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Abstract We present a method for studying local sta-
bility of a solution to an inverse problem and evaluate
the uncertainty in determining true values of particular
observables. The investigation is done under the as-
sumption that only the Gaussian part of fluctuations
about the local minimum of the cost (likelihood) func-
tion is essential. Our approach is based on the spectral
analysis of the Hessian operator associated with the cost
function at its extremal point, and we put forward an
effective iterative algorithm suitable for numerical im-
plementation in the case of a computationally large
problem.

Keywords Inverse modelling - Hessian operator -
Spectral analysis - Error covariance
Polynomial expansion

1 Introduction

The past decade was marked by a successful application
of inverse techniques to the investigation of oceanic
dynamics. However, the key point in formulating an
inverse problem, namely specification of the cost
(likelihood) function, remains more an art than a
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well-defined engineering procedure. Moreover, tuning
the parameters and weights defining the cost function is
very often done on the grounds of visual inspection of the
output pictures, and only deviations of the model-pre-
dicted fields from observations are used as a quantitative
criterion. Also there is no tool which can help in under-
standing how much the output depends on the initial
guess, neither do we have a reliable tool which can be
used for estimating (in the framework of the employed
inverse problem) the accuracy of the obtained result.

Since in general actual geophysical inverse problems
are computationally large and poorly conditioned, we
also need a tool for the quantitative study of their sta-
bility and the efficiency of regularization. Theoretical
principles for such an investigation are well known.
Applications to geosciences have been described, e.g., by
Thacker (1989). This work is aimed at constructing a
numerical scheme which can be used in practical appli-
cations.

Solutions to oceanographic inverse problems nor-
mally have the meaning of a maximum likelihood esti-
mate. The logic of the maximum likelihood estimate
implies that fluctuations of the solution about the most
probable state must not be large, otherwise the estimate
becomes useless. Also one should keep in mind that even
when fluctuations about the most probable value are
small and, in particular, there are no other local maxima
of the probability distribution nearby, spontaneous
transitions to far-distant locally optimum solutions may
occur and ruin the validity of the maximum likelihood
estimate. We shall not consider these highly nonlinear
phenomena, but shall assume that the given solution
makes sense. Therefore, it is natural to linearize the
problem in the vicinity of the most probable point and
treat the fluctuations as Gaussian noise (Thacker 1989).
The nature of linear problems and corresponding ana-
lytic formulas are simple, so our main concern is nu-
merical implementation. Two particular examples will
be given for illustrative purposes, one in a general form,
and the other related to the data assimilation problems
arising in oceanography.
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The outline of the paper is as follows. In section 2 we
review basic principles for solving inverse problems via
variational techniques emphasizing their probabilistic
nature, discuss the maximum likelihood solution, and
analyze its uncertainty in the Gaussian approximation.
In section 3 we describe an iterative algorithm suitable
for numerical implementation. For convenience of ref-
erence we give a short summary in the appendix. In
section 4 numerical examples are presented. Finally,
general conclusions will be given in section 5.

2 Variational formulation

We consider regularized inverse problems of the fol-
lowing form: given a D-dimensional space X of possible
solutions x, Riemannian metric (dx|g|dx) [we use stan-
dard angle-bracket notation (Dirac 1981; Landau and
Lifshitz 1958a) to denote coupling between vectors and
covectors] on it, which measures the quality of recon-
struction (say, geodetic distance between the true solu-
tion and the reconstructed one or the amplitude of
random noise contaminating the reconstructed solu-
tion), and the probability distribution

gP(x) =Z"'e Y gu(x), / gPx) =1, (1)

xeX

where # is a scalar function, Yu denotes the measure
associated with metric g, and Z is a normalization con-
stant, find the most probable solution x, such that

H(x,) = min H(x) . (2)
In terms of statistical physics, X has the meaning of the
phase space, Yu of canonical distribution, while prob-
ability 2P is written in Gibbs’ form (Landau and
Lifshitz 1958b). On the other hand, when formulated in
the language of the optimal control theory, x is normally
referred to as a control variable, and /# as a cost or
likelihood function (e.g., Luong et al. 1998; Thacker
1989).

When # has well-determined minima, one can expect
that the saddle-point approximation to Eq. (1) works
well. In statistical physics it is known as the mean-field
theory, in statistics as the maximum likelihood estimat-
ing (e.g., Nagelkerke 1992), and within its framework we
can consider X in the vicinity of the optimum point to be
an affine space and g a constant matrix. Expanding »#
into a Taylor series,

Ho=H(x)+ 5 —xfhlx—x)+- (3)

with 4 standing for a symmetric matrix of second de-
rivatives of 2 with respect to control variables at sta-
tionary point x,, and substituting Eq. (3) into Eq. (1),
we find that the deviation x — x, of the control variable
from the optimal one appears to be a Gaussian sto-
chellstic vector with zero mean and covariance matrix
h,

x)®x—x) =h",

(4)

where mean,(...) denotes mean value with respect to
distribution (1).

Let ®,, «=1,2... be observables, i.e., some scalar

functions of control variable x. Expanding ®, in powers
of deviation x — x,,

(Dot :q)a(x*)—F <¢a|x_x*>+"'7 ¢a :dq)(‘x*) )

we see that @, are also Gaussian stochastic variables
with the expected value equal to ®,(x,) and covariances

mean,(x —x,) =0, mean,[(x —

Cop & mean, { (@, — @, (x.)] [@5 — Dp(x.)]}
= (¢, | " |¢g) - (5)

Therefore, to leading order of the saddle-point approx-
imation, correlation functions of observables can be
expressed as multilinear combinations of matrix ele-
ments of the form Eq. (5). In particular, the mean
squared deviation 6% of the true solution x from the
maximum likelihood estimate x, is given by

5 &t mean, { (x — x,|g]x —x,)} = Tr{h_lg} :

(6)
The value of ¢ also characterizes stability of the solution:
if instead of a deep well centered at x, the “landscape” of
A looks like a valley, the position of the deepest point
becomes unstable and may be shifted by this distance
along the bottom of the valley. At this point some
clarification should be undertaken. In our approxima-
tion, the cost function is assumed quadratic and positive,
and since all positive quadratic forms are equivalent to
each other (by means of an appropriate linear trans-
formation we can always turn /4 into a unity matrix), all
directions in the phase space also seem equivalent.
However, one should take into account that we have a
metric g for calculating the noise amplitude and, there-
fore, while reshaping the cost function, care should be
taken so that ¢ is preserved.

We introduce the Hessian operator H = g~'h as the
ratio of two quadratic forms and rewrite Egs. (5) and (6)
as

Cop = (bulH g (), &> =Tr{H'} . (7)

Operator H is self-adjoint and positive with respect to
Euclidean structure generated by quadratic form g, and
its spectral decomposition gives a full set of invariants
for the pair g and 4 of quadratic forms. We denote with

€1, .. .,é&p its eigenvalues and corresponding eigenvectors
with Y, ..., ¥p:
Hy, = e, (Wilglw) = 0w, ik=1,....D . (8)

With this notation the covariance matrix of solution
fluctuations takes the form

1
hil:zk:glﬁk(@l//k ) ©)



while Eq. (7) becomes

Cop = S0l — (yl), =S~

% Ek T Gk

(10)

From Eqgs. (9) and (10) we see that along directions
corresponding to small eigenvalues ¢, — 0 the profile of
the cost function # is flat, the position of x, is unstable,
and their contribution to the fluctuations amplitude o is
dominant. Also fluctuations of a particular observable,
®,, depend on whether its gradient is perpendicular to
these eigenvectors or not. Even when the optimum point
is unstable, certain quantities might be well observed if
they are invariant with respect to shifts in unstable
directions.

For a quantitative description we introduce the
Kaillén—Lehmann spectral functions (see, e.g., Itzykson
and Zuber 1990) Fy(¢) and F,(¢) as follows:

dFy(e) €Y 0(e — er)de,  Fy(0) =0, (11)
k
dFy(e) €Y (e — e () de,
k
F(0)=0, a=1,2,... (12)

Both of them are monotonically increasing and exhibit
jumps exactly at points coinciding with eigenvalues of the
Hessian operator. Jumps of the first one at spectral
points are equal to dimensions of corresponding invari-
ant subspaces, jumps of the other are equal to squared
amplitudes of decomposition of ¢, into a superposition
of eigenvectors. Each of these functions accumulates
much more information than the corresponding entry
into Eq. (7):

+00 +00
1 1
cm:/ ~dF,(e), 52:/ ~dFy(e) . (13)
& &
0 0

Also, the convergence rate of many of the iterative
solvers in the vicinity of the optimal point x, may be
expressed through them. Thus, we consider the stability
problem to be completely examined if we find a way for
computing Eq. (7) and Eqgs. (11)~(12).

3 Computation

At present, in the case of a computationally large inverse
problem, a search for the optimum point x, is carried
out with the help of algorithms which perform a descent
from the starting point to the nearest local minimum
computing gradient of the cost function at each step. In
contrast to the differential, which is completely deter-
mined by the cost function itself, the gradient also de-
pends on the metric in the control space (Schwartz
1967): VA# =g~ 'd#. In view of Eq.(3) we have
VA# = H|x — x.), therefore, H|}y) for any vector y is
available. We assume for the following that the product
of the Hessian operator and a vector can always be
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computed. Also, in practice, g is either a diagonal matrix
or differs from such a matrix by an operator of finite
rank, so we also assume that from the computational
point of view g may be treated as if it were diagonal.

The first formula in Eq. (7) suggests a simple way
(Yaremchuk et al. 1998) for evaluation of the covariance
matrix: solve equation Hy; = g‘lqﬁﬁ for ; for all fand
obtain Cyp = (P, |5). The value of 6% may be obtained
in a similar manner if we perform an additional aver-
aging over an ensemble of random observables. Indeed,
if ¢ is a Gaussian random vector with covariance matrix
equal to g, then

8% = Tr{meany[p ® p|H 'g~'}
:meand,[(qﬁ|H_lg_l|¢>] )

where meany|. . .| denotes averaging over ¢. In practice,
we can only use a finite ensemble of independent real-
1izations of a stochastic variable and, therefore, our es-
timate of the average value of the matrix element on the
right-hand side of Eq. (14) will be approximate. The
corresponding error may be expressed in terms of y
distribution. In particular, employing an ensemble of
five realizations, with probability of 90% we estimate the
contribution from any eigenmode with accuracy not
worse than 5 decibel. According to our experience, it is
enough to use three or even two realizations.

For computation of H~'g~!|¢), any suitable iterative
solver can be used. However, when (and in practice this
is always the case) the Hessian operator is poorly con-
ditioned, the result of such a computation does not make
much sense, since it will crucially depend on the routine’s
stopping criterion. It seems more meaningful to obtain
an estimate of the spectral functions (11)—(12), examine
their behavior, and choose the stopping criterion on
these grounds in a favorable case or issue an “undeter-
mined” verdict otherwise. For evaluation of Egs.
(11)—~(12) there are no library routines and we employ
the method proposed by Yaremchuk and Schroter
(1998). Given any function f of a complex variable
regular at all points of the Hessian spectrum, we can
apply it to the Hessian operator itself (e.g., Rudin 1991),
obtaining the following expression:

f(H) = Zf(sk)|¢k><‘//k|g .
k

(14)

(15)

Obviously, this formula works not only in the case of
analytic functions, but for distributions as well. Com-
paring it to Egs. (11)—(12) we see that

dFy(e) = Tr{d(e — H)}de
— mean { ($10(c — H)g™'|¢) }de .
dFy(e) = (§,]0(e — H)g ™[ ,)de . (17)

In practice, in the case of a high-dimensional problem, it
is not possible to evaluate a function of an operator
explicitly, because we do not know eigenvalues and
eigenvectors beforehand. We can only evaluate a

(16)
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polynomial by successively computing H|), H?|y), ...
for any given vector [y). Thus, we may approximate
distributions on the right-hand side of Eqs. (16) and (17)
by polynomials and evaluate them iteratively.

The most straightforward way to obtain a polyno-
mial approximation to the delta distribution (e — &) is
to use the orthogonal polynomial technique. Let
{P.(e)|Jn=0,1,...} be a complete set of polynomials
orthogonal with respect to p(¢)de, with p(e) being a
positive weight function. Then

[o°]

5e— g ) = p() S - Pu(e)P(H)g 1)

(18)

n=0 hn
where &, = f\P,,(s)|2p(s)ds. Here, the main computa-
tional labor is required for evaluation of vectors
P,(H)|g~'¢), while subsequent summation is cheap. It
makes sense to use the sequence P,(H)|g~'¢) also for
evaluation of C,g and 8%, say, by multiplying Eq. (18) by
¢~ 'de(¢| from the left and integrating Eq. (13) over the
spectrum or, equivalently, by expanding #~! in an in-
finite series of polynomials P,(H) and employing Eq. (7).
However, it is more practical to compute H~/?|g~'¢)
and use

Cop = (H "7 §,lglH g7 ¢5)
6% = mean, [<H71/2g71¢|g|H71/2971¢> )

(19)
(20)
since H~'/? is less singular than H~! and can be ap-
proximated more accurately.

In numerical applications, the Hessian operator is
always bounded, and without loss of generality we as-
sume that its spectrum is contained in the subinterval
(0,1) of the real axis. [Estimation of the maximum
eigenvalue is relatively cheap and can be done, say, with
the power method (Mathews 1992)]. In the current in-
vestigation we use shifted Chebyshev polynomials of the
second kind (Bateman 1953), U,(1 — 2¢), which corre-
spond to

p(e) =4/¢(1 —¢),

and result in

hy,=n/2, n=0,1,...

1 16~ n _
H g l\¢>:?ZmUn—1(1—2H)g "¢)
n=1

(21)
Vectors |U,) o U,(1 —2H)|¢) may be computed re-
cursively:
[Uo) =g '|¢p),  [Us) = 2|Up) — 4H|Uy),
[Uui1) =2|U,) —4H|U,) — |U,—1), n=1,2,...

(22)
Spectral functions (11) and (12) may be represented in

the form of a trigonometric series if we lift them to a unit
circle via substitution ¢ = sin*0/2,0 < 0 < 7 :

Fulsin’(0/2)] = -5 meany[(gIT,)] . (23)
n=0

F,[sin*(0/2)] = %isir;n@ (By]T) (24)
n=0

New vectors |T,) are formed from |U,) according to

U, n=0,1,
T, =
IT) {|Un>—|Un_2>,

n=273 ...
and are related to shifted Chebyshev polynomials of the
first kind (Bateman 1953) as follows:

(25)

IT,) = {TO(I - 2H)g_l|¢>a n=0, (26)

2T, (1 —2H)g ! |$), n=1,2,...

Certainly, in the case of spectral functions F,, covectors
¢, should be substituted for ¢ in Egs. (22) and (26).

For numerical evaluation we have to truncate the
infinite series in Egs. (21) and (23)—(24). This procedure
may be interpreted as multiplication of the expansion
coefficients by the factors

(1, 0<n<N-1,
Wn = 0, N<n,

or, more generally, as smoothing functions represented
by the original series:

(27)

Here f(H) stands for §(¢ — H) or H~'/? and the kernel
W(e,¢) is a smoothed delta distribution determined by
coefficients w,. When lifted to the unit circle of Fourier
frequencies 0, smoothing turns into convolution with the
smoothing kernel. In signal processing, smoothing op-
erators are referred to as windows. It is well known that
the Dirichlet window, given by Eq. (27), leads to the
Gibbs effect and it is better to use a different one. For
smoothing spectral functions (11) and (12), one should
use a window that is represented by a strictly positive
kernel W(e, &) and maps monotonic functions into
monotonic. Among such windows are the Cezaro kernel,

W — l-n/N, 0<n<N-1,
70, N<n,

and the Vallée—Poussin kernel (Hardy 1949).

To construct an optimum window for computing
H~'2, let us suppose that Cieft) is an estimate of the
covariance matrix. The relative error of an estimate may

be defined as

(28)

Cx[? - Co(;;so

VCulCpp

def
CIror =

(29)



and our goal is to minimize this error by choosing the
best polynomial approximation P(e) to ¢ /2. An op-
timal approximation to function ¢! is well known
(see, e.g., Axelsson and Barker 1984 for the theory of
the conjugate gradients method) and provides accu-
racy

def 1+ Emin

cosh(6,) T—F .

(30)

1
error < cosh(N6,)’
where Eni, > 0 bounds the spectrum of the Hessian
operator from below. Accuracy in computing ¢~'/2 ap-
pears to be higher and the optimum approximating
polynomial may be constructed as follows.

With the aid of Hélder’s inequality, it is easy to ob-
tain a bound for the relative error in the following form:

error < max ‘1—8P2(8)| . (31)

Enin<e<l
The actual accuracy is normally much better than that
given by Eq. (31), but the right-hand side of Eq. (31)is a
guaranteed one and we shall search for the polynomial
of degree N — 1, which minimizes it.

Suppose that we have succeeded in finding an odd
polynomial F(s) of degree 2N — 1, such that its maxi-
mum deviation A on the interval /Emi, < |s| < 1 from
the function sign(s) is minimal. Then

1 F(\/¢) 5 2A
Ple) = — , max [l —eP(¢g) < .
( ) /1 +A2 \/E Emin<8<l’ ( )| 1—|—A2

Substituting sin(6/2) for s = /¢, we see that function
Z(0) = F[sin(0/2)] may be interpreted as a finite-dura-
tion impulse response equiripple filter approximating
Hilbert’s transformer (e.g., Parks and Burrus 1987;
Oppenheim and Schafer 1989; Fig. 1).

Given an approximate Hilbert transformer % (0) in
the form of a Fourier series,

F(0) = icn sin[(n +1/2)6] ,
n=0

(32)

we can obtain P(g) as

Fig. 1 The optimum approxi-
mation to Hilbert’s transformer
when N =3 [Epin = sin’ Omin /2]
(left) and relative accuracy as a
function of N (right). Accuracy
for the conjugate gradients in-
version is shown by dashed
curves, and for the H~'/? method
by solid curves. The kth curve
corresponds t0 Epin = 107*

1+A -

1-AV )
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P(e) = f:a,,U,,(l —2¢),
n=0

_ Cn+ Cnt1

ay = ———,
V1+ A

If only a finite number of ¢, are nonzero, P(¢) is a
polynomial, and series (21) should be replaced by

(33)
n=0,1,...

N-1
H g ¢) = Y a,|U,). (34)
n=0

In signal processing the problem of digital filter design is
well developed. We used the Parks—McClellan algorithm
(IEEE 1979) for computing the Fourier coefficients c,,.
The accuracy (Eq. 31) of the estimate depends on N and
Ewmin and is better than that predicted by formula (30) for
direct inversion of the Hessian operator via the conju-
gate gradients method (Fig. 1).

However, it is impractical to attempt to estimate the
minimal eigenvalue E,;, beforehand. Instead it is natu-
ral to choose the necessary accuracy and the number of
iterations we are ready to perform. These two numbers
determine an approximation to Hilbert’s transformer in
accordance with Fig. 1. The corresponding coefficients
may be obtained via an iterative algorithm similar to
Parks—McClellan’s.

4 Numerical examples

To see the method in action, we first demonstrate
its performance in the case of a toy model which
can be solved analytically, and then apply it to esti-
mating uncertainty in determining heat and mass
fluxes across a hydrographic section in the North
Atlantic Ocean obtained in the framework of a
nonlinear section inverse model (Nechaev and
Yaremchuk 1995).

Our toy problem is just a linear reconstruction of a
1-D scalar field u(x) on an interval x € (0,1) from direct

Accuracy

Approximation order, N
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observations uga (x). We employ the likelihood function
of the form

1 1
2 2
H :%/(Vu)zdx—{—m?/(u—udala)zdx )
0

0

where x is a regularization constant and m~! is the
amplitude of noise contaminating data. This choice re-
sults in the Hessian operator H = m?> — xk’A with A
standing for Laplacian with Neumann boundary con-
ditions. The quality of reconstruction will be determined
by the L, norm.

For numerical implementation we specify a function
u(x) by its values u; at the nodes x; = (s — 1)Ax,
Ax=1/(D—-1),s=1,...,D, and define the Laplacian
with a finite-difference rule

L
(Ax)®

assuming that uy = up and upy; = up_; (mirror reflec-
tion with respect to the boundaries). Quadratic form g is
defined under the assumption that we interpolate with
constants around each node; this leads to g¢g=
Axdiag(1/2,1,...,1,1/2) because boundary points only
contribute to one half of the grid interval. Eigenvalues
may be represented in the form

(Au)s: (uS+1 _2us+u571)7 s = 1,...,D s

Fig. 2 Uncertainty in reconstruc- 1571+
tion of the observed field (left)
and spectral distributions F; and
F, for the first two observables u;
and u,, respectively (right). De-
viation 0 is shown by dashed line;
parameters of the toy model are
D =32, Epin = 1073

Fluctuations Amgplitude

m2

k—1
& = 2Emin {(l +Emin) - (1 - Emin)coS |:TCD — 1:| }7

k=1,...,D

where ;-1 = 1+ 4x>m~2(Ax)"? is the condition number
of the system. For the following we choose noise am-
plitude to be unity (m = 1) and characterize the system
by two parameters, D and E ;.

In Fig. 2 we show the uncertainty in reconstructing
field u at each grid point and spectral distributions F)
and F, for the first two observables ®[u] =u; and
®;,[u] = u, which fluctuate most strongly. Note that
while plotting spectral functions we made linear inter-
polation in between the spectral points instead of
drawing true jumps — this renders the curves more
readable and is indistinguishable from a step function
when D — oo.

In Fig. 3 we demonstrate the impact of different
windowing functions on convergence rate of series (24)
for the case of the most poorly determined observable
®; and compare it with the convergence of the conjugate
gradients method used for straightforward evaluation
according to Eq. (7).

As a realistic example we present a nonlinear analysis
of hydrographic data. The model inverts temperature
and salinity measurements from surface to bottom along
the cruise track of a research vessel to obtain the flow
field and thereby the mass and heat transport through

Distribution Funcbon

a 02

04 06 0B i 107 w02 1 1

Location EiganValuas (Mormalized)

Fig. 3 Convergence of the H!/2 1.4
method with the Dirichlet (7),
Hanning (2), Cezaro (3), and
optimum (4) windows for the toy
model at D = 100, Epp, = 1073
(left) and convergence of the
H~'/2 (I) and conjugate gradi-
ents (2) methods for the toy
model at D = 100, Epin = 10~*
(right). Error bars for the H='/2
(3) and conjugate gradients (4)
methods are given

Variance Estimate (Mormalized)

Variance Estimate (Mormalized)

lterations Itarations



the vertical plane beneath the surface track. Details of
the model may be found in Nechaev and Yaremchuk
(1995). The dataset was produced artificially by inte-
grating the 1/3° North Atlantic Model of the FLAME
Group (Redler et al. 1998). The number of independent
variables is of the order of 10%, thus making a direct
inversion of the Hessian matrix for calculating the
uncertainties of integrated mass and heat transports
impractical.

The quality of the inverse solution is evaluated by a
Euclidean norm where the fluctuations of each inde-
pendent physical variable are weighted by the inverse of
an estimate of its horizontal variance. Since the control
parameters are the independent physical variables nor-
malized by the square root of their horizontal variance,
the quadratic form g is represented by a unity matrix.

The model is regularized by imposing spatial
smoothness on the modeled fields. In addition, the de-
viation of the independent variables from a prior guess,
the so-called background, can be penalized. From Fig. 4
it becomes obvious that the gradients d®, of integrated
transports are with a good accuracy orthogonal to the
eigenvectors of the Hessian operator that correspond to
small eigenvalues, thus making the estimation of the
transport uncertainties possible. The additional regu-
larization with a background term shifts the “infrared”
part of the Hessian spectrum not seen in the left frame of
Fig. 4 to the resolved part, but leaves the spectral dis-
tribution of the transport observables almost un-
changed. This means that although we cannot
completely reconstruct the model state with the aid of
the specified inverse problem and allowed CPU time,
mass and heat transports seem robust with respect to the
choice of regularization and can be estimated reasonably
well. Employing the H~'/2 method with the cutoff

Fig. 4 Spectral distribution of the Hessian operator (/) and the
observables that map independent variables into the integrated mass
(2) and heat (3) transports when only smoothness as regularization is
employed (left), and the same with an additional background
regularization (right). The dashed line indicates the spectral value
determined by the uncertainty principle (due to truncation of infinite
series representing delta distribution) and shows the resolution in the
spectral range. Note that in both cases distribution of the Hessian
operator eigenvalues is not resolved completely

Distribution Function

Eigenalues (Normalized)
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Emin = 1073, we expect, on the one hand, that more than
99% of elementary modes contributing to their variance
are accurately resolved and, on the other, that we sup-
press numerical noise coming from the remaining part of
the spectrum.

5 Discussion

This paper deals with the problem of assigning confi-
dence intervals to estimates of individual observables,
determining amplitude of possible deviation of the true
solution from the most probable one, and investigating
the solution stability. It should be stressed that we
consider only numerical models of finite dimensions and
do not investigate into their relations to the corre-
sponding continuous prototypes. The outline of the pe-
culiarities and shortcomings is as follows.

First, we confine ourselves to the Gaussian approxi-
mation and perform numerically a complete spectral
analysis of the Hessian operator associated with the
extremal point of the likelihood function. Evaluation of
spectral distributions not only provides us with infor-
mation about the impact of regularization on linear
stability of the problem, but also shows what portion of
the phase space becomes ‘‘visible” to iterative solvers
after they perform a prescribed number of iterations. In
the case of high-dimensional poorly conditioned prob-
lems, reliability of estimates comes to the fore. From this
point of view, our approach has an advantage over
traditional linear systems solvers which employ stopping
criteria based on checking the magnitude of the current
relative change of the estimate. Theoretically, common
solvers may stop even when a substantial contribution to
the answer is still lacking or, on the contrary, may pass a
solution and proceed further, only amplifying numerical
noise. In contrast, spectral analysis provides a criterion
for the choice of a reasonable number of iterations: we
only have to check that vital eigenvalues are resolved.
However, it should be stressed that even if we are sure
that 99.9% of eigenvalues are already resolved, there is
no guarantee that the remaining 0.1% do not dominate
in the true answer; but if we find that only 70% of the
eigenvalues are resolved, we have a good reason to

Distribution Function

10
EigenWValues (Normalized)
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discard the current estimate and continue the iteration to
improve the resolution.

Our approach is based on expansions of delta func-
tions and inverse square roots in a series of Chebyshev
polynomials. On the one hand, one should expect that
expansions in a series of polynomials generated, say, by
the conjugate gradients method or any other method
based on decomposition into Krylov’s subspaces may
converge faster than Chebyshev’s. On the other hand, all
these polynomials exhibit violent fluctuations in between
the spectral points of the Hessian operator and cannot
be used for evaluation of spectral functions. In contrast,
shifted Chebyshev polynomials of the first kind behave
perfectly well over the whole spectral range and seem to
be suitable for numerical computation. Also it is worth
emphasizing that Chebyshev’s expansions allow us to
employ the entire power of 1-D filter design and, given
the number of iterations (or, equivalently, CPU time), to
estimate the resolution beforehand.
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Appendix

The computational algorithm of our study is aimed at estimating
the spectral distribution of the Hessian operator associated with an
objective function at its minimum and covariances of scalar ob-
servables. The user has to provide a subroutine that multiplies a
vector by the Hessian, the number of calls to this operation that can
be afforded, and the required accuracy.

The method is summarized as follows: spectral functions
(Egs. 11 and 12) store all necessary information about the Hessian
spectrum and covariances of observables. We can compute and
plot them iteratively together with estimates of uncertainty ex-
pressed by integrals (Eq. 13). Formally the technique is based on
Eqgs. (23)—(24) for spectral functions, and on Egs. (19)-(21) for
fluctuation amplitude and covariances. All involved terms may be
computed according to Egs. (22) and (25).

In practical computations, infinite series (Eqgs. 21 and 23-24)
must be truncated. In order to avoid the Gibbs effect, which is
introduced by simple truncation with the Dirichlet or boxcar
window, regularizing filters should be applied. While an approxi-
mation to Egs. (23)-(24) may be obtained with any standard
smoothing window, a filter for truncating Eq. (21) is constructed by
minimizing the expected error in estimating the covariances. The
resulting window is related to Hilbert’s transform through
Eqgs. (32)-(34). However, the standard algorithm for computing

the Hilbert transform coefficients is not the most convenient one
because it requires the user to supply the number of times he is
prepared to multiply a vector by the Hessian and the desired
resolution in the spectral range. Instead of resolution, we propose
to choose the required accuracy of approximation as the second
parameter that defines the smoothing window.

In contrast to standard solvers, our method offers an oppor-
tunity to check a posteriori the spectral functions via visual in-
spection in order to decide whether the choices were sufficient to
resolve the part of the Hessian spectrum that is of interest to a
given application.
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