An Ensemble Approach to Data Assimilation in the Earth Sciences

ITR- 0121182 PI: Dennis McLaughlin Massachusetts Institute of Technology

Focus: Methodological issues that cut across earth science disciplines.
Nonlinearity Dimensionality Uncertainty

Structure: Five research clusters, each deals with a particular issue, brings together researchers from different disciplines, focuses on one or more applications

Faculty & Research Staff
Civil and Environmental Engineering
Dennis McLaughlin Adel Ahanin
Dara Entekhabi Virat Chatdarong
Sai Ravela Gene Ng
Yuhua Zhou

Electrical Engineering and Computer Science
Alan Willsky Walter Sun
Mujdat Cetin

Earth, Atmospheric and Planetary Science
Kerry Emanuel Patrick Heimbach
James Hansen Sai Ravela
Paola Malanotte-Rizzi Sang Jin Lyu
Carl Wunsch Gregory Lawson
Vikram Khade

Representative Articles (2003-2004)

1) Dynamic Image Segmentation
Gulf Stream "field and boundary" estimation from sparse tracer-field measurements Best Student Paper Award AGU 2003

2) Multiscale Data Assimilation
Replicates from unconditional Model
GOES IR

Independent Batch Schur MAR EnMSF

Meas mean

0.05 0.1 0.15 0.2 0.25

Multiscale ensemble filtering, with replicates conditioned on real-time Infrared (GOES) data

3) Advanced Variational Methods
Adjoint methods for global state estimation merge diverse data sources

4) Field Alignment
Variational adjustment of displacements at grid nodes compensates for position errors in hurricane forecasts

5) Assimilation for Chaotic Systems
Ensemble Kalman filtering with realistic ocean models. Topex/Poseidon altimetry reduces errors in sea-surface height anomalies by over 40%