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Abstract12

A key parameterization in sea ice models describes the sub-grid scale ice thickness distri-13

bution. Based on only a few observations, the ice thickness distribution model was shown14

to be consistent with field data and to improve the simulation’s large scale properties. The15

available submarine and airborne observations enable to evaluate in greater detail the abil-16

ity of a pan-Arctic sea ice - ocean model with an ice thickness distribution parameteriza-17

tion to reproduce observed thickness distributions in different regions and seasons. Many18

observations are reproduced accurately. Some cases of poorly simulated modes and tails19

of the distributions are tentatively attributed to simplified thermodynamics and inaccurate20

deformation fields. Variability on decadal timescales, however, is generally underestimated.21

Thickness distributions in individual grid cells of the model show similar differences be-22

tween regions and seasons as observed regional mean distributions, but the modeled grid-23

scale variability is lower than observed. Simulated modal thicknesses of first-year ice are24

only insufficiently different from those of multi-year ice. The modal thickness proves to25

be a useful metric for quantifying model biases in both dynamics and thermodynamics. In26

addition to improving basin-wide mean variables, the ice thickness distribution parameter-27

ization provides reliable and valuable additional sub-grid scale data. At the same time the28

low climate sensitivity of the parameterization may affect longer simulations with strong29

climate change aspects.30

1 Introduction31

The Arctic is changing rapidly. Especially the ice cover is in a transition from a32

perennial to a seasonal state [Overland et al., 2013]. In this situation, evaluating and im-33

proving the physical basis of sea ice models becomes increasingly important: (1) climate34

predictions depend on sea ice models to realistically represent both the feedback processes35

in the Arctic and the connections between Arctic phenomena and lower latitudes [Hunke36

et al., 2010]. (2) The reduced sea ice cover sparks economic interest in marine operations37

like shipping or offshore exploration. Ensuring their safety requires reliable information38

about the ice cover [Arctic Council, 2009].39

In this context, small openings in the ice pack, starting from small cracks up to40

larger leads between floes or linear kinematic features in the ice more than 100 km long,41

appear as important features whose effect needs to be included in sea ice models. The42

thin ice in these openings allows for a heat exchange between ocean and atmosphere that43
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is larger by one to two orders of magnitude than the heat exchange over perennial ice44

[Maykut, 1978]. For shipping in an ice covered ocean, leads mark divergent regions in45

the ice pack and often prescribe the most efficient or only possible routes. These sub-grid46

scale features are not wide enough to be fully resolved even in very-high resolution sea ice47

models [Hutter et al., 2018] and need to be parameterized.48

In addition to small openings in the ice, the ice thickness itself varies at the hori-49

zontal meter scale. These thickness variations are important for sea ice models, because50

the ice growth rate depends inversely, hence non-linearly on ice thickness. Since it is im-51

possible to resolve these variations directly, a sub-grid scale Ice Thickness Distribution52

(ITD) parameterization was a key element in the first sea ice models [Coon et al., 1974;53

Thorndike et al., 1975]. This model component has been adopted in many current climate54

models [Stroeve et al., 2014] and has been shown to improve the representation of sea ice55

in in numerical models [Holland et al., 2006; Massonnet et al., 2011; Komuro and Suzuki,56

2013; Ungermann et al., 2017]. Further, an ITD model made possible additional sophisti-57

cated parameterizations, for example, a melt pond parameterization [Flocco and Feltham,58

2007], or a refined surface stress parameterization [Tsamados et al., 2014].59

Although this parameterization has been widely used, it was not possible until re-60

cently to evaluate the simulated ITDs comprehensively, because not enough reliable ob-61

servations were available. Simulated ice thickness distributions in individual grid cells of62

early Arctic ITD-enabled models were compared to ice thickness observations from sub-63

marines [Hibler, 1980; Flato and Hibler, 1995]. The results were mixed, because only64

very few data points were available for comparison and there were large differences be-65

tween these individual measurements. Submarine thickness observations were also found66

to be too sparse to properly constrain a fully coupled climate model [Bitz et al., 2001],67

so that, in extension of the model-observation comparison, the authors focused mostly on68

changes between model configurations with and without the ITD parameterization. More69

recent evaluations of Arctic ocean sea ice models often used large sets of different obser-70

vations to assess the model including observed ITDs, for example, from moorings [Dupont71

et al., 2015] or airborne sounding [Herzfeld et al., 2015]. After averaging over multiple72

years [Dupont et al., 2015] or over a large region [Herzfeld et al., 2015], the models simu-73

lated the observed ITDs accurately.74
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The ITD parameterization has been tested in a Lagrangian sense without being em-75

bedded in a dynamic-thermodynamic sea ice model, but forced by observed deformation76

and energetic fields. An ITD model of the immediate environment of the drift camp of77

the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment was initialized and78

forced by sea ice deformation, atmosphere– and ocean state from direct observations,79

but the evaluation suffered from the fact that there were no thickness observations be-80

yond the initialization phase [Lindsay, 2003]. A coastal draft distribution model, forced81

with high-precision meteorological observations obtained at the coast, was found to be82

largely consistent with draft observations from moorings, but produced excessive ridging83

[Bellchamber-Amundrud et al., 2002]. A new redistribution model very accurately sim-84

ulated observed ice thickness distributions from high-resolution field data in the Gulf of85

St. Lawrence, but the simulation and observation period covered only individual strong86

deformation events (a storm) over a few days [Kubat et al., 2010].87

In summary, different ITD models have been shown to reproduce different observa-88

tions of Arctic ITDs. But at the same time, most authors note that the model results do89

not match observations in the generation of open water, or in the amount of very thick ice90

produced by ridging, or in the amount of ridging in shearing motion. The most important91

processes that form ITDs locally are different in different regions of the Arctic and may92

require individual tuning to the local environment. Resulting biases can be reduced based93

on individual local observations. Still it is unclear if a pan-Arctic sea ice model that uses94

one ITD parameterization with a globally fixed set of parameters can describe different95

sea ice regimes accurately.96

The number of high-resolution sea ice thickness observations has grown steadily97

over the past decades. New Airborne ElectroMagnetic (EM) sounding of ice thickness98

[Haas et al., 2010] complement the Upward-Looking Sonar (ULS) measurements from99

submarine cruises [Rothrock and Wensnahan, 2007], and detailed evaluations of ice thick-100

ness distributions become finally possible. We use this much larger, and until recently101

unavailable, database and investigate the extent to which ITD parameterizations can re-102

produce regional, seasonal and decadal variability in Arctic ITDs. In the evaluation of the103

model results, we focus on three aspects: (1) Does the model reproduce regional averages104

of observed distributions? (2) Does the model reproduce single observations at the grid105

scale? And (3) which mechanisms and model parameters have the highest impact on the106

modeled ITDs? The data set we use and a description of the ITD model are presented107
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in section 2. Model – observation comparisons and the results of additional sensitivity108

studies are presented in section 3. These results are discussed in section 4, and the main109

conclusions are drawn in section 5.110

2 Methods111

2.1 Observations112

Since 1958, submarines sailing under the Arctic sea ice have been equipped with116

Upward-Looking Sonar (ULS) that measure the draft of the sea ice. A recent collection of117

submarine-based ULS data and draft distributions for 50km segments of submarine tracks118

covers a large part of the Arctic Ocean and spans the years 1975 to 2005 [Lindsay and119

Schweiger, 2013]. Airborne electromagnetic (EM) sounding measurements of combined120

ice and snow thickness [e.g. Haas et al., 2008, 2010] complement this ULS data set of the121

last 15 years. The lengths of the individual flight tracks during those campaigns differ, but122

they are also in the order of 50km. In this study, we select a subset of these observations123

in four regions (1) Beaufort Sea, (2) Lincoln Sea, (3) Fram Strait and (4) Central Arctic124

(Figure 1). In each of these regions measurement campaigns collected data in similar peri-125

ods of multiple years, so that we can calculate regional mean thickness distributions. Note126

that these averages may not be representative of actual sea ice conditions. It is possible127

that distributions are calculated from the ensemble of observations of extremely different128

ice conditions in different years. Nevertheless, these distributions over a larger sample size129

of comparable forcing conditions allow to test model performance without the need to re-130

produce individual weather events. The sampled observations cover different seasons and131

different decades. The ULS data selected for this study are from the years 1986 – 1997132

and the EM data are from the years 2001 – 2012. Table 1 summarizes the exact years and133

seasons of the observational data sets.134

ULS and EM soundings can determine the thickness of undeformed ice with high135

accuracy, but they have known biases for ridged ice. The ULS data tend to overestimate136

the thickness by 29 cm ± 25 cm [Rothrock and Wensnahan, 2007]. One important source137

of error is that the sensors record the fastest reflection of the emitted acoustic signal, so138

that instead of the mean draft, the maximal draft over the footprint of the sensor is ob-139

served. Especially for rough, strongly deformed ice, this leads to an overestimated ice140

draft. The uncertainties in the EM data are as low as 10 cm for level ice [Pfaffling et al.,141
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Figure 1. Overview of available observations: orange lines for EM-Bird flights, gray dots for ULS sub-

marine track segments. Shaded areas are the model regions for comparison in (a) Beaufort Sea, (b) Central

Arctic, (c) Lincoln Sea, (d) Fram Strait.

113

114

115

2007], but again the thickness of deformed ice is less accurate. In contrast to the ULS142

data, the electromagnetic sounding measures a weighted mean over a large footprint, so143

that the thickness of individual ridges is mostly smoothed out by the surrounding thinner144

ice. Hence, in EM data the thickness of ridges, and consequently the tail of thickness dis-145

tributions, is underestimated [Reid et al., 2006]. The obtained mean ice thickness is too146

low in the presence of ridges, but the size of this bias is difficult to estimate. The foot-147

print of the sensors is between 2.6 m and 6 m for ULS data [Rothrock and Wensnahan,148

2007] and about 45 m to 75 m for EM data [Reid et al., 2006; Johnston and Haas, 2011].149

When comparing ULS and EM observations to each other, we convert the ice draft150

to combined ice and snow thickness using the time-dependent values for snow thickness151

and snow density of Warren et al. [1999] and constant values ρw = 1027kg/m3 and ρi =152

928kg/m3 for the densities of water and ice [Rothrock et al., 2008]. To visualize ITDs, we153

plot the probability density for both observations and model data. This allows for a direct154

visual comparison of results, even when the bin sizes of the model are variable. Finally,155

with both measurement techniques it is difficult to distinguish thin ice from open water.156

For this reason, areas with open water are excluded from the calculation of ITDs in this157

study.158
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Table 1. Overview of observational data sets159

region1 years months source # obs2 # campaigns3

(S1) Beaufort Sea 1986–1994 Apr ULS 32 6

(S2) Beaufort Sea 1993–1997 Sep, Oct ULS 54 4

(S3) Central Arctic 1989–1997 Sep ULS 117 6

(S4) Central Arctic 1986–1994 Apr, May ULS 202 14

(S5) Fram Strait 1987–1991 Apr, May ULS 42 2

(S6) Beaufort Sea 2007–2011 Apr EM 25 7

(S7) Lincoln Sea 2004–2012 Apr, May EM 30 9

(S8) Central Arctic 2001–2011 Aug, Sep EM 37 3

(S9) Fram Strait 2004–2011 Aug EM 15 3

(S10) Fram Strait 2003-2011 Apr, May EM 12 4

1 Regions as defined in Figure 1
2 submarine track segments / individual EM-flights
3 submarine cruises / EM measurement campaigns

2.2 Model Equations160

We use the Massachusetts Institute of Technology general circulation model (MIT-161

gcm, version checkpoint 66a) [Marshall et al., 1997; MITgcm Group, 2016] for our nu-162

merical experiments. The model region is the northern cap of a cubed-sphere geometry163

with an average grid resolution of 36km and boundaries at roughly 55◦ north in both the164

Atlantic and the Pacific Ocean [Nguyen et al., 2011]. The necessary boundary conditions165

are taken from the Estimating the Circulation and Climate of the Ocean, Phase II project166

(ECCO2) [Menemenlis et al., 2008]. The NCEP Climate Forecast System Reanalysis is167

used as atmospheric forcing [Saha et al., 2010]. The sea ice component of the MITgcm168

[Losch et al., 2010] includes dynamics, zero-layer thermodynamics and a dynamic ITD169

model following Thorndike et al. [1975] and Lipscomb et al. [2007].170
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2.2.1 Sea Ice Dynamics171

The vector u of sea ice velocity is calculated according to the momentum balance172

m
∂u

∂t
= −m fCk× u + τa + τo − mĝ∆H + ∇ · σ, (1)173

174

where m = ρiHi + ρsHs is the ice and snow mass per unit area, calculated from the re-175

spective densities ρi , ρs and grid cell area averaged thicknesses Hi , Hs of ice and snow.176

The forcing terms on the right hand side of (1) are: the horizontal Coriolis force with177

the Coriolis parameter fC and the vertical unit vector k; the interfacial stress between at-178

mosphere and ice τa and ocean and ice τo; the sea surface tilt ∆H with the gravitational179

acceleration ĝ; and the divergence of the internal ice stress tensor σ. The stresses from180

atmosphere and ocean on the ice are calculated using the quadratic laws181

τa = ρacd,a |ua − u |Ra(ua − u) (2)182

τo = ρocd,o |uo − u |Ro(uo − u) (3)183
184

where ρa and ρo are the reference densities, cd,a and cd,o the drag coefficients, ua and185

uo the velocities, and Ra and Ro rotation matrices for the atmosphere (subscript a) and186

ocean (subscript o ) [McPhee, 1975]. More sophisticated parameterizations of drag and187

drag coefficients in terms of roughness length are available [Tsamados et al., 2014; Roy188

et al., 2015], that better reflect the complexity of the processes in drag, but for simplicity189

we employ a commonly used constant drag coefficients formulation. Advection of mo-190

mentum is neglected in the momentum balance (1), and for simplicity we set the rotation191

matrices Ra, Ro in equations (2) and (3) to unity.192

Closing the momentum balance (1) requires a relationship between the stress tensor193

and the ice drift velocities. We use the standard Reiner-Rivlin constitutive relation for a194

viscous-plastic rheology [Hibler, 1979] that relates the internal ice stress σ to the strain195

rate %ε = 1
2
[
∇u + (∇u)T

]
:196

σ = 2η %ε +
(
[ζ − η] %εI −

P
2

)
I . (4)197

198

Here the bulk viscosity ζ = P
2∆ %ε

and the shear viscosity η = ζ
e2 are calculated from the199

ice pressure P, the axis ratio e of the elliptical yield curve, and the strain rate tensor %ε200

invariants, that is, divergence %εI = %ε11 + %ε22 and shear %εI I =
√
(%ε11 − %ε22)2 + 4%ε2

12. I is the201

identity matrix and ∆ %ε =
√
%ε2
I + e−2 %ε2

I I is a convenient measure of deformation specific202

to the elliptical yield curve. The compressive strength is related to the ice thickness h and203
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sea ice fractional area A [Hibler, 1979] through:204

P = P∗Ahe−C
∗(1−A). (5)205

206

We briefly introduce three parameterizations of sub-grid scale processes whose im-207

pact on modeled ITDs will be investigated later: (1) a gross closing rate Rc of the ice208

pack is calculated as209

Rc = convergence + Cs ∗ shear (6)210
211

where convergence = −min(%εI, 0) and shear = 1
2 (∆ %ε − abs(%εI )). The factor 0 ≤ Cs ≤212

1 determines how much of the shearing motion of the ice pack can be translated to a213

closing motion of differently aligned leads, which then ridges ice after the lead is closed214

[Flato and Hibler, 1995]. (2) A lead closing parameter H0 determines how much of newly215

formed ice volume is distributed laterally in open water [Hibler, 1979]. The lead closing216

parameterization was introduced in 2-category models [Hibler, 1979] to efficiently sum-217

marize many small-scale processes during ice formation. With a smaller value, open wa-218

ter freezes more quickly and inhibits further heat flux. With a larger value of H0, leads219

stay open longer which eventually leads to more ice volume in the simulation. In our ITD220

model, we apply this parameterization only to the thinnest ice category. This treatment221

of new ice is slightly different to other ITD-enabled models [e.g., Lipscomb et al., 2007],222

where new ice fills the thinnest category uniformly first and then is ridged into thicker cat-223

egories. And (3) during ridging, a fraction of snow (1 − FS) with 0 ≤ FS ≤ 1 is pushed224

into the water [Flato and Hibler, 1995].225

2.2.2 Ice Thickness Distribution226

The thickness distribution g(h) describes the relative amount of ice with thicknesses227

between h and h + dh [Thorndike et al., 1975]. This distribution can change by advection,228

thermodynamics or through ridging. In our simulations, the mechanical changes due to229

ridging are parameterized following Thorndike et al. [1975] and Lipscomb et al. [2007]. In230

this theory, the horizontal ice motion determines how much ice ridges due to convergence231

and shear. When ridging takes place, ice with the distribution a(h) deforms. This distri-232

bution consists mostly of the available thin ice. Ice of initial thickness hin is ridged into a233

distribution γ(hin, h), so that the new ice created by ridging has the thickness distribution234

n (h) =
∫ hmax

0
a(hin)γ(hin, h) dhin (7)235

236
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for an initial ice cover with a maximal thickness hmax.237

We use smooth and differentiable participation and redistribution functions [Lip-238

scomb et al., 2007]. The participation function239

a(h) = 1
b0

exp
(−G(h)

a∗

)
g(h) (8)240

241

determines how much of the ice of thickness h takes part in each ridging event. b0 is a242

normalization factor, G(h) =
∫ h

0 g(ĥ) dĥ is the cumulative thickness distribution and a∗ is243

the participation parameter that scales the relative participation of thin and thick ice. And244

the redistribution function245

γ(hin, h) = γ0 exp
(−(h − hmin)
µ
√

hin

)
(9)246

247

describes how much ice is ridged into thickness h with each ridged unit area of ice of248

thickness hin. γ0 is a normalization factor, µ is a scaling parameter, and hmin = hmin(hin)249

is the minimal thickness into which ice of thickness hin can be ridged.250

2.2.3 Sensitivity Analysis251

Sensitivities of the simulated ITDs to ten different parameters are inferred from the252

differences between a positive and a negative perturbation run for each parameter. As a253

measure of distance between two histograms, we calculate the area between the cumulative254

thickness distributions255

dhist(g1, g2) =
∫ hmax

0
|G1(h) − G2(h)| dh, (10)256

257

so that a larger area denotes larger differences between the distributions. This measure is258

known as the ”Earth mover’s Distance“: for piles of earth (hence the name), this measure259

calculates the minimal amount of work that is necessary to transform one distribution into260

the other [Rubner et al., 2000]. With this measure, histograms in different bins can easily261

be compared and cross-bin similarities are taken into account.262

Sensitivities of the simulated ITDs to ten different parameters are inferred from per-263

turbation runs. For each parameter, two simulations are performed with a positive and a264

negative perturbation; the parameter ranges are given in Table 2. For the mean ITDs in265

the regions defined in Table 1 and Figure 1, the mean difference dhist between the ITDs266

from the two perturbed simulations is used to indicate the sensitivity of the modeled ITDs267

to this parameter.268
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Table 2. Parameter values in sensitivity analyzes and final configuration269

Description Baseline Perturbation Range Final

µ (m 1
2 ) redistribution 3.029 2.029 – 4.029 2.0

a∗ participation 0.041 0.031 – 0.051 0.03

P∗ (kN m−2) ice strength 22.99 20.0 – 27.0 22.0

C∗ strength parameter 15.92 12.0 – 20.0 10.0

cd,a × 103 atmospheric drag 1.657 1.4 – 1.9 1.9

cd,o × 103 oceanic drag 6.647 6.147 – 7.147 6.5

e axis ratio of ellipse 1.523 1.123 – 1.923 1.8

Cs ridging in shear 0.5 0.25 – 0.75 0.85

H0 (m) ice growth 0.565 0.415 – 0.715 0.6

Fs snow fraction in ridging 0.5 0.25 – 0.75 0.6

The tested parameters are listed in Table 2. They are: the two redistribution param-270

eters (1) a∗, that determines which ice takes part in ridging processes and (2) µ, that de-271

termines the shape of the produced ridges; (3) the compressive ice strength parameter P∗
272

and (4) the ice concentration parameter C∗, of the ice strength parameterization; the drag273

coefficients (5) cd,a and (6) cd,o for the ice with respect to atmosphere and ocean; (7) the274

axis ratio e of the elliptical yield curve, which determines the ratio between shear strength275

and compressive strength P in the VP-rheology; (8) the shear coefficient Cs , which deter-276

mines how much energy is used to build pressure ridges in shear deformation; (9) the lead277

closing parameter H0; and (10) the snow fraction Fs that remains on the ice after ridging.278

2.3 Model Data279

An Arctic configuration of the MITgcm is compared against the observational data.280

The model setup in this study is based on previous Arctic configurations using the ITD281

parameterization and the Hibler-type strength (5) [Ungermann et al., 2017]. The ITD is282

discretized into ten thickness categories with the bounds 0.0m, 0.32m, 0.66m, 1.04m,283

1.47m, 2.01m, 2.74m, 3.78m, 5.36m, 7.74m. This configuration was chosen as a com-284

promise between computational costs and sufficient thickness resolution. The sensitivity285

analysis informed a manual adjustment of the parameters. The final values, which were286
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chosen so that they improve the representation of the ITD in the model without departing287

too far from the mean sea ice state of the configurations in Ungermann et al. [2017], are288

also summarized in Table 2. After a five-year spinup with periodic forcing, the model is289

integrated over the years 1979 to 2011.290

Model results are compared to observations of either ice draft (ULS) or combined291

ice and snow thickness (EM). In the MITgcm, the ice draft292

hd =
ρihi + ρshs
ρw

(11)293

294

and the total ice and snow thickness295

ht = hi + hs (12)296
297

can be calculated from the thicknesses hi , hs and densities ρi , ρs of ice and snow (sub-298

scripts i and s) and the surface density ρw of the ocean.299

The data coverage allows to assess both regionally averaged ITDs and individual300

measurements. The modeled thickness distributions are averaged over the regions and301

months of the year defined in Table 1 to be compared to the corresponding averages of302

the observations. Track segments of the ULS data and individual flights of the EM data303

are compared to ten-day model snapshots. Each data set is associated with the nearest grid304

cell and the appropriate ten-day snapshot.305

3 Results306

3.1 Modeled Sea Ice Climate307

A quadratic cost function measures the overall performance of our model configu-308

ration. The difference between model results and satellite observations is calculated for309

each point, weighted by the individual measurement uncertainties, and then the squared310

weighted differences are summed. This quantitative indicator of model quality can be311

computed for each satellite product. For more details, the reader is referred to Ungermann312

et al. [2017]. In our case, the differences to satellite observations of sea ice concentra-313

tion [EUMETSAT Ocean and Sea Ice Satellite Application Facility, 2011], sea ice thick-314

ness [Kwok and Cunningham, 2008] and sea ice drift during winter and summer months315

[Lavergne et al., 2010; Kimura et al., 2013] weighted by measurement uncertainties are316

evaluated in this way. For ice concentration the uncertainties are provided with the data,317

for ice thickness they are taken as the minimum of 40% of the data value and 1 m, and for318
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ice drift they are constructed from comparisons of different drift data sets [Sumata et al.,319

2014, 2015]. The cost function contribution is normalized by the number of individual320

observations for each satellite separately, so that variables with different numbers of data321

points have the same weight in the total cost function (the sum of all contributions). The322

contribution of an individual satellite product is one when the average of the model-data323

misfit in each point is as large as the corresponding measurement uncertainty. In addition,324

the sum of the distances dhist between model results and observations for the ten regions325

defined in Table 1 is calculated as a measure of the overall quality of the modeled ITDs.326

The cost function terms and the quantitative ITD comparisons are summarized in328

Table 3 for the configuration used in this study and two configurations from Ungermann329

et al. [2017]: the best configuration of the latter study “ITD5H” with with five thickness330

categories and a Hibler-type ice strength parameterization and a reference configuration331

“noITD” without an dynamic ITD parameterization. This comparison is not completely332

unbiased, because the measure dhist depends slightly on the resolution of the ITD, and333

because the ITDs for the configuration “noITD” are calculated from mean thickness per334

grid cell in the respective regions only. Still, the combination of the results shows that the335

tuning described in Section 2.2.3 permits a better representation of the ITDs. These im-336

provements are mainly obtained in the comparisons with the EM data. Some Arctic-wide337

sea ice features, such as concentration and winter drift, cannot be improved by tuning the338

model to ITD, and their cost function contributions increase. The overall model quality339

with the adjusted parameters as measured by the cost function, however, is comparable to340

a well-tuned configuration without an active ITD.341

In addition, we compare model results for Arctic-wide sea ice volume and extent to342

the results from the Pan-Arctic Ice Ocean Modeling and Assimilation System [PIOMAS,343

Schweiger et al., 2011] and to observations from the Sea Ice Index [Windnagel et al., 2016]344

in Figure 2. For both variables the model simulates a seasonal cycle with the same tim-345

ing as in the reference data, but a slightly lower magnitude. Note that the model does not346

show the unrealistically high seasonality that is expected of models using 0-layer thermo-347

dynamics [Semtner, 1984]. The model tends to underestimate the sea ice volume and at348

the same time overestimate the extent, indicating that the modeled mean ice thickness is349

too low. For both variables, the linear trend over the three decades is clearly lower in the350

model than in the reference data, independent of the different signs in model bias. The351

year-to-year variability in the observations is captured for extent, but for volume there are352
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Table 3. Cost Function Values and dhist for Regional ITDs327

present study ITD5H (2017)1 noITD (2017)2

concentration 1.75 1.57 1.69

thickness 0.63 0.63 0.75

winter drift 0.65 0.45 0.5

summer drift 0.9 0.95 1.03

Total cost function 3.94 3.59 3.97

dhist EM 2.92 4.19 4.26

dhist ULS 5.26 5.54 7.15

Total dhist 8.18 9.73 11.41

1 ITD with 5 categories + Hibler-type strength [Ungermann et al., 2017]
2 Two-category thickness model [Ungermann et al., 2017]

larger differences between consecutive years in the PIOMAS model than in our MITgcm353

simulation.354

3.2 Regional Ice Thickness Distributions358

We first compare the model simulation to the ten data sets of Table 1 (Figure 3).362

Similar to the observations, the modeled ice thickness distributions vary between363

regions, but there are differences in the accuracy of the modeled ice conditions that ap-364

pear to depend on the ice type. In predominantly first-year ice in the Beaufort Sea and365

in the Central Arctic during the 2000s, the agreement between model and observations is366

very high (Figure 3, (S1), (S2), (S6), and (S8)). For example, the integrated differences367

dhist between the cumulative histograms of observations and model distributions of 0.33m,368

0.43m and 0.47m are much lower in the Beaufort Sea than the average over all regions of369

0.64m ± 0.21m. In regions with more multi-year ice, the model still captures the overall370

properties of the ice pack, but especially for bi-modal distributions (Figure 3, (S3), (S9),371

and (S10)), the agreement with the observed ITDs is lower. The seasonal variations in the372

ITDs are also best represented with first-year ice: The model slightly underestimates the373

changes in the Beaufort Sea (S1 vs. S2), while it strongly overestimates the annual cycle374

in the Central Arctic (S3 vs. S4) and in the Fram Strait (S9 vs. S10).375
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Figure 2. Comparison of the MITgcm against PIOMAS (Arctic Sea Ice Volume) and the Sea Ice Index

(Arctic Sea Ice Extent). The time series are separated into a linear trend, a seasonal fluctuation and the resid-

ual that is not explained by the two.

355

356

357

Figure 3. Regional ITDs from model (blue bars) and observations (red line). Observations are ice draft

from submarine ULS (S1)–(S5), ice + snow thickness from airborne EM sounding (S6) – (S10). Exact re-

gions and times of comparisons are specified in Figure 1 and Table 1.

359

360

361
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The model does not simulate large decadal differences in ITDs. We compare average376

distributions of combined model ice and snow thickness centered at 1990 and 2005 for re-377

gions and seasons in analogy to the observations S1, S2, S3, S4, S5, S7 and S9 (see Table378

1). On average, the modal thicknesses of the model distributions do not change over these379

years (0m ± 0.02m). In this evaluation, S5 is excluded because the distribution is very flat380

around its mode. Over the same time, the mean thicknesses of the modeled distributions381

decrease only by 0.06m ± 0.12m. In comparison, for the three regions with observations in382

different decades, the estimated loss in mean ice and snow thickness is 0.88m (S1 and S6,383

Beaufort Sea), 1.79m (S3 and S8, Central Arctic) and 1.37m (S5 and S10, Fram Strait).384

The model underestimates both modal and mean thickness compared to observa-385

tions, but the differences are smaller for the mean than for the mode. On average, the386

modal thicknesses of the ten regions are thinner by 0.66m ± 0.89m in the model than in387

the observations, while the difference for the mean thicknesses is only 0.25m ± 0.47m,388

indicating that the distributions in the model are skewed compared to the observations:389

While the mode in the model is often unrealistically thin and introduces too much thin ice390

into the distribution, its effect on the mean thickness is partially offset by too much ridged391

ice and too little ice that is thinner than the mode.392

The exponential tails in the distributions further illustrate these differences in the396

shape of the ITDs. Both the observed and the modeled ITDs show an exponential tail, but397

the rate parameters (or the slopes in the semi-logarithmic plot) are different (Figure 4).398

While the qualitative behavior of the tail agrees between model and observations, the rate399

parameter of the modeled tail differs in most regions from the observations. Of the three400

regions in Figure 4, the distribution tails of model and observations agree in the Beau-401

fort Sea mostly because the observed distribution is very different from other regions. The402

thickness distributions in Figure 4 were chosen to represent the range of distribution tails403

in the model and the observations. In other regions the distributions decay with compara-404

ble exponential tails.405

3.3 Grid-Scale Ice Thickness Distributions406

Draft distributions from five different submarine track segments are compared to the410

distributions taken from the nearest model grid cell (Figure 5). We note, that this com-411

parison is more sensitive to biases in the ITD parameterizations than the comparison of412
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Figure 4. Semi-logarithmic plot of average ice draft hd or ice and snow thickness ht against probability

density in each category for three regional ITD. Blue crosses for model values, red lines for observations. The

dashed black lines indicate exponential fits to the model results.

393

394

395

Figure 5. Example of variability in ITDs on small local scales. Plotted are ITDs from 50km submarine

track segments (red line) with a snapshot from the nearest grid cell (blue bars). All five observations are taken

in Fram Strait in spring (S5).

407

408

409
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Figure 6. Integrated differences dhist between the cumulative ITDs for successive 50 km track segments

(ULS) / successive flights (EM) (left hand side) and between the corresponding model snapshots (right hand

side) as a measure of grid-scale variability. Circles mark ULS observations, crosses mark EM observations.

418

419

420

regional mean values because it does not involve any smoothing by averaging. The choice413

of observations represents the range of locally observed thickness distributions and their414

simulation in the model. The model distributions follow the main characteristics of the415

observations. The variability of the local thickness distributions in a given region is gener-416

ally smaller for the model than for the observations.417

We quantify the local variability by calculating the integrated difference dhist be-421

tween the cumulative thickness distributions for consecutive 50km track segments of ULS422

campaigns and for consecutive flights in EM sounding campaigns (Figure 6). All succes-423

sive pairs of observations in the individual campaigns are evaluated except for pairs that424

are more than 200 km apart. This provides a good coverage of the central half of the Arc-425

tic Ocean, although there are more data points in the older ULS data set (1131) than in426

the more recent EM data set (62). For both data sets, this measure of variability is clearly427
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Figure 7. Sensitivity of modeled regional ITDs to each parameter. The difference dhist between the re-

gional ITDs of the positive and negative perturbation simulations is calculated, the mean result is plotted. The

color coding refers to different physical mechanisms.

431

432

433

higher for the observations (0.30 m± 0.26 m for ULS and 0.40 m± 0.37 m for EM) than for428

the model (0.06m ± 0.07m for ULS and 0.14 m ± 0.13 m for EM).429

3.4 Sensitivity Studies430

Sensitivity experiments show the relative impact of ten parameters (Table 2) on the434

modeled ITDs. The redistribution during ridging (parameter µ) and the deformation in435

shear (parameters e and Cs) are most important in shaping the modeled ITDs. Figure 7436

summarizes the sensitivity of the regional ITDs to the full set of parameters.437

Adjusting the ridging parameterization, especially the redistribution of thicknesses438

during ridging (µ), leads to the largest changes in the modeled ITD. Note that adjusting439

the participation function (parameter a∗) leaves the ITDs nearly unchanged. The sensitiv-440

ity of the ITDs to both e and Cs is still larger than the sensitivity to P∗ or cd,a. This is an441

interesting result because the ice strength P∗ and the atmospheric drag coefficient cd,a are442

among the most commonly used parameters for tuning sea ice models towards large-scale443

observations [Nguyen et al., 2011]. Our results suggest that they are not the first choice for444

tuning regional ITDs.445
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4 Discussion446

The model with ITD parameterization simulates regional and seasonal differences447

in ITDs accurately compared to corresponding observations. To our best knowledge, we448

show with unprecedented detail that an ITD model not only simulates average ice con-449

ditions in one region accurately [e.g. Dupont et al., 2015; Herzfeld et al., 2015], but also450

successfully simulates very different regional and seasonal ITDs with the same configu-451

ration and parameter set. The model tends to produce distributions with a thin peak and452

an exponentially decaying tail of thicker, ridged ice. On the one hand, this leads to small453

model-observation misfits for conditions of relatively uniform first-year ice, for example, in454

the Beaufort Sea. On the other hand, bi-modal distributions with multiple ice types, which455

are common for example in Fram Strait, are poorly represented.456

The modeled ITDs do not change very much over 15 years. We calculated a re-457

duction of mean ice and snow thickness from the observations for a similar time span.458

However, the ULS data are collected before 1997 and generally overestimate mean ice459

thickness, while the EM data are collected after 2001 and underestimate mean ice thick-460

ness, so that the computed difference in mean thickness probably overestimates the ac-461

tual changes. Rothrock et al. [2008] found the Arctic wide mean sea ice draft to have de-462

creased by 0.54 m over 15 years. The underlying data set was far more comprehensive463

than ours, which allowed to reduce the bias between ULS and EM data. Still, the reduc-464

tion of 0.54 m is bigger than even the largest ice thickness reduction in our model.465

Our simulated grid-cell ITDs reproduce mean conditions, but underestimate the vari-466

ability between points that are in close proximity. Previous comparisons of ITDs from sin-467

gle grid cells of an Arctic model [Hibler, 1980] or of results of single-column ITD mod-468

els [Schramm et al., 1997; Bellchamber-Amundrud et al., 2002] to the few then available469

point-wise observations agree with ours in that sea ice simulations with the ITD parame-470

terization are consistent with observed Arctic ITDs and that the parameterization can be471

tuned to a specific set of observations. But with the currently available data, we can go472

further to show that the parameterization simulates ITDs in single grid cells that are very473

similar to the regional mean states, but underestimate the observed variability between474

neighboring grid cells.475

In the following subsections, we discuss two possible sources of differences between476

model and observations: the sea ice thermodynamics and the sea ice deformation. A de-477
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tailed evaluation of modeled ITDs can help to discriminate between these processes as a478

source of error.479

4.1 Thermodynamics480

Modeled ITDs are not very different between different decades. Both the Arctic-481

wide decadal trends in sea ice extent and in sea ice volume are low in the model when482

compared to satellite observations or other, well-validated model results. In the following483

we speculate that the simple 0-layer thermodynamics of our model is one reason for the484

low interdecadal variability.485

The 0-layer thermodynamics were derived to provide a simple, cost-efficient, and486

easy to implement way to calculate thermodynamic fluxes through the ice [Semtner, 1976]487

at the cost of reduced physical realism. With this parameterization, sea ice does not pos-488

sess any internal heat capacity, so that the ice warms instantaneously and melting pro-489

cesses start as soon as the air temperatures rise above the freezing point in spring. The490

consequence is a phase error of approximately one month and a tendency to overestimate491

the seasonal sea ice thickness cycle [Semtner, 1984]. These systematic biases can be re-492

duced by adjusting other sea ice parameters, especially albedo and sea ice conductivity to493

adjust ice growth and melt rates, and ridging parameters to arrive at realistic mean sea ice494

thicknesses for unrealistic growth rates [Semtner, 1984].495

In spite of the simple thermodynamics, the seasonal cycle in the model configuration496

of this study matches the reference data very closely for pan-Arctic integral properties.497

This is so because most parameter values in this study are based on results from previ-498

ous model optimizations against large sets of different observations [Nguyen et al., 2011;499

Ungermann et al., 2017] to reduce the typical biases associated with 0-layer thermodynam-500

ics. It is reasonable to think that this parameter optimization led to some sort of overfit-501

ting: We assume that the choice of parameters does not describe the underlying physical502

processes faithfully, but leads to a nonlinear combination of effects that produces the good503

match to observations. Such an overfitting to the limited time span of reliable observations504

may explain why both climate sensitivities and long-term changes in the ITDs are under-505

estimated in the model.506

We find that our model underestimates mean ice thickness to a smaller degree than507

modal ice thickness. The modal thickness in Arctic ITDs is a standard diagnostic in eval-508
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uations of high-resolution ice thickness observations [e.g. Haas and Howell, 2015], be-509

cause it describes mostly undeformed, thermodynamically grown ice. In contrast, sea ice510

models are often evaluated against mean sea ice thickness [e.g. Chevallier et al., 2016;511

Stroeve et al., 2014]. Again, tuning the models towards this target can introduce com-512

pensating biases in the thermodynamics and the ridging schemes: in most regional ITDs513

our model simulates a mode that is too thin compared to observations; this mode is com-514

pensated by a heavier tail leading to a mean thickness that hides the model deficit. This515

indicates weaker thermodynamic ice growth and compensating ridge distributions in the516

model compared to observations. Herzfeld et al. [2015] simulated ice draft distributions517

with characteristics in the Fram Strait that are similar to ours (Section 3) even though they518

use a model with much more sophisticated thermodynamics. From this we speculate that519

compensating biases exist also in more sophisticated models, and that an evaluation of the520

modal thickness can help to identify some of them.521

In passing we note that the reported effects of the 0-layer thermodynamics, espe-522

cially the rapid onset and high melt rates in fall, may explain why there are no bi-modal523

ITDs in the model. In every spring and summer, ice melts too rapidly, so that ice surviv-524

ing the melting season is not sufficiently thick to produce a distinct, thicker second mode,525

or to create a first mode as thick as in the observations. In spite of the inaccurate physics526

on the small scale that lead to missing modes in the ITDs, we do not observe the unrealis-527

tically strong seasonal cycle for ice thickness that is expected for 0-layer thermodynamics.528

A more detailed examination of these processes on a local scale is beyond the scope of529

this study.530

4.2 Sea Ice Deformation531

The redistribution of ice thickness due to ridging depends directly on the deforma-532

tion field (equation 6). A realistic model representation of sea ice deformation in shear533

[Bouchat and Tremblay, 2017; Wang et al., 2016; Kwok and Cunningham, 2016] and the534

scaling of sea ice deformation on small scales [Weiss and Dansereau, 2017; Oikkonen535

et al., 2017; Spreen et al., 2017; Hutter et al., 2018] are current research topics. In this536

section we show that both deformation in shear and the localization of deformation are537

inherently connected to the simulation of ITDs.538
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We find that the exponential decay of the tail of the simulated distributions is indica-539

tive of an appropriate model of the physics of ridging. The exponentially decreasing tail540

of thick ice is a common feature of observed Arctic ice thickness distributions [Wadhams541

and Davy, 1986]. Similar tails are simulated with different ITD models with constant re-542

distribution [Bellchamber-Amundrud et al., 2002; Godlovitch et al., 2012] suggesting that543

the exponential tails are not created by the explicitly exponential redistribution functions544

used in this study. Instead, their results suggest that the appropriate physical mechanisms545

included in the ITD parameterization are not sensitive to the details of the redistribution546

function. But note that the inaccurately modeled slopes of the exponential distributions547

(Figure 4) in combination with the difficulty of tuning model coefficients to minimize548

competing biases (see section 4.1) indicate that one set of parameters in the redistribution549

functions that has been tuned to fit mean thickness does not necessarily lead to realistic550

ridging behavior in all forcing situations. Kubat et al. [2010] tune redistribution schemes551

to reproduce individual deformation events accurately. Choosing a comparable target for552

parameter optimization may reduce possible biases that are introduced to the ridging pa-553

rameterization when tuning it towards mean ice thickness. However, as long as, for exam-554

ple, the consolidation of multi-year ridges is not explicitly included in the model and ridge555

properties are solely determined by the initial ridging process, adjusting the ridging pa-556

rameters (such as µ in this study) can change the ridge geometries to be more in line with557

first-year or multi-year ice [Lipscomb et al., 2007]. Especially with the strong reduction of558

the multi-year ice fraction over the last decades [Polyakov et al., 2012], this may limit the559

ability of current redistribution schemes to reproduce shifts in the ITDs.560

The sensitivity studies emphasize how important deformation properties in shear are561

for sea ice models. Both shear parameters e and Cs are used in many current sea ice mod-562

els with their default values. These values of e = 2 [Hibler, 1979] and Cs = 0.5 [Flato563

and Hibler, 1995] are not very well constrained by observations. For example, decreas-564

ing the value of e can improve the representation of different Arctic-wide sea ice features565

[Miller et al., 2005; Lemieux et al., 2016; Bouchat and Tremblay, 2017; Ungermann et al.,566

2017]. Furthermore, a recent study analyzed deformation fields and thickness changes567

from coinciding satellite observations and suggested that the majority of mechanical ice568

thickness redistribution is caused by shear instead of convergence [Kwok and Cunningham,569

2016]. Our results support the notion that deformation in shear is a key factor in shaping570

different ITDs in the Arctic and that stronger ridging caused by shear (i.e., a larger value571
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of Cs = 0.85) is required to improve the model simulations with respect to observed ITDs.572

At the same time, we note that with a redistribution scheme tuned towards direct obser-573

vations of deformation events as in Kubat et al. [2010] it should be possible to constrain574

uncertain shear parameters such as e with the increasing number of regional ITD observa-575

tions.576

Finally, low- and medium-resolution models with a viscous-plastic rheology and577

smooth and slow atmospheric forcing are known to produce unrealistically smooth defor-578

mation fields [Girard et al., 2009]. This agrees with our observations of low grid-scale579

variability in the ITDs: Since the deformation fields with our grid resolution of 36km580

have only very few sharp features, the deformation history of neighboring grid cells should581

be very similar. Increasing the resolution of similar VP models allows to reach a realistic582

degree of localization of deformation, even though the intermittency continues to be un-583

derestimated [Hutter et al., 2018]. We note that in our comparison of 1D observations to584

2D model results, the 2D results are already smoother by representing an average of 2585

dimensions. Still, from future high-resolution simulations of model configurations with586

a dynamic ITD we may learn if the appropriate localization of deformation is more im-587

portant than tuning shear deformation parameters of ITDs or vice versa. New rheologies588

may simulate the observed intermittency of deformation more realistically than the VP-589

rheology. Comparing different rheologies in high-resolution simulations may then provide590

insight into whether localization of deformation is more important than its intermittency591

in the simulation of ITDs. In addition, comparing different rheologies in high-resolution592

simulations may inform about the role of grid-scale ITDs in generating intermittency of593

deformation.594

5 Conclusions595

From a comparison of modeled ITDs against observations from different regions,596

seasons and decades in the Arctic, we draw the following conclusions: With the currently597

used form of ITD parameterizations one can accurately reproduce many but not all ice598

thickness distributions under different forcing situations in the Arctic in the same sim-599

ulation. Observed regional and seasonal variations in ITDs in the Arctic are, to a large600

degree, reproduced both in regional averages and snapshots from single grid cells. Indi-601

vidual regional ITDs have been modeled successfully before, but here we show a general602
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agreement in a pan-Arctic sea ice - ocean model. Decadal variations in ITDs, however, are603

lower than observed604

The modeled ITDs depend on the overall drift and thickness patterns and hence on605

parameters that are not directly related to the ITD parameterization. In some cases the606

model does not capture the mode and tail of observed ice thickness distributions. There607

are many potential reasons for this and we have tried to attribute some of these issues to608

simplified thermodynamics and inaccurate deformation fields. The attribution is not com-609

plete and it is difficult to disentangle all different process that are involved.610

With the many new high resolution thickness data, we presented the shape of ITDs,611

and especially their modal thickness, as new, and easy to implement model diagnostics.612

The modal thickness is a key parameter in evaluating observations, and we suggest that it613

should also be used in evaluating model results. The modal thickness diagnostic allows to614

separate more clearly thermodynamic and dynamic effects in thickness patterns, and can615

thereby reduce potentially compensating biases in these two parameterizations.616

Variability in ITDs between adjacent grid points is low in the model. The parame-617

terization should be local by design, yet the simulated ITDs in individual grid cells react618

mostly to regional conditions. We identify different possible causes, with smooth deforma-619

tion fields in medium resolution VP models as the most probable one. Future studies with620

dynamic ITD parameterizations in high resolution models can identify if improved local-621

ization of deformation will improve grid cell ITDs or if low intermittency in deformation622

is a limiting factor.623
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