C $Header: /u/gcmpack/MITgcm/model/src/ini_spherical_polar_grid.F,v 1.23 2005/07/13 00:36:01 jmc Exp $ C $Name: $ #include "CPP_OPTIONS.h" #undef USE_BACKWARD_COMPATIBLE_GRID CBOP C !ROUTINE: INI_SPHERICAL_POLAR_GRID C !INTERFACE: SUBROUTINE INI_SPHERICAL_POLAR_GRID( myThid ) C !DESCRIPTION: \bv C /==========================================================\ C | SUBROUTINE INI_SPHERICAL_POLAR_GRID | C | o Initialise model coordinate system arrays | C |==========================================================| C | These arrays are used throughout the code in evaluating | C | gradients, integrals and spatial avarages. This routine | C | is called separately by each thread and initialise only | C | the region of the domain it is "responsible" for. | C | Under the spherical polar grid mode primitive distances | C | in X and Y are in degrees. Distance in Z are in m or Pa | C | depending on the vertical gridding mode. | C \==========================================================/ C \ev C !USES: IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myThid - Number of this instance of INI_CARTESIAN_GRID INTEGER myThid CEndOfInterface C !LOCAL VARIABLES: C == Local variables == C xG, yG - Global coordinate location. C xBase - South-west corner location for process. C yBase C zUpper - Work arrays for upper and lower C zLower cell-face heights. C phi - Temporary scalar C iG, jG - Global coordinate index. Usually used to hold C the south-west global coordinate of a tile. C bi,bj - Loop counters C zUpper - Temporary arrays holding z coordinates of C zLower upper and lower faces. C xBase - Lower coordinate for this threads cells C yBase C lat, latN, - Temporary variables used to hold latitude C latS values. C I,J,K INTEGER iG, jG INTEGER bi, bj INTEGER I, J _RL lat, dlat, dlon, xG0, yG0 C "Long" real for temporary coordinate calculation C NOTICE the extended range of indices!! _RL xGloc(1-Olx:sNx+Olx+1,1-Oly:sNy+Oly+1) _RL yGloc(1-Olx:sNx+Olx+1,1-Oly:sNy+Oly+1) C The functions iGl, jGl return the "global" index with valid values beyond C halo regions C cnh wrote: C > I dont understand why we would ever have to multiply the C > overlap by the total domain size e.g C > OLx*Nx, OLy*Ny. C > Can anybody explain? Lines are in ini_spherical_polar_grid.F. C > Surprised the code works if its wrong, so I am puzzled. C jmc replied: C Yes, I can explain this since I put this modification to work C with small domain (where Oly > Ny, as for instance, zonal-average C case): C This has no effect on the acuracy of the evaluation of iGl(I,bi) C and jGl(J,bj) since we take mod(a+OLx*Nx,Nx) and mod(b+OLy*Ny,Ny). C But in case a or b is negative, then the FORTRAN function "mod" C does not return the matematical value of the "modulus" function, C and this is not good for your purpose. C This is why I add +OLx*Nx and +OLy*Ny to be sure that the 1rst C argument of the mod function is positive. INTEGER iGl,jGl iGl(I,bi) = 1+mod(myXGlobalLo-1+(bi-1)*sNx+I+Olx*Nx-1,Nx) jGl(J,bj) = 1+mod(myYGlobalLo-1+(bj-1)*sNy+J+Oly*Ny-1,Ny) CEOP C For each tile ... DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) C-- "Global" index (place holder) jG = myYGlobalLo + (bj-1)*sNy iG = myXGlobalLo + (bi-1)*sNx C-- First find coordinate of tile corner (meaning outer corner of halo) xG0 = thetaMin C Find the X-coordinate of the outer grid-line of the "real" tile DO i=1, iG-1 xG0 = xG0 + delX(i) ENDDO C Back-step to the outer grid-line of the "halo" region DO i=1, Olx xG0 = xG0 - delX( 1+mod(Olx*Nx-1+iG-i,Nx) ) ENDDO C Find the Y-coordinate of the outer grid-line of the "real" tile yG0 = phiMin DO j=1, jG-1 yG0 = yG0 + delY(j) ENDDO C Back-step to the outer grid-line of the "halo" region DO j=1, Oly yG0 = yG0 - delY( 1+mod(Oly*Ny-1+jG-j,Ny) ) ENDDO C-- Calculate coordinates of cell corners for N+1 grid-lines DO J=1-Oly,sNy+Oly +1 xGloc(1-Olx,J) = xG0 DO I=1-Olx,sNx+Olx c xGloc(I+1,J) = xGloc(I,J) + delX(1+mod(Nx-1+iG-1+i,Nx)) xGloc(I+1,J) = xGloc(I,J) + delX( iGl(I,bi) ) ENDDO ENDDO DO I=1-Olx,sNx+Olx +1 yGloc(I,1-Oly) = yG0 DO J=1-Oly,sNy+Oly c yGloc(I,J+1) = yGloc(I,J) + delY(1+mod(Ny-1+jG-1+j,Ny)) yGloc(I,J+1) = yGloc(I,J) + delY( jGl(J,bj) ) ENDDO ENDDO C-- Make a permanent copy of [xGloc,yGloc] in [xG,yG] DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx xG(I,J,bi,bj) = xGloc(I,J) yG(I,J,bi,bj) = yGloc(I,J) ENDDO ENDDO C-- Calculate [xC,yC], coordinates of cell centers DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx C by averaging xC(I,J,bi,bj) = 0.25*( & xGloc(I,J)+xGloc(I+1,J)+xGloc(I,J+1)+xGloc(I+1,J+1) ) yC(I,J,bi,bj) = 0.25*( & yGloc(I,J)+yGloc(I+1,J)+yGloc(I,J+1)+yGloc(I+1,J+1) ) ENDDO ENDDO C-- Calculate [dxF,dyF], lengths between cell faces (through center) DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx C by averaging c dXF(I,J,bi,bj) = 0.5*(dXG(I,J,bi,bj)+dXG(I,J+1,bi,bj)) c dYF(I,J,bi,bj) = 0.5*(dYG(I,J,bi,bj)+dYG(I+1,J,bi,bj)) C by formula lat = yC(I,J,bi,bj) dlon = delX( iGl(I,bi) ) dlat = delY( jGl(J,bj) ) dXF(I,J,bi,bj) = rSphere*COS(deg2rad*lat)*dlon*deg2rad #ifdef USE_BACKWARD_COMPATIBLE_GRID dXF(I,J,bi,bj) = delX(iGl(I,bi))*deg2rad*rSphere* & COS(yc(I,J,bi,bj)*deg2rad) #endif /* USE_BACKWARD_COMPATIBLE_GRID */ dYF(I,J,bi,bj) = rSphere*dlat*deg2rad ENDDO ENDDO C-- Calculate [dxG,dyG], lengths along cell boundaries DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx C by averaging c dXG(I,J,bi,bj) = 0.5*(dXF(I,J,bi,bj)+dXF(I,J-1,bi,bj)) c dYG(I,J,bi,bj) = 0.5*(dYF(I,J,bi,bj)+dYF(I-1,J,bi,bj)) C by formula lat = 0.5*(yGloc(I,J)+yGloc(I+1,J)) dlon = delX( iGl(I,bi) ) dlat = delY( jGl(J,bj) ) dXG(I,J,bi,bj) = rSphere*COS(deg2rad*lat)*dlon*deg2rad if (dXG(I,J,bi,bj).LT.1.) dXG(I,J,bi,bj)=0. dYG(I,J,bi,bj) = rSphere*dlat*deg2rad ENDDO ENDDO C-- The following arrays are not defined in some parts of the halo C region. We set them to zero here for safety. If they are ever C referred to, especially in the denominator then it is a mistake! DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx dXC(I,J,bi,bj) = 0. dYC(I,J,bi,bj) = 0. dXV(I,J,bi,bj) = 0. dYU(I,J,bi,bj) = 0. rAw(I,J,bi,bj) = 0. rAs(I,J,bi,bj) = 0. ENDDO ENDDO C-- Calculate [dxC], zonal length between cell centers DO J=1-Oly,sNy+Oly DO I=1-Olx+1,sNx+Olx ! NOTE range C by averaging dXC(I,J,bi,bj) = 0.5D0*(dXF(I,J,bi,bj)+dXF(I-1,J,bi,bj)) C by formula c lat = 0.5*(yC(I,J,bi,bj)+yC(I-1,J,bi,bj)) c dlon = 0.5*(delX( iGl(I,bi) ) + delX( iGl(I-1,bi) )) c dXC(I,J,bi,bj) = rSphere*COS(deg2rad*lat)*dlon*deg2rad C by difference c lat = 0.5*(yC(I,J,bi,bj)+yC(I-1,J,bi,bj)) c dlon = (xC(I,J,bi,bj)+xC(I-1,J,bi,bj)) c dXC(I,J,bi,bj) = rSphere*COS(deg2rad*lat)*dlon*deg2rad ENDDO ENDDO C-- Calculate [dyC], meridional length between cell centers DO J=1-Oly+1,sNy+Oly ! NOTE range DO I=1-Olx,sNx+Olx C by averaging dYC(I,J,bi,bj) = 0.5*(dYF(I,J,bi,bj)+dYF(I,J-1,bi,bj)) C by formula c dlat = 0.5*(delY( jGl(J,bj) ) + delY( jGl(J-1,bj) )) c dYC(I,J,bi,bj) = rSphere*dlat*deg2rad C by difference c dlat = (yC(I,J,bi,bj)+yC(I,J-1,bi,bj)) c dYC(I,J,bi,bj) = rSphere*dlat*deg2rad ENDDO ENDDO C-- Calculate [dxV,dyU], length between velocity points (through corners) DO J=1-Oly+1,sNy+Oly ! NOTE range DO I=1-Olx+1,sNx+Olx ! NOTE range C by averaging (method I) dXV(I,J,bi,bj) = 0.5*(dXG(I,J,bi,bj)+dXG(I-1,J,bi,bj)) dYU(I,J,bi,bj) = 0.5*(dYG(I,J,bi,bj)+dYG(I,J-1,bi,bj)) C by averaging (method II) c dXV(I,J,bi,bj) = 0.5*(dXG(I,J,bi,bj)+dXG(I-1,J,bi,bj)) c dYU(I,J,bi,bj) = 0.5*(dYC(I,J,bi,bj)+dYC(I-1,J,bi,bj)) ENDDO ENDDO C-- Calculate vertical face area (tracer cells) DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx lat=0.5*(yGloc(I,J)+yGloc(I+1,J)) dlon=delX( iGl(I,bi) ) dlat=delY( jGl(J,bj) ) rA(I,J,bi,bj) = rSphere*rSphere*dlon*deg2rad & *abs( sin((lat+dlat)*deg2rad)-sin(lat*deg2rad) ) #ifdef USE_BACKWARD_COMPATIBLE_GRID lat=yC(I,J,bi,bj)-delY( jGl(J,bj) )*0.5 _d 0 lon=yC(I,J,bi,bj)+delY( jGl(J,bj) )*0.5 _d 0 rA(I,J,bi,bj) = dyF(I,J,bi,bj) & *rSphere*(SIN(lon*deg2rad)-SIN(lat*deg2rad)) #endif /* USE_BACKWARD_COMPATIBLE_GRID */ ENDDO ENDDO C-- Calculate vertical face area (u cells) DO J=1-Oly,sNy+Oly DO I=1-Olx+1,sNx+Olx ! NOTE range C by averaging rAw(I,J,bi,bj) = 0.5*(rA(I,J,bi,bj)+rA(I-1,J,bi,bj)) C by formula c lat=yGloc(I,J) c dlon=0.5*( delX( iGl(I,bi) ) + delX( iGl(I-1,bi) ) ) c dlat=delY( jGl(J,bj) ) c rAw(I,J,bi,bj) = rSphere*rSphere*dlon*deg2rad c & *abs( sin((lat+dlat)*deg2rad)-sin(lat*deg2rad) ) ENDDO ENDDO C-- Calculate vertical face area (v cells) DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx C by formula lat=yC(I,J,bi,bj) dlon=delX( iGl(I,bi) ) dlat=0.5*( delY( jGl(J,bj) ) + delY( jGl(J-1,bj) ) ) rAs(I,J,bi,bj) = rSphere*rSphere*dlon*deg2rad & *abs( sin(lat*deg2rad)-sin((lat-dlat)*deg2rad) ) #ifdef USE_BACKWARD_COMPATIBLE_GRID lon=yC(I,J,bi,bj)-delY( jGl(J,bj) ) lat=yC(I,J,bi,bj) rAs(I,J,bi,bj) = rSphere*delX(iGl(I,bi))*deg2rad & *rSphere*(SIN(lat*deg2rad)-SIN(lon*deg2rad)) #endif /* USE_BACKWARD_COMPATIBLE_GRID */ IF (abs(lat).GT.90..OR.abs(lat-dlat).GT.90.) rAs(I,J,bi,bj)=0. ENDDO ENDDO C-- Calculate vertical face area (vorticity points) DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx C by formula lat =0.5 _d 0*(yGloc(I,J)+yGloc(I,J+1)) dlon=0.5 _d 0*( delX( iGl(I,bi) ) + delX( iGl(I-1,bi) ) ) dlat=0.5 _d 0*( delY( jGl(J,bj) ) + delY( jGl(J-1,bj) ) ) rAz(I,J,bi,bj) = rSphere*rSphere*dlon*deg2rad & *abs( sin(lat*deg2rad)-sin((lat-dlat)*deg2rad) ) IF (abs(lat).GT.90..OR.abs(lat-dlat).GT.90.) rAz(I,J,bi,bj)=0. ENDDO ENDDO C-- Calculate trigonometric terms & grid orientation: DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx lat=0.5*(yGloc(I,J)+yGloc(I,J+1)) tanPhiAtU(I,J,bi,bj)=tan(lat*deg2rad) lat=0.5*(yGloc(I,J)+yGloc(I+1,J)) tanPhiAtV(I,J,bi,bj)=tan(lat*deg2rad) angleCosC(I,J,bi,bj) = 1. angleSinC(I,J,bi,bj) = 0. ENDDO ENDDO C-- Cosine(lat) scaling DO J=1-OLy,sNy+OLy jG = myYGlobalLo + (bj-1)*sNy + J-1 jG = min(max(1,jG),Ny) IF (cosPower.NE.0.) THEN cosFacU(J,bi,bj)=COS(yC(1,J,bi,bj)*deg2rad) & **cosPower cosFacV(J,bi,bj)=COS((yC(1,J,bi,bj)-0.5*delY(jG))*deg2rad) & **cosPower cosFacU(J,bi,bj)=ABS(cosFacU(J,bi,bj)) cosFacV(J,bi,bj)=ABS(cosFacV(J,bi,bj)) sqcosFacU(J,bi,bj)=sqrt(cosFacU(J,bi,bj)) sqcosFacV(J,bi,bj)=sqrt(cosFacV(J,bi,bj)) ELSE cosFacU(J,bi,bj)=1. cosFacV(J,bi,bj)=1. sqcosFacU(J,bi,bj)=1. sqcosFacV(J,bi,bj)=1. ENDIF ENDDO ENDDO ! bi ENDDO ! bj RETURN END