Home Contact Us Site Map  
 
       
    next up previous contents
Next: 2.14.1 Advection of momentum Up: 2. Discretization and Algorithm Previous: 2.13 Hydrostatic balance   Contents


2.14 Flux-form momentum equations

The original finite volume model was based on the Eulerian flux form momentum equations. This is the default though the vector invariant form is optionally available (and recommended in some cases).

The ``G's'' (our colloquial name for all terms on rhs!) are broken into the various advective, Coriolis, horizontal dissipation, vertical dissipation and metric forces:

$\displaystyle G_u$ $\displaystyle =$ $\displaystyle G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +
G_u^{metric} + G_u^{nh-metric}$ (2.94)
$\displaystyle G_v$ $\displaystyle =$ $\displaystyle G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +
G_v^{metric} + G_v^{nh-metric}$ (2.95)
$\displaystyle G_w$ $\displaystyle =$ $\displaystyle G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +
G_w^{metric} + G_w^{nh-metric}$ (2.96)

In the hydrostatic limit, $ G_w=0$ and $ \epsilon _{nh}=0$ , reducing the vertical momentum to hydrostatic balance.

These terms are calculated in routines called from subroutine MOM_FLUXFORM a collected into the global arrays Gu, Gv, and Gw.

\fbox{ \begin{minipage}{4.75in}
{\em S/R MOM\_FLUXFORM} ({\em pkg/mom\_fluxform/...
...bf Gv} ({\em DYNVARS.h})
\par
$G_w$: {\bf Gw} ({\em DYNVARS.h})
\end{minipage} }



Subsections

mitgcm-support@mitgcm.org
Copyright 2006 Massachusetts Institute of Technology Last update 2018-01-23