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Abstract 17 

The sensitivity of assimilating sea ice thickness data to uncertainty in atmospheric 18 

forcing fields is examined using ensemble based data assimilation experiments with the 19 

Massachusetts Institute of Technology general circulation model (MITgcm) in the 20 

Arctic Ocean during November 2011 to January 2012 and UK Met Office (UKMO) 21 

ensemble atmospheric forecasts. The assimilation system is based on a local Singular 22 

Evolutive Interpolated Kalman (LSEIK) filter. It combines sea ice thickness data 23 

derived from ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite and Special 24 

Sensor Microwave Imager/Sounder (SSMIS) sea ice concentration data with the 25 

numerical model. The effect of representing atmospheric uncertainty implicit in the 26 

ensemble forcing is assessed by three different assimilation experiments: The first two 27 

use a single deterministic forcing data set and different forgetting factor to inflate the 28 

ensemble spread. The third experiment uses 23 members of the UKMO atmospheric 29 

ensemble prediction system. It avoids additional ensemble inflation and is hence easier 30 

to implement. As expected, the model-data misfits are substantially reduced in all three 31 

experiments, but with the ensemble forcing the errors in the forecasts of sea ice 32 

concentration and thickness are smaller compared to the experiments with deterministic 33 

forcing.  This is, most likely because the ensemble forcing results in a more plausible 34 

spread of the model state ensemble, which represents model uncertainty and produces 35 

a better forecast.  36 

  37 
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 38 

1. Introduction 39 

Arctic sea ice is an important component of the local and global climate system. The 40 

rapid decline in extent and thickness in the last 10 years is also an important factor for 41 

Arctic shipping and marine operations. Accurate numerical prediction of sea ice has 42 

already become an urgent need [Eicken, 2013]. However, large uncertainties still exist 43 

in the modeled Arctic sea ice thickness and volume [Schweiger et al., 2011]. To reduce 44 

uncertainties in sea ice-ocean state estimation and forecasts, the obvious way is to 45 

combine available sea ice observations and coupled ice-ocean models with advanced 46 

data assimilation techniques [Lisæter et al., 2003]. 47 

 48 

In contrast to the successfully observed sea ice concentration with satellite-based 49 

passive microwave instruments [Cavalieri and Parkinson, 2012; Stroeve et al., 2012], 50 

observing sea ice thickness from space is still a great challenge [Kwok and Sulsky, 51 

2010; Kaleschke et al., 2012; Tian-Kunze et al., 2014]. Due to the sparsely gridded sea 52 

ice thickness observations, there are very few studies with ice thickness assimilation. 53 

Lisæter et al. [2007] examined the potential for ice thickness assimilation in coupled 54 

sea ice-ocean models with an Ensemble Kalman filter (EnKF). Yang et al. [2014] 55 

assimilated the first near-real time ESA’s Soil Moisture and Ocean Salinity (SMOS) 56 

satellite based sea ice thickness data into a coupled sea ice-ocean model using a local 57 

ensemble-based Singular Evolutive Interpolated Kalman (LSEIK) filter [Pham et al., 58 

1998; Pham, 2001]. Their experiments illustrated that SMOS ice thickness leads to 59 

substantially improved first-year sea ice thickness. Both studies used a single set of 60 

deterministic atmospheric forcing fields, and accounted for possible uncertainties in 61 

external forcing either by perturbing the surface winds [Lisæter et al., 2007], or by 62 
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inflating the forecast error covariance [Yang et al., 2014] with a so-called forgetting 63 

factor [Pham et al., 1998]. However, the realistic, flow-dependent atmospheric 64 

uncertainty has not been taken into account.  65 

 66 

Since their introduction in the 1990s, atmospheric ensemble prediction systems (EPS) 67 

have been under a substantial development [e.g., Jung and Leutbecher, 2007]. The 68 

availability of global EPSs from the leading operational centers through the 69 

‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) [Park et al., 2008; 70 

Bougeault et al., 2010] offers an opportunity to test the sensitivity of existing 71 

assimilation systems to the atmospheric uncertainty. Recently, Yang et al. [2015] 72 

examined the impacts of ensemble forcing on LSEIK-based sea ice concentration data 73 

assimilation and prediction in summer. In their experiments the ensemble-forcing 74 

approach allowed to approximate the atmospheric model error statistics sufficiently 75 

well and outperformed the deterministic filter in the sea ice concentration analysis and 76 

forecasts. Sea ice thickness forecasts, however, were not significantly improved over 77 

the single forcing approach. 78 

 79 

In this study, following Yang et al. [2015], we investigate whether the influence of the 80 

atmospheric ensemble implementation is analogous for the assimilation of SMOS ice 81 

thickness data in the cold season and examine whether, and to which extent, the 82 

thickness assimilation shows a different behavior. To answer this question, an 83 

ensemble-based LSEIK filter is used, following Yang et al. [2014], to assimilate SSMIS 84 

sea ice concentration and SMOS thickness data into the Massachusetts Institute of 85 

Technology general circulation model [MITgcm; Marshall et al., 1997] over an 86 

autumn-winter transition period of 3 months: 1 November 2011 – 30 January 2012. 87 
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This period is chosen because SMOS data is only valid for the cold season. The 88 

effectiveness of the ensemble forcing is analyzed by comparing the assimilation results 89 

with those from an assimilation experiment using deterministic control forcing.  90 

 91 

2. Forecasting System 92 

2.1 MITgcm sea ice-ocean model  93 

This study uses the MITgcm sea ice-ocean model [see Losch et al., 2010], which 94 

includes state-of-the-art sea-ice dynamics based on Zhang and Hibler [1997] and simple 95 

zero-layer thermodynamics. An Arctic regional configuration with open boundaries in 96 

both the Atlantic and Pacific sectors [Losch et al., 2010; Nguyen et al., 2011] is used. 97 

The horizontal model grid has an average spacing of 18 km and is locally orthogonal. 98 

The vertical resolution is highest in the upper ocean, with 28 vertical levels in the top 99 

1000 m. The bathymetry is derived from the U.S. National Geophysical Data Center 100 

(NGDC) two-minute global relief dataset [ETOPO2; Smith and Sandwell, 1997]. The 101 

open ocean boundaries are treated using monthly ocean boundary conditions provided 102 

by a global model configuration [Menemenlis et al., 2008]. Monthly mean river runoff 103 

is based on the Arctic Runoff Data Base (ARDB) [see Nguyen et al., 2011 for more 104 

details].  105 

 106 

2.2 UKMO forcing data, TIGGE archive 107 

Following Yang et al. [2015], we use atmospheric ensemble forecasts of the UK Met 108 

Office (UKMO) available in the TIGGE archive. Each of the selected UKMO forecasts 109 

consists of one unperturbed ‘control’ forecast and an ensemble of 23 forecasts with 110 

perturbed initial conditions around the control state. The reader is referred to Yang et 111 

al. (2015) for more details on the surface parameters used and the processing of the 112 
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forcing data.  113 

 114 

1.3.Sea ice observation data  115 

Daily averaged sea ice thickness data derived from SMOS brightness temperatures are 116 

assimilated in the forecasting experiment. The SMOS-derived sea ice thickness product 117 

has been generated with an algorithm that is based on a sea ice thermodynamic model 118 

and a three-layer radiative transfer model [Kaleschke et al., 2010, Kaleschke et al., 119 

2012], which explicitly takes variations of ice temperature and ice salinity into account 120 

[Tian-Kunze et al., 2014; http://icdc.zmaw.de]. The sea ice thickness data have a 121 

resolution of 12.5km and are interpolated to the MITgcm model grid. The maximum 122 

retrievable SMOS ice thickness varies from a few centimeters to about 1 m depending 123 

on ice temperature and ice salinity [Tian-Kunze et al., 2014]. Following Yang et al. 124 

[2014], only thicknesses below 1.0 m are assimilated. The data set also provides daily 125 

error estimates. These are used as the observation errors in the assimilation. 126 

 127 

Additionally, observations of sea ice concentration are assimilated. These observations 128 

are derived from DMSP F-17 SSMIS passive microwave data, processed by the NSIDC 129 

with the NASA team algorithm [Cavalieri et al., 2012; 130 

http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html], and interpolated to 131 

the model grid.  132 

 133 

The system performance is assessed with independent observational data. For 134 

concentration, data from the European Meteorological Satellite Agency (EUMETSAT) 135 

Ocean and Sea Ice Satellite Application Facility (OSISAF) [Eastwood et al., 2011; 136 

http://www.osi-saf.org], in particular, the near real time OSISAF data provided on a 10 137 

http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html
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km polar stereographic grid are used. Note that the OSISAF concentration product for 138 

this period is derived from a different passive microwave sensor, SSM/I, onboard of a 139 

different satellite, DMSP F-15, and processed with a different algorithm than the 140 

assimilated concentration data, so that it is really independent observation data.   141 

 142 

Independent ice thickness observations are provided by measurements of sea ice draft 143 

from Beaufort Gyre Experiment Program (BGEP) Upward Looking Sonar (ULS) 144 

moorings located in the Beaufort Sea [http://www.whoi.edu/beaufortgyre] and sea ice 145 

thickness data obtained from autonomous ice mass-balance (IMB) buoys [Perovich et 146 

al., 2013; http://imb.erdc.dren.mil]. The error in ULS measurements of ice draft is 147 

estimated as 0.1 m [Melling et al., 1995]. Drafts are converted to thickness by 148 

multiplying with a factor of 1.1 [Nguyen et al., 2011]. The accuracy of the IMB 149 

sounders is 5 mm [Richter-Menge et al., 2006]. The reader is referred to Figure 1 in 150 

Yang et al. [2014] for the location of the moorings BGEP_2011A, BGEP_2011B, 151 

BGEP_2011D and the tracks of the ice mass-balance buoys IMB_2011K. 152 

 153 

2.4 Data assimilation 154 

The data assimilation is performed with the ensemble-based SEIK filter [Pham, 2001]. 155 

In analogy to the implementation used by Yang et al. [2014] and Yang et al. [2015], the 156 

filter method is coded within the Parallel Data Assimilation Framework (PDAF, Nerger 157 

and Hiller, 2013, http://pdaf.awi.de). In the SEIK filter an ensemble of model states 158 

represents the state estimate (as ensemble mean) as well as the error estimate (the 159 

ensemble covariance matrix) of this state. The data assimilation is performed by 160 

alternating forecast phases in which the model propagates the ensemble in time, and 161 

analysis steps in which the model and observations are merged. 162 
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 163 

The SEIK analysis applies a localization by assimilating the observational information 164 

only within a radius of 126 km (~7 grid points) around a surface grid point. Within the 165 

radius, the observations are weighted with a quasi-Gaussian weight function [Gaspari 166 

and Cohn, 1999] of the distance from the analyzed grid point [see Janjić et al., 2012]. 167 

To stabilize the assimilation process, a forgetting factor [Pham et al, 1998] can be 168 

applied, which inflates the forecast error covariance matrix. With a forgetting factor of 169 

one, the ensemble remains unchanged, while values slightly smaller than one result in 170 

a small inflation. For more details on the local SEIK filter and its implementation, the 171 

reader is referred to Nerger et al. [2006], Janjić et al. [2011], Losa et al. [2012] and 172 

Yang et al. [2014].  173 

 174 

The variability of a MITgcm model integration driven by the 24-h UKMO control 175 

forecasts over the period from October to December 2011 is used to generate the initial 176 

ensemble. The trajectory of daily snapshots of the simulation is decomposed into 177 

Empirical Orthogonal Functions (EOFs). The ensemble states are then obtained by 178 

multiplying the leading EOFs with a random matrix that preserves the standard 179 

deviation in the set of EOFs and ensures that the mean of the resulting vectors is zero 180 

[second-order exact sampling, Pham, 2001]. The ensemble mean is defined by adding 181 

the model state from a model run without assimilation. 23 ensemble states are used in 182 

this study to match with the ensemble size of the UKMO perturbed forcing. In the 183 

forecast phase of the SEIK filter all ensemble states are dynamically integrated with the 184 

nonlinear sea ice-ocean model driven by the atmospheric forcing. Every 24 hours, the 185 

analysis step combines the predicted model state with the observational information. 186 

This analysis step computes a corrected state and updates the state error covariance 187 
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matrix that has been estimated from the ensemble of model states.  188 

 189 

2.5 Experiment design and error statistics 190 

The data assimilation behavior is assessed in assimilation experiments in which the 191 

LSEIK filter is applied every day over the period of 1 November 2011 – 30 January 192 

2012. For the assessment the model states after each 24-h forecast are examined. 193 

 194 

Three assimilation experiments are performed. They only differ in the used atmospheric 195 

forcing and the application of the forgetting factor: 196 

1. LSEIK-FF99: The forecasts are initialized from analyses obtained by assimilating 197 

daily NSIDC SSMIS sea ice concentration and SMOS ice thickness data and using the 198 

UKMO atmospheric control forecasts as forcing. A forgetting factor of 0.99 is applied 199 

to inflate the ensemble spread by 1%. 200 

2. LSEIK-FF97: Same as LSEIK-FF99, but a forgetting factor of 0.97 is applied to 201 

inflate the ensemble spread by 3%. 202 

3. LSEIK-EF: Similar with LSEIK-FF99 and LSEIK-FF97, but the UKMO 203 

atmospheric ensemble forecasts are used as the forcing during the forecast phases. The 204 

forgetting factor was set to 1. Thus no ensemble inflation is applied. 205 

 206 

3. Results  207 

3.1. Sea ice concentration 208 

Figure 1 shows the temporal evolution of the root mean square error (RMSE) of ice 209 

concentration forecasts over the simulation period November 2011 – January 2012 for 210 

the three assimilation experiments and a model forecast without data assimilation. The 211 

RMSEs are computed with respect to the independent OSISAF concentrations. 212 
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Following Lisæter et al. [2003] and Yang et al. [2014] the RMSEs are only computed 213 

at grid points where either the model or the observations have ice concentrations larger 214 

than 0.05.  215 

 216 

The data assimilation substantially reduces the deviations of the modeled sea ice 217 

concentration from the satellite-based concentrations compared to the MITgcm forecast 218 

without assimilation. Averaged over the 3-month simulation period, the mean RMSE 219 

reduces from 0.15 for MITgcm without DA to 0.12 in both LSEIK-FF99 and LSEIK-220 

FF97, and 0.09 in LSEIK-EF. During the entire study period, the LSEIK-FF99 and 221 

LSEIK-FF97 concentrations are very similar, while the LSEIK-EF is closer to the 222 

OSISAF observations than both LSEIK-FF99 and LSEIK-FF97 concentrations. Hence, 223 

the influence of changing the forgetting factor on the ice concentration forecast is very 224 

small, while the impact of the assimilation is larger when the atmospheric uncertainty 225 

is explicitly taken into account by the ensemble forcing. During the simulation period, 226 

the sea ice concentration tends towards uniform values of 100% in most of the Arctic 227 

Ocean. While this situation leads to an increasing trend of the RMSE in LSEIK-FF99 228 

and LSEIK-FF97 of about 25-30% starting from November 14, 2014 to January 30, 229 

2015, the RMSE in LSEIK-EF does not show any trend but varies between values of 230 

0.08 to 0.1.  231 

 232 

3.2. Sea ice thickness 233 

The temporal evolution of the RMSE of the ice thickness forecast with respect to the 234 

assimilated SMOS ice thickness (< 1.0 m) over the simulation period is shown in Figure 235 

2. The joint assimilation of sea ice concentration and SMOS sea ice thickness reduces 236 

the deviation from the thickness data for all the three LSEIK forecasts. Similar to the 237 
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RMSE in the sea ice concentration forecasts, the RMSE of the thickness grows during 238 

the simulation period. The total RMSE of the run without data assimilation, the LSEIK-239 

FF99, LSEIK-FF97, and LSEIK-EF 24h forecasts are 0.73 m, 0.25 m, 0.24m and 0.20 240 

m, respectively. From the lowest error of 0.17 m, the LSEIK-FF99 error approximately 241 

doubles until the end of the experiment. However, the LSEIK-FF99 RMSE remains to 242 

be significantly lower than in the MITgcm forecast without DA. With a larger 243 

artificially inflated spread, the LSEIK-FF97 thickness is a little closer with the SMOS 244 

observations. Using ensemble forcing, the LSEIK-EF thickness agrees better with the 245 

observations than both the LSEIK-FF99 and LSEIK-FF97 thickness. This improvement 246 

in LSEIK-EF increases from November to January, and reaches about 0.1 m in the end 247 

of January 2012. Yang et al. [2014] related the increase in RMSE over time to the fact 248 

that the number of observed grid points with ice thickness below 1.0 m decreases 249 

gradually. As only these observations have a sufficiently small error to be assimilated, 250 

the number of observations in the DA decreases over time. Although the RMSE in 251 

LSEIK-EF also shows an increase over time, it is much smaller than in both LSEIK-252 

FF99 and LSEIK-FF97 with only about 62%. 253 

 254 

The spatial distributions of the mean deviation of predicted sea ice thickness from the 255 

valid SMOS data are similar for three LSEIK experiments (Figure 3). In particular, the 256 

LSEIK-FF99 and LSEIK-FF97 are very close to each other. However, the LSEIK-EF 257 

shows a much smaller error in most of the area with valid SMOS data, and this is 258 

consistent with the lower RMSEs shown in Figure 2.  259 

 260 

The comparison of the simulated ice thickness forecasts with in-situ ULS and IMB 261 

buoy observations is shown in Figure 4. All four forecasts show the gradually 262 
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increasing ice thickness at BGEP_2011A, BGEP_2011B, and BGEP_2011D. Without 263 

ice thickness data assimilation, however, the model shows a bias of more than 1.0 m 264 

relative to observations. The sea ice data assimilation in all the three LSEIK forecasts 265 

corrected most of the thickness bias. The RMSEs of the experiments with respect to the 266 

in situ measurements are summarized in Table 1. At BGEP_2011A and BGEP_2011D, 267 

the assimilation reduced the RMSE by 0.56 m to 0.99 m, which is a reduction of the 268 

error by up to 79%. The improvements are smaller at BGEP_2011B with only 0.2 m. 269 

This is caused by the fact that BGEP_2011B is closer to the central Arctic (~78 ºN) 270 

where the ice is thicker and in winter there are almost no SMOS observations to 271 

constrain the model by the assimilation [Yang et al., 2014]. With regard to the ULS data 272 

of IMB_2011K, all four forecast solutions captured the increasing ice thickness found 273 

in the data. The three LSEIK forecasts are very close to each other and all show large 274 

improvements over the MITgcm forecast without DA. For the in situ data, the RMSEs 275 

for LSEIK-FF99, LSEIK-FF97 and LSEIK-EF in Table 1 are very similar except for 276 

BGEP_2011D, where LSEIK-EF with ensemble forcing leads to a smaller RMSE. The 277 

smaller deviation from the observations is also visible in Fig. 4c where LSEIK-EF is 278 

closer to the data than LSEIK-FF99 and LSEIK-FF97 after December 13. The reason 279 

for this difference will be examined in the following section.  280 

 281 

4. Effect of the ensemble forcing  282 

In this part, we examine how the improvements of the state estimates in the three LSEIK 283 

experiments are induced. In particular, we evaluate the ensemble spread as it 284 

approximates the uncertainty in the sea ice concentration and thickness fields. 285 

 286 

The evolution of spatially averaged sea ice concentration spread measured by the 287 
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ensemble standard deviations (STDs) of the 24-h forecasts are shown in Figure 5a. As 288 

for the RMSEs, the spread is computed only at grid points where either the modeled or 289 

observed ice concentrations are larger than 0.05. The initial mean STD is about 0.035 290 

for three LSEIK forecasts. During the assimilation experiments, the STD decreases 291 

gradually because of the assimilation of observations every 24 h and because the ice 292 

concentration tends towards uniform values of 100% in the Arctic Ocean for all 293 

members. While at the beginning the ensemble spreads of three assimilation 294 

experiments are equal, the spatially averaged spread of the LSEIK-FF97 24-h forecasts 295 

of sea ice concentration is slightly larger than LSEIK-FF99, and the LSEIK-EF is two 296 

times larger than both the LSEIK-FF99 and LSEIK-FF97 forecasts during the course 297 

of the experiment. Averaged over the 3-month period the STDs are 0.005 for LSEIK-298 

FF99, 0.006 for LSEIK-FF97 and 0.013 for LSEIK-EF. Thus, compared to LSEIK-299 

FF99 and LSEIK-FF97, the ensemble spread of LSEIK-EF remains larger with 300 

ensemble forcing, hence the model uncertainty is larger and allows the model ensemble 301 

to react more effectively to the observations in the analysis steps. 302 

 303 

Figure 6 shows spatial maps of the ensemble spread (STD) of 24-h ice concentration 304 

forecasts of LSEIK-FF99, LSEIK-FF97 and LSEIK-EF for 30 January 2012. All 305 

LSEIK forecasts have their highest STDs in the sea ice edge area. Accordingly, the 306 

analysis corrections mainly occur in the sea ice edge area and the updates in the central 307 

multi-year sea ice area (with nearly 100% concentration) are very small. The STDs are 308 

a little larger for LSEIK-FF97 than for LSEIK-FF99, and are largest for LSEIK-EF. 309 

This is consistent with the mean ensemble spread shown in Figure 5a, and further shows 310 

that the estimated model uncertainty is largest in LSEIK-EF. The larger uncertainty 311 

estimate gives more weight to the data in the analysis step. Accordingly, LSEIK-EF 312 
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provides a closer fit to concentration observations as is visible in Figure 1.   313 

 314 

The evolution of spatially averaged ensemble STDs of sea ice thickness is shown in 315 

Figure 5b. For the sea ice area with valid SMOS observations, all three LSEIK forecasts 316 

have an initial STD of about 0.09 m. Over time, the spread again decreases to about 317 

0.02 m during a transient phase of the data assimilation of about 20 days. After this 318 

period, the STD shows a small decrease for LSEIK-FF99 and LSEIK-FF97, although 319 

the STD of LSEIK-FF97 is a little larger than LSEIK-FF99, while the STD shows a 320 

small increase for LSEIK-EF. Averaged over the 3-month period the STDs are 0.016 m 321 

for LSEIK-FF99, 0.019 m for LSEIK-FF97 and 0.024 m for LSEIK-EF. For the sea ice 322 

area without valid SMOS data (dotted lines in Figure 5b), all three LSEIK forecasts 323 

have an initial STD of about 0.15 m. Over time, the spread of LSEIK-FF99 and LSEIK-324 

EF are very close to each other; both decrease to about 0.06 m after about 20 days and 325 

then fluctuates around 0.06 m. In contrast, the spread of LSEIK-FF97 increases rapidly 326 

after an initial drop, and is even higher than 0.14 m by the end of January.  327 

 328 

Figure 7 depicts the spatial distribution of the ice-thickness ensemble spread on January 329 

30, 2012 for the three LSEIK forecasts. The high STDs are mainly found in the central 330 

multi-year sea ice area, and the spread in the surrounding first-year ice area is much 331 

smaller. This pattern results from the fact that the SMOS thickness data assimilation 332 

mainly influences the surrounding first-year ice area, and has little effect on the central 333 

thick, multi-year sea ice (that SMOS cannot detect reliably). There are notable 334 

differences between LSEIK-FF99, LSEIK-FF97 and LSEIK-EF. In particular, the 335 

spread in the central sea ice area is largest in LSEIK-FF97. The large spread in LSEIK-336 

FF97 in this area, however, indicates that the experiment with a strong forgetting factor 337 
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of 0.97 cannot constrain the ice thickness in the absence of direct thickness 338 

observations; the correlations between thickness and concentration, if present at all, are 339 

also too weak to fill the data gap. The spread in the surrounding first-year ice area is 340 

largest in LSEIK-EF (Figure 7). The larger ensemble spread in the first-year ice area 341 

gives more weight to the SMOS ice thickness data and less weight to the model in the 342 

analysis step. Accordingly, LSEIK-EF is closer to the SMOS observations (Figure 2). 343 

In contrast, the ensemble spread is much smaller for LSEIK-FF99 so that the ice 344 

thickness data has a smaller influence in the data assimilation. This influence of the 345 

larger ensemble spread causes also the better estimate of the sea ice thickness at the 346 

location of BGEP_2011D visible in Fig. 4c. The spread of LSEIK-EF appears to be 347 

appropriate both in areas where there are valid SMOS data, because the model-data 348 

misfit is smallest, and in in areas where there are not valid SMOS data, because the 349 

estimated model uncertainty (i.e. the spread) is small. No uniform forgetting factor 350 

could be found to reach a similar result. 351 

 352 

As discussed in Yang et al. [2015], the LSEIK-EF experiment with ensemble forcing is 353 

much easier to implement than the LSEIK experiment with single forcing. The 354 

forgetting factor used in LSEIK-FF99 and LSEIK-FF97 requires to be calibrated in a 355 

series of sensitivity experiments with different values of the forgetting factor. In our 356 

application, the inflation is applied uniformly over the whole assimilation domain and 357 

for both the ice concentration and the thickness where a different forgetting factors may 358 

have been necessary for regions with and without valid SMOS data. In this situation, 359 

the attempt to increase the inflation to improve the model-data misfit in the area of thin 360 

ice leads to the unrealistically growing ensemble spread in the area of the multi-year 361 

sea ice thickness as found in LSEIK-FF97 (Figure 5b).  362 
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 363 

5. Summary and conclusion  364 

In taking Yang et al. [2015] further, UKMO ensemble atmospheric forecasts of the 365 

TIGGE archive is used to simulate atmospheric uncertainty in the ensemble forecasts 366 

of sea ice thickness data assimilation with a LSEIK filter. While Yang et al. [2015] 367 

considered the assimilation of sea ice concentration data during summer, this study 368 

examines the assimilation of sea ice concentration and the SMOS ice thickness data in 369 

the cold season. We carry out two kinds of ensemble DA experiments to examine the 370 

sensitivity of the results on the atmospheric forcing. The first kind (LSEIK-FF99 and 371 

LSEIK-FF97) is driven by the deterministic control forcing and uses a forgetting factor 372 

to artificially inflate the ensemble error covariance, while the second kind (LSEIK-EF) 373 

is forced by UKMO ensemble atmospheric forecasts during the data assimilation cycle. 374 

As the ensemble forcing explicitly represents atmospheric model errors there is no need 375 

to use and tune the forgetting factor in the LSEIK-EF experiment. This simplification 376 

reduces the tuning effort and hence the configuration of the LSEIK-EF experiment is 377 

significantly easier to implement than the LSEIK-FF99 and LSEIK-FF97 experiments. 378 

With regard to the influence of using ensemble forcing, the comparisons show first that 379 

both approaches largely improve the sea ice concentration and thickness. However, 380 

both sea ice concentration and thickness forecasts based on LSEIK-EF with ensemble 381 

forcing agree better with the observation than those based on LSEIK-FF99 and LSEIK-382 

FF97. In Yang et al. [2015], it was shown that the LSEIK-EF with ensemble forcing 383 

approach is more suitable than LSEIK-FF99 with single forcing for the sea ice 384 

concentration DA in summer. This study shows that the ensemble forcing provides a 385 

similar advantage also during the cold season and for the assimilation of sea ice 386 

thickness data.  387 
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 388 

A particular issue during the cold season is that the sea ice concentration tends towards 389 

uniform values of 100% in the Arctic Ocean for all ensemble members [Yang et al. 390 

2014] because of the growing sea ice in the cold season. In addition, the number of 391 

SMOS thickness observations that can be used in the assimilation decreases gradually 392 

because thickness grows beyond the range that SMOS can detect reliably. In the 393 

LSEIK-FF99 and LSEIK-FF97 experiments, this situation results in a gradual decrease 394 

of the assimilation impact on the prediction skills improvement. However, with a more 395 

realistic ensemble spread in the LSEIK-EF experiment with ensemble forcing, the error 396 

in the sea ice concentration forecasts is kept stable. Moreover, the increase of estimation 397 

errors for the sea ice thickness over the central Arctic (where there are no valid SMOS 398 

observation) pronounced in LSEIK-FF97 is significantly reduced for LSEIK-EF.  399 

 400 

The data assimilation shows that there is considerable sensitivity to the explicit 401 

representation of forcing uncertainty by applying ensemble forcing. The forecasts and 402 

uncertainty estimates of both sea ice concentration and thickness are improved with 403 

ensemble forcing so that we recommend this ensemble implementation for Arctic sea 404 

ice-ocean state estimation and real-time operational forecasts. 405 

 406 

Finally, this study shows that the major impact of SMOS sea ice thickness data 407 

assimilation is on the surrounding first-year sea ice area, and the improvement in the 408 

central Arctic is very small. With the availability of near-real time Cryosat-2 ice 409 

thickness data from April 2015 onwards 410 

[http://www.cpom.ucl.ac.uk/csopr/seaice.html], it is now possible to address this issue, 411 

because the Cryosat-2 covers a thickness range [Laxon et al., 2013; Ricker et al., 2014] 412 
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that is very much complementary to that of SMOS. 413 

 414 
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Table and figure captions 530 

Table 1. RMSE of the four forecasting experiments from in situ measurements by the 531 

ULS moorings BGEP_2011A, BGEP_2011B, and BGEP_2011D and the ice mass-532 

balance buoy IMB_2011K. 533 

 534 

Figure. 1 Temporal evolution of RMSE differences between the independent OSISAF 535 

ice concentration data and MITgcm forecast (green solid), LSEIK-FF99 24h forecast 536 

(blue solid), LSEIK-FF97 24h forecast (magenta solid), LSEIK-EF 24h forecast (red 537 

solid) over the period 1 November 2011 to 30 January 2012. 538 

 539 

Figure. 2 Temporal evolution of RMSE differences between SMOS ice thickness (< 1.0 540 

m) and MITgcm forecast (green solid), LSEIK-FF99 24h forecast (blue solid), LSEIK-541 

FF97 24h forecast (magenta solid), LSEIK-EF 24h forecast (red solid) over the period 542 

1 November 2011 to 30 January 2012. 543 

 544 

Figure 3. Mean deviation between (a) LSEIK-FF99, (b) LSEIK-FF97, (c) LSEIK-EF 545 

(bottom) sea ice thickness 24 h forecast and the SMOS ice thickness (<1.0 m) averaged 546 

over the period of 1 November 2011 to 30 January 2012. The white color shows the 547 

area of no valid SMOS observations. 548 

 549 

Figure 4. Evolution of sea ice thickness (m) at (a) BGEP_2011A, (b) BGEP_2011B, (c) 550 

BGEP_2011D, and (d) IMB_2011K from 1 November 2011 to 30 January 2012. The 551 

black solid lines show the ice thickness observations. The MITgcm free-run, LSEIK-552 

FF99, LSEIK-FF97 and LSEIK-EF 24-h mean ice thickness forecasts are shown as 553 

green, blue, magenta and red solid lines, respectively. 554 
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 555 

Figure 5. Temporal evolution of area mean spread of from 1 November 2011 to 30 556 

January 2012. The spread (STDs) of LSEIK-FF99, LSEIK-FF97 and LSEIK-EF 24-h 557 

forecasts are shown as blue, magenta and red lines, respectively. (a) Ice concentration 558 

(in solid lines) and (b) ice thickness forecasts over valid SMOS (0-1.0 m) area (in solid 559 

lines) and ice thickness forecasts over sea ice area of without valid SMOS data (in 560 

dotted lines). 561 

 562 

Figure 6. Sea ice-concentration standard deviation for the individual grid cells as 563 

calculated from the (a) LSEIK-FF99, (b) LSEIK-FF97 and (c) LSEIK-EF 24-h 564 

ensemble forecasts on 30 January 2012. 565 

 566 

Figure 7. Sea ice-thickness standard deviation for the individual grid cells as calculated 567 

from the (a) LSEIK-FF99, (b) LSEIK-FF97 and (c) LSEIK-EF 24-h ensemble forecasts 568 

on 30 January 2012. 569 

  570 
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 571 

Table 1. RMSE of the four forecasting experiments from in situ measurements by the 572 

ULS moorings BGEP_2011A, BGEP_2011B, and BGEP_2011D and the ice mass-573 

balance buoy IMB_2011K. 574 

 575 

  BGEP_2011A BGEP_2011B BGEP_2011D IMB_2011K 

1 MITgcm 1.25 m 1.03 m 0.97 m 1.15 m 

2 LSEIK-FF99 0.26 m 0.83 m 0.41 m 0.10 m 

3 LSEIK-FF97 0.28 m 0.81 m 0.41 m 0.10 m 

4 LSEIK-EF 0.27 m 0.83 m 0.35 m 0.10 m 

  576 
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 577 

 578 

FIG. 1 Temporal evolution of RMSE differences between the independent OSISAF ice 579 

concentration data and MITgcm forecast (green solid), LSEIK-FF99 24h forecast (blue 580 

solid), LSEIK-FF97 24h forecast (magenta solid), LSEIK-EF 24h forecast (red solid) 581 

over the period 1 November 2011 to 30 January 2012. 582 

  583 
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584 

FIG. 2 Temporal evolution of RMSE differences between SMOS ice thickness (< 1.0 585 

m) and MITgcm forecast (green solid), LSEIK-FF99 24h forecast (blue solid), LSEIK-586 

FF97 24h forecast (magenta solid), LSEIK-EF 24h forecast (red solid) over the period 587 

1 November 2011 to 30 January 2012. 588 

  589 
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 590 

 591 

 592 

FIG 3. Mean deviation between (a) LSEIK-FF99, (b) LSEIK-FF97, (c) LSEIK-EF (bottom) 593 

sea ice thickness 24 h forecast and the SMOS ice thickness (<1.0 m) averaged over the 594 

period of 1 November 2011 to 30 January 2012. The white color shows the area of no valid 595 

SMOS observations.  596 

 597 

  598 
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601 

602 

 603 
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(b) 

(c) 
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 604 

FIG 4. Evolution of sea ice thickness (m) at (a) BGEP_2011A, (b) BGEP_2011B, (c) 605 

BGEP_2011D, and (d) IMB_2011K from 1 November 2011 to 30 January 2012. The 606 

black solid lines show the ice thickness observations. The MITgcm free-run, LSEIK-607 

FF99, LSEIK-FF97 and LSEIK-EF 24-h mean ice thickness forecasts are shown as 608 

green, blue, magenta and red solid lines, respectively.  609 

  610 

(d) 
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 611 

 612 
 613 

 614 

FIG 5. Temporal evolution of area mean spread of from 1 November 2011 to 30 January 615 

2012. The spread (STDs) of LSEIK-FF99, LSEIK-FF97 and LSEIK-EF 24-h forecasts 616 

are shown as blue, magenta and red lines, respectively. (a) Ice concentration (in solid 617 

lines) and (b) ice thickness forecasts over valid SMOS (0-1.0 m) area (in solid lines) 618 

and ice thickness forecasts over sea ice area of without valid SMOS data (in dotted 619 

lines).  620 
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 622 

623 

 624 

FIG 6. Sea ice-concentration standard deviation for the individual grid cells as calculated 625 

from the (a) LSEIK-FF99, (b) LSEIK-FF97 and (c) LSEIK-EF 24-h ensemble forecasts on 626 

30 January 2012. 627 

(a) (b) 

(c) 
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628 

 629 

FIG 7. Sea ice-thickness standard deviation for the individual grid cells as calculated from 630 

the (a) LSEIK-FF99, (b) LSEIK-FF97 and (c) LSEIK-EF 24-h ensemble forecasts on 30 631 

January 2012. 632 

 633 
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