Home Contact Us Site Map  
 
       
    next up previous contents
Next: About this document ... Up: MITGCM USER MANUAL Previous: 10. Previous Applications of   Contents

Bibliography

Adcroft, A., Numerical algorithms for use in a dynamical model of the ocean, Ph.D. thesis, Imperial College, London, 1995.

Adcroft, A., and J.-M. Campin, Comparison of finite volume schemes and direct-space-time methods for ocean circulation models, Ocean Modelling, in preparation, 2002.

Adcroft, A., and J.-M. Campin, Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models, Ocean Modelling, 7, 269-284, 2004.
doi:10.1016/j.ocemod.2003.09.003.

Adcroft, A., and D. Marshall, How slippery are piecewise-constant coastlines in numerical ocean models?, Tellus, 50(1), 95-108, 1998.

Adcroft, A., C. Hill, and J. Marshall, Representation of topography by shaved cells in a height coordinate ocean model, Mon. Wea. Rev., 125, 2293-2315, 1997.
Available from: http://mitgcm.org/pdfs/mwr_1997.pdf, doi:10.1175/1520-0493%281997%29125<2293:ROTBSC>2.0.CO;2.

Adcroft, A., J.-M. Campin, C. Hill, and J. Marshall, Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube, Mon. Wea. Rev., 132, 2845-2863, 2004a.
Available from: http://mitgcm.org/pdfs/mwr_2004.pdf, doi:10.1175/MWR2823.1.

Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, Overview of the formulation and numerics of the MITgcm, in Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling, pp. 139-149. ECMWF, 2004b.
Available from: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf.

Adcroft, A., e. a., Energy conversion in discrete numerical models, Ocean Modelling, in preparation, 2002.

Adcroft, A., H. C., and J. Marshall, A new treatment of the coriolis terms in c-grid models at both high and low resolutions, Mon. Wea. Rev., 127, 1928-1936, 1999.
Available from: http://mitgcm.org/pdfs/mwr_1999.pdf, doi:10.1175/1520-0493%281999%29127<1928:ANTOTC>2.0.CO;2.

Arakawa, A., and V. Lamb, Computational design of the basic dynamical processes of the ucla general circulation model, in Methods in Computational Physics, vol. 17, pp. 174-267. Academic Press, 1977.

Beckmann, A., H. H. Hellmer, and R. Timmermann, A numerical model of the Weddell Sea: Large-scale circulation and water mass distribution, J. Geophys. Res., 104(C10), 23,375-23,392, 1999.

Blackadar, A. K., High resolution models of the planetary boundary layer., in Advances in Environmental Science and Engineering, Vol 1, edited by Pfafflin, and Zeigler. Gordon and Breach, Scientific Publishers, 1977.

Bouillon, S., T. Fichefet, V. Legat, and G. Madec, The elastic-viscous-plastic method revisited, Ocean Modelling, 71(0), 2-12, Arctic Ocean, 2013.
Available from: http://dx.doi.org/10.1016/j.ocemod.2013.05.013, doi:10.1016/j.ocemod.2013.05.013.

Bretherton, C. S., et al., An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models., Q. J. R. Meteorol. Soc., 125, 391-423, 1999.

Bryan, K., Accelerating the convergence to equilibrium of ocean-climate models, J. Phys. Oceanogr., 14(4), 666-673, 1984.

Bryan, K., S. Manabe, and R. C. Pacanowski, A global ocean-atmosphere climate model. Part II. The oceanic circulation, Journal of Physical Oceanography, 5, 30-46, 1975.

Bushell, A. C., and G. Martin, The impact of vertical resolution upon gcm simulations of marine stratocumulus., Climate Dyn., 15, 293-318, 1999.

Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, Conservation of properties in a free-surface model, Ocean Modelling, 6, 221-244, 2004.

Campin, J.-M., J. Marshall, and D. Ferreira, Sea-ice ocean coupling using a rescaled vertical coordinate z$ ^\ast$ , Ocean Modelling, 24(1-2), 1-14, 2008.
doi:10.1016/j.ocemod.2008.05.005.

Castro-Morales, K., F. Kauker, M. Losch, S. Hendricks, K. Riemann-Campe, and R. Gerdes, Sensitivity of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations, J. Geophys. Res., 119(1), 559-571, 2014.
Available from: http://dx.doi.org/10.1002/2013JC009342, doi:10.1002/2013JC009342.

Chou, M.-D., Parameterizations for the absorption of solar radiation by o$ _2$ and co$ _2$ with applications to climate studies., J. Clim., 3, 209-217, 1990.

Chou, M.-D., A solar radiation model for use in climate studies., J. Atmos. Sci., 49, 762-772, 1992.

Chou, M.-D., and M.J.Suarez, An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Technical Memorandum 104606-Vol 3, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, http://www.gmao.nasa.gov/, 1994.

Chris Hill, Alistair Adcroft, D. J., and J. Marshall, A strategy for terascale climate modeling, in In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, pp. 406-425. World Scientific, 1999.

Clarke, R. H., Observational studies in the atmospheric boundary layer., Q. J. R. Meteorol. Soc., 96, 91-114, 1970.

Cox, M. D., An isopycnal diffusion in a z-coordinate ocean model, Ocean modelling, 74, 1-5 (Unpublished manuscript), 1987.

Danabasoglu, G., and J. C. McWilliams, Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports, J. Clim., 8(12), 2967-2987, 1995.

de Szoeke, R. A., and R. M. Samelson, The duality between the Boussinesq and Non-Boussinesq hydrostatic equations of motion, J. Phys. Oceanogr., 32(8), 2194-2203, 2002.

Defries, R. S., and J. R. G. Townshend, Ndvi-derived land cover classification at global scales., Int'l J. Rem. Sens., 15, 3567-3586, 1994.

Dorman, J. L., and P. J. Sellers, A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (sib)., J. Appl. Meteor., 28, 833-855, 1989.

Durran, D. R., The third-order adams-bashforth method: An attractive alternative to leapfrog time differencing, Mon. Wea. Rev., 119, 702-720, 1991.

Dutay, J.-C., et al., Evaluation of ocean model ventilation with cfc-11: comparison of 13 global ocean models, Ocean Modelling, 4, 89-120, 2002.

Dutkiewicz, S., A. Sokolov, J. Scott, and P. Stone, A three-dimensional ocean-seaice-carbon cycle model and its coupling to a two-dimensional atmospheric model: Uses in climate change studies, report 122, Tech. rep., MIT Joint Program of the Science and Policy of Global Change, Cambridge, MA, http://web.mit.edu/globalchange/www/MITJPSPGC_Rpt122.pdf, 2005.

Ferreira, D., J. Marshall, and P. Heimbach, Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint, J. Phys. Oceanogr., 35, 1891-1910, 2005.

Flato, G. M., and W. D. Hibler, III, Modeling pack ice as a cavitating fluid, J. Phys. Oceanogr., 22, 626-651, 1992.

Fofonoff, P., and R. Millard, Jr., Algorithms for computation of fundamental properties of seawater, Unesco Technical Papers in Marine Science 44, Unesco, 1983.

Follows, M., T. Ito, and S. Dutkiewicz, A compact and accurate carbonate chemistry solver for ocean biogeochemistry models, Ocean Modeling, in press.

Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geoscientific Model Development, 8(10), 3071-3104, 2015.
Available from: http://www.geosci-model-dev.net/8/3071/2015/, doi:10.5194/gmd-8-3071-2015.

Fukumori, I., O. Wang, W. Llovel, I. Fenty, and G. Forget, A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the arctic ocean and the nordic seas, Progress in Oceanography, 134(0), 152 - 172, 2015.
Available from: http://www.sciencedirect.com/science/article/pii/S0079661115000245, doi:http://dx.doi.org/10.1016/j.pocean.2015.01.013.

Gaspar, P., Y. Grégoris, and J.-M. Lefevre, A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station papa and long-term upper ocean study site, J. Geophys. Res., 95 (C9), 16,179-16,193, 1990.

Geiger, C. A., W. D. Hibler, III, and S. F. Ackley, Large-scale sea ice drift and deformation: Comparison between models and observations in the western Weddell Sea during 1992, J. Geophys. Res., 103(C10), 21893-21913, 1998.

Gent, P. R., and J. C. McWilliams, Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150-155, 1990.

Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, Parameterizing eddy-induced tracer transports in ocean circulation models, J. Phys. Oceanogr., 25, 463-474, 1995.

Gerdes, R., C. Koberle, and J. Willebrand, The influence of numerical advection schemes on the results of ocean general circulation models, Clim. Dynamics, 5(4), 211-226, 1991.
doi:10.1007/BF00210006.

Giering, R., Tangent linear and adjoint model compiler. users manual 1.4 (tamc version 5.2), Report  , Massachusetts Institute of Technology, MIT/EAPS; 77 Massachusetts Ave.; Cambridge (MA) 02139; USA, http://puddle.mit.edu/$ \sim$ ralf/tamc/tamc.html, 1999.

Giering, R., Tangent linear and adjoint biogeochemical models, in Inverse methods in global biogeochemical cycles, edited by P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R. Prinn, and D. Hartley, vol. 114 of Geophysical Monograph, pp. 33-48. American Geophysical Union, Washington, DC, 2000.

Giering, R., and T. Kaminski, Recipes for adjoint code construction, ACM Transactions on Mathematical Software, 24, 437-474, 1998.

Gilbert, J., and C. Lemaréchal, Some numerical experiments with variable-storage quasi-newton algorithms, Math. Programming, 45, 407-435, 1989.

Gill, A. E., Atmosphere-Ocean Dynamics. Academic Press, New York, 662pp., 1982.

Griewank, A., Achieving logarithmic growth of temporal and spatial complexity in reverse Automatic Differentiation, Optimization Methods and Software, 1, 35-54, 1992.

Griewank, A., Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, vol. 19 of Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

Griffies, S., M., and W. Hallberg, R., Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models, Mon. Wea. Rev., 128(8), 2935-2946, 2000.

Griffies, S. M., The Gent-McWilliams skew flux, J. Phys. Oceanogr., 28, 831-841, 1998.

Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz, and R. D. Smith, Isoneutral diffusion in a z-coordinate ocean model, J. Phys. Oceanogr., 28, 805-830, 1998.

Grosfeld, K., R. Gerdes, and J. Determann, Thermohaline circulation and interaction between ice shelf cavities and the adjacent open water, J. Geophys. Res., 102(C7), 15,595-15,610, 1997.

Haney, R., Surface thermal boundary conditions for ocean circulation models, J. Phys. Oceanogr., 1, 241-248, 1971.

Heimbach, P., C. Wunsch, R. M. Ponte, G. Forget, C. Hill, and J. Utke, Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design, Deep Sea Research Part II: Topical Studies in Oceanography, 58(17), 1858-1879, 2011.

Held, I., and M. Suarez, A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models, Bulletin of the American Meteorological Society, 75(10), 1825-1830, 1994.

Helfand, H. M., and J. C. Labraga, Design of a non-singular level 2.5 second-order closure model for the prediction of atmospheric turbulence., J. Atmos. Sci., 45, 113-132, 1988.

Helfand, H. M., and S. D. Schubert, Climatology of the simulated great plains low-level jet and its contribution to the continental moisture budget of the united states., J. Clim., 8, 784-806, 1995.

Hellmer, H. H., and D. J. Olbers, A two-dimensional model of the thermohaline circulation under an ice shelf, Antarct. Sci., 1, 325-336, 1989.

Hibler, III, W. D., A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815-846, 1979.

Hibler, III, W. D., Modeling a variable thickness sea ice cover, Mon. Wea. Rev., 1, 1943-1973, 1980.

Hibler, III, W. D., The role of sea ice dynamics in modeling co$ _2$ increases, in Climate processes and climate sensitivity, edited by J. E. Hansen, and T. Takahashi, vol. 29 of Geophysical Monograph, pp. 238-253. AGU, Washington, D.C., 1984.

Hibler, III, W. D., and K. Bryan, A diagnostic ice-ocean model, J. Phys. Oceanogr., 17(7), 987-1015, 1987.

Hibler, III, W. D., and C. F. Ip, The effect of sea ice rheology on Arcitc buoy drift, in Ice Mechanics, edited by J. P. Dempsey, and Y. D. S. Rajapakse, vol. 204 of AMD, pp. 255-264. Am. Soc. of Mech. Eng., New York, 1995.

Hibler, III, W. D., and E. M. Schulson, On modeling sea-ice fracture and flow in numerical investigations of climate, Ann.., 25, 26-32, 1997.

Hill, C., and J. Marshall, Application of a parallel navier-stokes model to ocean circulation in parallel computational fluid dynamics, in Implementations and Results Using Parallel Computers, edited by N. S. A. Ecer, J. Periaux, and S. Taylor, pp. 545-552. Elsevier Science B.V.: New York, 1995.

Hill, C., M. Follows, V. Bugnion, and J. Marshall, Spatial and temporal impacts of ocean general circulation on carbon sequestration, Global Biogeochemical Cycles, submitted, 2002.

Hoe, J. C., C. Hill, and A. Adcroft, A personal supercomputer for climate research, in In Proceedings of the ACM/IEEE Super-Computing Confrence, p. 10.1109/SC.1999. IEEE, 1999.

Holland, D. M., and A. Jenkins, Modeling thermodynamic ice-ocean interactions at the base of an ice shelf, J. Phys. Oceanogr., 29(8), 1787-1800, 1999.

Holland, W., and L. B. Lin, On the origin of mesoscale eddies and their contribution to the general circulation of the ocean. i. a preliminary numerical experiment, J. Phys. Oceanogr., 5, 642-657, 1975a.

Holland, W. R., The role of mesoscale eddies in the general circulation of the ocean-numerical experiments using a wind-driven quasi-geostrophic model, Journal of Physical Oceanography, 8, 363-392, 1978.

Hundsdorfer, W., and R. A. Trompert, Method of lines and direct discretization: a comparison for linear advection, Applied Numerical Mathematics, 13(6), 469-490, 1994.
doi:10.1016/0168-9274(94)90009-4.

Hunke, E. C., Viscous-plastic sea ice dynamics with the EVP model: Linearization issues, J. Comput. Phys., 170, 18-38, 2001.
doi:10.1006/jcph.2001.6710.

Hunke, E. C., and J. K. Dukowicz, An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849-1867, 1997.

Hutchings, J. K., H. Jasak, and S. W. Laxon, A strength implicit correction scheme for the viscous-plastic sea ice model, Ocean Modelling, 7(1-2), 111-133, 2004.
doi:10.1016/S1463-5003(03)00040-4.

Inness, P. M., S. Slingo, R. Woolnough, B. Neale, and V. Pope, Organization of tropical convection in a gcm with verying vertical resolution; implications for the simulation of the madden-julian oscillation., Climate Dyn., 17, 777-794, 2001.

Jackett, D. R., and T. J. McDougall, Minimal adjustment of hydrographic profiles to achieve static stability, J. Atmos. Ocean. Technol., 12(4), 381-389, 1995.

Jenkins, A., H. H. Hellmer, and D. M. Holland, The role of meltwater advection in the formulation of conservative boundary conditions at an ice-ocean interface, J. Phys. Oceanogr., 31, 285-296, 2001.

Jiang, S., P. H. Stone, and P. Malanotte-Rizzoli, An assessment of the Geophysical Fluid Dynamics Laboratory ocean model with coarse resolution: Annual-mean climatology, J. Geophys. Res., 104(C11), 25,623-25,645, 1999.

Kalnay, E., et al., The NMC/NCAR 40-year reanalysis project, Bull. Am. Met. Soc., 77, 437-471, 1996.

Kimmritz, M., S. Danilov, and M. Losch, On the convergence of the modified elastic-viscous-plastic method of solving for sea-ice dynamics, J. Comput. Phys., 296, 90-100, 2015.
doi:10.1016/j.jcp.2015.04.051.

Kimmritz, M., S. Danilov, and M. Losch, The adaptive EVP method for solving the sea ice momentum equation, Ocean Modelling, 2016.
Available from: http://mitgcm.org/~mlosch/adaptiveEVP_accepted.pdf.

Klymak, J. M., and S. M. Legg, A simple mixing scheme for models that resolve breaking internal waves, Ocean Modelling, 33, 224-234, 2010.
doi:10.1016/j.ocemod.2010.02.005.

Knoll, D., and D. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397, 2004.
doi:10.1016/j.jcp.2003.08.010.

Kondo, J., Air-sea bulk transfer coefficients in diabatic conditions., Bound. Layer Meteorol., 9, 91-112, 1975.

Koster, R. D., and M. J. Suarez, A simplified treatment of sib's land surface albedo parameterization., NASA Technical Memorandum 104538, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, http://www.gmao.nasa.gov/, 1991.

Koster, R. D., and M. J. Suarez, Modeling the land surface boundary in climate models as a composite of independent vegetation stands., J. Geophys. Res., 97, 2697-2715, 1992.

Lacis, A. A., and J. E. Hansen, A parameterization for the absorption of solar radiation in the earth's atmosphere., J. Atmos. Sci., 31, 118-133, 1974.

Large, W., J. McWilliams, and S. Doney, Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization, Rev. Geophys., 32, 363-403, 1994.

Large, W. G., and S. Pond, Open ocean momentum flux measurements in moderate to strong winds., J. Phys. Oceanogr., 11, 324-336, 1981.

Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology, J. Phys. Oceanogr., 27(11), 2418-2447, 1997.

Leith, C. E., Large eddy simulation of complex engineering and geophysical flows, Physics of Fluids, 10, 1409-1416, 1968.

Leith, C. E., Stochastic models of chaotic systems, Physica D., 98, 481-491, 1996.

Lemieux, J.-F., and B. Tremblay, Numerical convergence of viscous-plastic sea ice models, J. Geophys. Res., 114(C05009), 2009.
doi:10.1029/2008JC005017.

Lemieux, J.-F., B. Tremblay, J. Sedlácek, P. Tupper, S. Thomas, D. Huard, and J.-P. Auclair, Improving the numerical convergence of viscous-plastic sea ice models with the Jacobian-free Newton-Krylov method, J. Comput. Phys., 229, 2840-2852, 2010.
doi:10.1016/j.jcp.2009.12.011c.

Lemieux, J.-F., D. Knoll, B. Tremblay, D. M. Holland, and M. Losch, A comparison of the Jacobian-free Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: a serial algorithm study, J. Comput. Phys., 231(17), 5926-5944, 2012.
doi:10.1016/j.jcp.2012.05.024.

Leppäranta, M., A growth model for black ice, snow ican and snow thickness in subarctic basins, Nordic Hydrology, 14, 59-70, 1983.

Levitus, S., and T.P.Boyer, World Ocean Atlas 1994 Volume 3: Salinity, Tech. rep., NOAA Atlas NESDIS 3, 1994a.

Levitus, S., and T.P.Boyer, World Ocean Atlas 1994 Volume 4: Temperature, Tech. rep., NOAA Atlas NESDIS 4, 1994b.

Losch, M., Modeling ice shelf cavities in a z-coordinate ocean general circulation model, J. Geophys. Res., 113(C08043), 2008.
doi:10.1029/2007JC004368.

Losch, M., D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill, On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations, Ocean Modelling, 33(1-2), 129-144, 2010.
doi:10.1016/j.ocemod.2009.12.008.

Losch, M., A. Fuchs, J.-F. Lemieux, and A. Vanselow, A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice-ocean model, J. Comput. Phys., 257(A), 901-910, 2014.
doi:10.1016/j.jcp.2013.09.026.

Manabe, S., K. Bryan, and M. J. Spelman, A global ocean-atmosphere climate model with seasonal variation for future studies of climate sensitivity, Dyn. Atmos. Oceans, 3(393-426), 1979.

Marotzke, J., R. Giering, K. Zhang, D. Stammer, C. Hill, and T. Lee, Construction of the adjoint mit ocean general circulation model and application to atlantic heat transport variability, J. Geophys. Res., 104, C12, 29,529-29,547, 1999.

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finite-volume, incompressible navier stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102(C3), 5753-5766, 1997a.
Available from: http://mitgcm.org/pdfs/96JC02776.pdf.

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res., 102(C3), 5733-5752, 1997b.
Available from: http://mitgcm.org/pdfs/96JC02775.pdf.

Marshall, J., H. Jones, and C. Hill, Efficient ocean modeling using non-hydrostatic algorithms, J. Mar. Sys., 18, 115-134, 1998.
Available from: http://mitgcm.org/pdfs/journal_of_marine_systems_1998.pdf, doi:10.1016/S0924-7963%2898%2900008-6.

Marshall, J., A. Adcroft, J.-M. Campin, C. Hill, and A. White, Atmosphere-ocean modeling exploiting fluid isomorphisms, Mon. Wea. Rev., 132, 2882-2894, 2004.
Available from: http://mitgcm.org/pdfs/a_o_iso.pdf, doi:10.1175/MWR2835.1.

Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, Estimates and implications of surface eddy diffusivity in the southern ocean derived from tracer transport, J. Phys. Oceanogr., 36, 1806-1821, 2006.

McDougall, T. J., D. R. Jackett, D. G. Wright, and R. Feistel, Accurate and computationally efficient algorithms for potential temperature and density of seawater, J. Atmos. Ocean. Technol., 2003.

McKinley, G., M. J. Follows, and J. C. Marshall, Mechanisms of air-sea co$ _2$ flux variability in the equatorial pacific and the north atlantic, Global Biogeochemical Cycles, 18(doi:10.1029/2003GB002179), 2004.

Mellor, G., and T. Yamada, Development of turbulence closure model for geophysical fluid problems., Rev. Geophys. Space Phys., 20(4), 851-875, 1982.

Menemenlis, D., et al., NASA supercomputer improves prospects for ocean climate research, Eos Trans., 86(9), 89, 95-96, 2005.

Message Passing Interface Forum, MPI: A message-passing interface standard (version 2.0), Tech. rep., mpi-forum.org, 1998.

Molod, A., Running GCM physics and dynamics on different grids: algorithm and tests, Tellus, 61A, 381-393, 2009.

Molteni, F., Atmospheric simulations using a GCM with simplified physical parametrization, I: Model climatology and variability in multidecadal experiments, Clim. Dynamics, 20, 175-191, 2003.

Moorthi, S., and M. J. Suarez, Relaxed arakawa schubert: A parameterization of moist convection for general circulation models., Mon. Wea. Rev., 120, 978-1002, 1992.

Moum, J., Energy-containing scales of turbulence in the ocean thermocline, J. Geophys. Res., 101 (C3), 14095-14109, 1996.

Naumann, U., J. Utke, P. Heimbach, C. Hill, D. Ozyurt, C. Wunsch, M. Fagan, N. Tallent, and M. Strout, Adjoint code by source transformation with openad/f, in European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, edited by P. Wesseling, E. O nate and J. Periaux, p.  . TU Delft, 2006.

Orlanski, I., A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys., 21, 251-269, 1976.

Pacanowski, R., and S. Philander, Parameterization of vertical mixing in numerical models of tropical oceans, J. Phys. Ocean., 11, 1443-1451, 1981.

Paluszkiewicz, T., and R. Romea, A one-dimensional model for the parameterization of deep convection in the ocean, Dyn. Atmos. Oceans, 26, 95-130, 1997.

Panofsky, H. A., Tower micrometeorology., in Workshop on Micrometeorology, edited by D. A. Haugen. American Meteorological Society, 1973.

Parkinson, C. L., and W. M. Washington, A Large-Scale Numerical Model of Sea Ice, J. Geophys. Res., 84(C1), 311-337, 1979.

Redi, M. H., Oceanic isopycnal mixing by coordinate rotation, Journal of Physical Oceanography, 12, 1154-1158, 1982.

Restrepo, J., G. Leaf, and A. Griewank, Circumventing storage limitations in variational data assimilation studies, SIAM J. Sci. Comput., 19, 1586-1605, 1998.

Rew, R. K., G. P. Davis, S. Emmerson, and H. Davies, NetCDF User's Guide for C, FORTRAN 77, and FORTRAN 90, an interface for data access, version 3, Report, Unidata Program Center, Boulder, Colorado, http://www.unidata.ucar.edu/packages/netcdf/, 1997.

Roe, P., Some contributions to the modelling of discontinuous flows, in Large-Scale Computations in Fluid Mechanics, edited by B. Engquist, S. Osher, and R. Somerville, vol. 22 of Lectures in Applied Mathematics, pp. 163-193. American Mathematical Society, Providence, RI, 1985.

Rosenfield, J. E., M. R. Schoeberl, and M. A. Geller, A computation of the stratospheric diabatic circulation using an accurate radiative transfer model, J. Atmos. Sci., 44, 859-876, 1987.

Saad, Y., A flexible inner-outer preconditioned GMRES method, SIAM J. Sci.., 14(2), 461-469, 1993.

Seim, H. E., and M. C. Gregg, Detailed observations of a naturally occurring shear instability, J. Geophys. Res., 99 (C5), 10049-10073, 1994.

Semtner, Jr., A. J., A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379-389, 1976.

Shapiro, R., Smoothing, filtering, and boundary effects, Reviews of Geophysics and Space Physics, 8(2), 359-387, 1970.

Smagorinsky, J., General circulation experiments with the primitive equations I: The basic experiment, Monthly Weather Review, 91(3), 99-164, 1963.

Smagorinsky, J., Large eddy simulation of complex engineering and geophysical flows, in Evolution of Physical Oceanography, edited by B. Galperin, and S. A. Orszag, pp. 3-36. Cambridge University Press, 1993.

Stammer, D., C. Wunsch, R. Giering, Q. Zhang, J. Marotzke, J. Marshall, and C. Hill, The global ocean circulation estimated from topex/poseidon altimetry and a general circulation model, Technical Report 49, Center for Global Change Science, Massachusetts Institute of Technology, Cambridge (MA), USA, 1997.

Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. Hill, and J. Marshall, The global ocean circulation and transports during 1992 - 1997, estimated from ocean observations and a general circulation model., J. Geophys. Res., 107(C9), 3118, 2002a.
doi:10.1029/2001JC000888.

Stevens, D. P., On open boundary conditions for three dimensional primitive equation ocean circulation models, Geophys. Astrophys. Fl. Dyn., 51, 103-133, 1990.

Stommel, H., The western intensification of wind-driven ocean currents, Trans. Am. Geophys. Union, 29, 206, 1948.

Sud, Y. C., and A. Molod, The roles of dry convection, cloud-radiation feedback processes and the influence of recent improvements in the parameterization of convection in the gla gcm., Mon. Wea. Rev., 116, 2366-2387, 1988.

Takacs, L. L., and M. Suarez, Dynamical aspects of climate simulations using the geos general circulation model, NASA Technical Memorandum 104606 Volume 10, National Aeronautics and Space Administration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, http://www.gmao.nasa.gov/, 1996.

Thorpe, S., Turbulence and mixing in a scottish loch, Phil. Trans. R. Soc. Lond., 286, 125-181, 1977.

Trenberth, K., J. Olson, and W. Large, A global wind stress climatology based on ecmwf analyses, Tech. Rep. NCAR/TN-338+STR, NCAR, Boulder, CO, 1989.

Trenberth, K. M., J. Olson, and W. G. Large, The mean annual cycle in Global Ocean wind stress, J. Phys. Oceanogr., 20, 1742-1760, 1990.

Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, D. Ozyurt, and C. Wunsch, Openad/f: A modular open source tool for automatic differentiation of fortran codes, ACM Transactions on Mathematical Software, 34(4), , 2008.

Visbeck, M., J. Marshall, T. Haine, and M. Spall, Specification of eddy transfer coefficients in coarse-resolution ocean circulation models, J. Phys. Oceanogr., 27(3), 381-402, 1997.

Wajsowicz, R., A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation, J. Comput. Phys., 105(2), 333-338, 1993.

Wanninkhof, R., Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373-7382, 1992.

Wesson, J. C., and M. C. Gregg, Mixing at camarinal sill in the strait of gibraltar, J. Geophys. Res., 99 (C5), 9847-9878, 1994.

Williamson, D., and J. Olsen, A comparison of semi-langrangian and eulerian polar climate simulations., Mon. Wea. Rev., 126, 991-1000, 1998.

Winton, M., A reformulated three-layer sea ice model, J. Atmos. Ocean. Technol., 17, 525-531, 2000.

Yaglom, A. M., and B. A. Kader, Heat and mass transfer between a rough wall and turbulent fluid flow at high reynolds and peclet numbers., J. Fluid Mech., 62, 601-623, 1974.

Yamada, T., A numerical experiment on pollutant dispersion in a horizontally-homogenious atmospheric boundary layer., Atmos. Environ., 11, 1015-1024, 1977.

Zhang, J., and W. D. Hibler, III, On an efficient numerical method for modeling sea ice dynamics, J. Geophys. Res., 102(C4), 8691-8702, 1997.

Zhang, J., W. D. Hibler, III, M. Steele, and D. A. Rothrock, Arctic ice-ocean modeling with and without climate restoring, J. Phys. Oceanogr., 28, 191-217, 1998.

Zhou, J., Y. Sud, and K.-M. Lau, Impact of orographically induced gravity wave drag in the gla gcm, Q. J. R. Meteorol. Soc., 122, 903-927, 1995.



mitgcm-support@mitgcm.org
Copyright 2006 Massachusetts Institute of Technology Last update 2018-01-23