCO (Forget et al., 2015).525

4.2.3 Comparison to Operation IceBridge Data526

The Operation IceBridge campaigns that are always conducted in March and April527

allow a meaningful comparison also to CS2SMOS. 31 airborne campaigns in 2011, 2012,528

and 2013 are selected for the comparison. Individual campaigns are short (order of hours),529

so that the variability along flight tracks represents spatial, but not temporal variabil-530

ity. In order to gain insight into spatial variations of different thickness products, the531

sections (e.g., Figure 8) are defined along the IceBridge trajectories without further tak-532

ing into account the real flight routes in this study.533

The general performance of the CMST, PIOMAS, CS2SMOS thickness datasets547

with respect to IceBridge thickness is summarized in Taylor plots (Figure 9). Accord-548

ing to these metrics no dataset stands out clearly. CMST has the best average normal-549

ized standard deviation with 0.52 compared to PIOMAS (0.41) and CS2SMOS (0.48),550
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Figure 8. Sea ice thickness along Operation IceBridge trajectories. The trajectory of each

campaign is shown on the map to the left of each plot, and colors indicate the distance from the

starting point. The sea ice thickness of IceBridge (blue), SMOS (magenta), CryoSat-2 (green

square), CS2SMOS (orange dot), PIOMAS (red) and CMST (black) in the right hand side plots

are plotted against track distance. The shaded areas represent the uncertainties of IceBridge

thickness as provided in the dataset. The statistics of IceBridge, PIOMAS, CMST and CS2SMOS

sea ice thickness along the trajectories are also shown in each plot. Note that these statistics are

computed over the overlapping periods of the four datasets.
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Figure 9. Taylor diagrams of (a) CMST, (b) PIOMAS and (c) CS2SMOS with respect to

all IceBridge operations available in 2011, 2012 and 2013. The trajectories of all operations are

shown in (d). The green dotted lines indicate the normalized CRMSD. The reference observa-

tions are represented by “obs” in red. Note that the Taylor diagram of CS2SMOS is calculated

over area where CS2SMOS thickness is available.
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but in all datasets the variability is smaller than in the observations. The mean normal-551

ized CRMSDs of 1.13 (CMST), 1.12 (PIOMAS), and 1.17 (CS2SMOA) are very simi-552

lar, with CMST and PIOMAS outperforming CS2SMOS slightly. In contrast to com-553

parisons with BGEP ULS and IMB buoy data, where PIOMAS correlated best with ob-554

servations, the CMST estimates have the best mean correlation of 0.40 with IceBridge555

measurements; the correlation coefficient is 0.35 for PIOMAS and 0.32 for CS2SMOS.556

In summary, the CMST agrees slightly better with the IceBridge thickness data than PI-557

OMAS and CS2SMOS.558

We discuss six (one in 2011, three in 2012, and two in 2013) representative exam-559

ples of the 31 selected IceBridge campaigns in greater detail (Figure 8). Some of these560

selected sections (20110328, 20120314 and 20130424, Figures 8a, 8b and 8f) are repeat561

sections and others are focused on specific areas (20120322, 20120410 and 20130322, Fig-562

ures 8c, 8d and 8e). Together, the selected sections illustrate all aspects of the perfor-563

mances of the different products.564

Section 20130424 (Figure 8f) and the first 1000 km of 20120314 (Figure 8b) serve565

as examples of good agreement of CMST, PIOMAS, and CS2SMOS with IceBridge thick-566

ness estimates with maximum deviations of 0.25 m. Based on satellite data, CMST and567

CS2SMOS reproduce the transition from multi-year ice to first-year ice accurately along568

section 20120314 (Figure 8b). The same is true for the repeated section 20130321 one569

year later (not shown). In contrast, PIOMAS tends to overestimate the sea ice thick-570

ness in the thin ice area north of Alaska. In the following year, a similar PIOMAS bias571

is also found for section 20130322 in the Beaufort Sea (Figure 8e) (see also Schweiger et572

al., 2011; Johnson et al., 2012; Wang et al., 2016).573

Some of the extreme thicknesses in the Nares Strait (Figure 8a), the Lincoln Sea574

(Figure 8f), and north of the CAA (Figure 8c) are not accurately represented in neither575

CMST, PIOMAS, or CS2SMOS. In these multi-year ice regions, the ice is heavily de-576

formed and ridged, so that satellite observations are difficult: thin ice < 1 m, formed in577

leads opened by strong wind events, can be observed with SMOS and heavily ridged, thick578

multi-year ice with CryoSat-2 (Haas et al., 2006), so that conflicting thickness estimates579

in close proximity are possible. In combination, these data can lead to lower thicknesses580

as in CS2SMOS, or to some extent in CMST. In the Nares Strait (beginning of section581

20110328 in Figure 8a), CMST clearly follows the SMOS thickness data, which is thin-582

–24–



manuscript submitted to JGR-Oceans

ner by 3 m and more than the IceBridge estimate, because there is no CryoSat-2 data583

available to measure thick ice. Further, the resolution of the model (18 km) is not suf-584

ficient to resolve narrow straits accurately (we use 2 to 3 grid points across the Nares585

Strait), so that the model likely has a bias in this area anyway.586

Guided by CryoSat-2 data, the thickness along the east coast of Greenland is best587

represented in CMST (Figure 8d). Both PIOMAS and CS2SMOS (probably due to the588

influence of SMOS data) strongly underestimate the thickness in this dynamical outflow589

region. The CMST is also too thin most of the time, but captures some of the variabil-590

ity and extreme thicknesses along the track. The PIOMAS thickness (like the SMOS thick-591

ness) is flat along this section and very thin.592

5 Discussions593

As shown above, our model ice thickness estimates show some advantages over PI-594

OMAS and fill the summer gaps of CS2SMOS. At the BGEP mooring, our CMST es-595

timates agree better with CS2SMOS than the PIOMAS thickness, because the same thick-596

ness data was used in both estimates. Both ULS-data derived thickness and satellite de-597

rived thickness contain errors, but the satellite thickness assimilation further improves598

the model mean estimates at the cost of reduced variability and correlations. The bet-599

ter standard deviations and CRMSDs with respect to the IMB trajectories indicate that600

the CMST thickness agrees better with IMB data than the other datasets. All datasets601

can reproduce many aspects of the IceBridge thickness tracks, but none of the datasets602

represents ridged ice accurately. PIOMAS tends to overestimate the thickness in thin603

ice regions and appears to underestimate the spatial variability. The added value of thick-604

ness assimilation gives CMST an advantage over the model solution PIOMAS. In some605

places, where CS2SMOS does not compare well with IceBridge data because of conflicts606

between SMOS and CryoSat-2 data, the additional physics of the numerical model in607

CMST appears to reconcile these conflicts. These difference between SMOS and CryoSat-608

2 data can be also found in Baffin Bay and in regions where ice drifts fast (Mu et al.,609

2018). The purely statistical method CS2SMOS cannot reconcile these differences be-610

cause it has only available statistical prior knowledge (data uncertainties). Regardless611

of the temporal and spatial coverage of the satellite trajectories, CMST provides daily612

mean thickness on model grids. CS2SMOS data, however, are rather weekly snapshots.613
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The model we used is forced by atmospheric ensemble forcing by which the uncer-614

tainties of air-sea or air-ice flux exchanges are explicitly estimated by the ocean ensem-615

ble. During the data assimilation, the ensemble spread will persist without the require-616

ment of further applying the artificial inflation. Uncertainties of the CMST estimates617

can also be generated from the ensemble spread as a by-product.618

The main limitation of the CMST estimates is that it relies heavily on the qual-619

ity of satellite data products and the parameterizations of physical processes in the model.620

The retrieval of CryoSat-2 thickness is based on the hydrostatic equilibrium assumption.621

Whether this is still appropriate in the ridged ice area along northern coast of CAA or622

in the fast ice area such as the Siberian Seas is still not clear. The validation of the snow623

thickness climatology used for CryoSat-2 thickness retrieval in recent years also needs624

further investigation. Satellite thickness data conflicts would lead to larger uncertain-625

ties in our final product. Examples of these conflicts can be found along the northern626

coast of Greenland where open water forms, east of Greenland where there are ice floes627

and in the Baffin Bay where snow climatology is not applicable for thickness retrieval.628

In addition, the assimilation of sea ice concentration in the early freezing period629

in late summer will occasionally lead to unrealistically thick ice in marginal ice zones in630

the CMST estimates. This cannot be circumvented in the current implementation. A631

possible remedy may be applying a threshold to the thickness correction, but exploring632

the details of such an algorithm requires a dedicated investigation beyond the scope of633

our work.634

In the Siberian Seas, the satellite thickness assimilation improves the ice thickness635

estimates of CMST over those of PIOMAS. Simulating the Siberian Seas with sea ice636

models without data assimilation requires the parameterization of land fast ice processes637

or modifications on ice ridging dynamics. In an evaluation of ice thickness by six mod-638

els including the MITgcm in a very similar configuration, the models generally tend to639

overestimate the thickness in the regions of flat immobile landfast ice especially in the640

Siberian Seas (Johnson et al., 2012). These systematic errors are expected to persist be-641

cause landfast ice is neither parameterized nor resolved in the model(s) (Lemieux et al.,642

2016). The CMST estimate appears to reject the satellite thickness in the Siberian Seas643

because of the large data uncertainties, but the model dynamics produce too thick sea644

ice. This bias may be alleviated by tuning or improving the ice strength and ridging pa-645
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rameterization. In our setup, ridging is parameterized by restricting sea ice fractional646

area to values ≤ 1 (Schulkes, 1995). Model parameters such as albedo, compressive strength,647

demarcation thickness H0 for lead closing, etc. will also play a big part in simulating thick-648

ness variations and spatial distributions, particularly when satellite thickness is unavail-649

able in melt seasons. These parameters are currently not well constraint. Therefore, un-650

certainties of the CMST estimates also result from potentially incomplete parameteri-651

zations of physical processes in the model. The effects of parameter choices are ignored652

in this study.653

The comparison of model and data products also provides some insight into the654

uncertainties in different ice thickness measurements. The deviations between the satel-655

lite thickness and ULS in late April (Figure 4) imply that more cross validations are nec-656

essary to improve thickness retrievals. Comparing IMBs (or Lagragian data in general)657

to large-scale models is delicate and requires a careful evaluation of the data on Eule-658

rian grids. Still, a distributed network of IMBs may provide an opportunity to assess the659

performances of different data products. The near-future Multidisciplinary drifting Ob-660

servatory for the Study of Arctic Climate (MOSAiC; http://www.mosaicobservatory661

.org/) is expected to conduct such observations. Uncertainties of IceBridge thickness662

stem from uncertainties in snow detection and spatially and temporally varying ice and663

snow densities (Kurtz et al., 2013). The IceBridge footprint is only 40 m. In this way thick-664

ness data statistics are biased in the along track direction and cannot take into account665

the cross track variability. In contrast, the smallest model element is a grid cell with cell666

width ˜18 km.667

6 Conclusions668

Daily entire Arctic sea ice thickness estimates are obtained from combining remotely669

sensed sea thickness and concentration data with a sea ice-ocean model. These thick-670

ness estimates are available at all times for the entire CryoSat-2 period 2010–2016 clos-671

ing the satellite thickness observation gap in summer with the help of model dynamics672

and concentration data assimilation. The additional thickness data in combination with673

a sophisticated data assimilation scheme helps to reduce biases that are still present in674

current sea ice thickness products. The generated CMST estimates that take advantage675

of satellite thickness observations and physics of the sea ice-ocean model can be viewed676
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as an optimal compromise between CS2SMOS and PIOMAS insofar as it combines the677

strengths of both products (thickness observations and model dynamics).678

Our main findings are that the CMST is relatively close to the CS2SMOS data, which679

is not surprising as both use the same thickness data. The thickness data help to reduce680

some biases present in other models, but in general the comparison with in-situ thick-681

ness data turns out to be similar to that of PIOMAS thickness to in-situ data. Because682

we use a model, the thickness estimates can be extended into the summer season, where683

adequate initial conditions together with appropriate surface forcing help to simulate re-684

alistic summer sea ice thicknesses.685

The new Arctic sea ice thickness estimate CMST provides an opportunity to study686

the ice volume changes in recent years. The difference maps between CMST and PIOMAS687

suggest areas where more in-situ sea ice thickness measurements would help reconcile688

the models with data. Moreover, we expect that this dataset will serve as a good refer-689

ence for parameterizations for sea ice models.690
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