C $Header: /u/gcmpack/MITgcm/pkg/aim_v23/aim_aim2sioce.F,v 1.2 2004/05/21 17:34:16 jmc Exp $
C $Name: $
#include "AIM_OPTIONS.h"
#ifdef ALLOW_THSICE
#include "THSICE_OPTIONS.h"
#endif
CBOP
C !ROUTINE: AIM_AIM2SIOCE
C !INTERFACE:
SUBROUTINE AIM_AIM2SIOCE(
I land_frc, siceFrac,
O prcAtm, evpAtm, flxSW,
I bi, bj, myTime, myIter, myThid)
C !DESCRIPTION: \bv
C *==========================================================*
C | S/R AIM_AIM2SIOCE
C | o Interface between AIM and thSIce pkg or (coupled) ocean
C *==========================================================*
C | o compute surface fluxes over ocean (ice-free + ice covered)
C | for diagnostics, thsice package and (slab, coupled) ocean
C *==========================================================*
C \ev
C !USES:
IMPLICIT NONE
C == Global variables ===
C-- size for MITgcm & Physics package :
#include "AIM_SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "FFIELDS.h"
C-- Physics package
#include "AIM_PARAMS.h"
#include "com_physcon.h"
#include "com_physvar.h"
#ifdef ALLOW_THSICE
#include "THSICE_SIZE.h"
#include "THSICE_PARAMS.h"
#include "THSICE_VARS.h"
#endif
C !INPUT/OUTPUT PARAMETERS:
C == Routine arguments ==
C land_frc :: land fraction [0-1]
C siceFrac :: sea-ice fraction (relative to full grid-cell) [0-1]
C prcAtm :: total precip from the atmosphere [kg/m2/s]
C evpAtm :: evaporation to the atmosphere [kg/m2/s] (>0 if evaporate)
C flxSW :: net heat flux from the ice to the ocean
C bi,bj :: Tile index
C myTime :: Current time of simulation ( s )
C myIter :: Current iteration number in simulation
C myThid :: Number of this instance of the routine
_RS land_frc(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
_RL siceFrac(sNx,sNy)
_RL prcAtm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL evpAtm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
_RL flxSW (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
INTEGER bi, bj, myIter, myThid
_RL myTime
CEOP
#ifdef ALLOW_AIM
C == Local variables ==
C i,j,I2 :: loop counters
C conv_precip :: conversion factor for precip: from g/m2/s to kg/m2/s
C conv_EmP :: conversion factor for EmP : from g/m2/s to m/s
_RL conv_precip, conv_EmP
_RL icFrac, opFrac
INTEGER i,j,I2
C-- Initialisation :
C-- Atmospheric Physics Fluxes
C from g/m2/s to kg/m2/s :
conv_Precip = 1. _d -3
C from g/m2/s to m/s :
conv_EmP = conv_Precip / rhoConstFresh
#ifdef ALLOW_THSICE
IF (useThSIce) conv_EmP = conv_Precip / rhofw
#endif
DO j=1,sNy
DO i=1,sNx
I2 = i+(j-1)*sNx
C- Total Precip :
prcAtm(i,j) = ( PRECNV(I2,myThid)
& + PRECLS(I2,myThid) )
C- Net surface heat flux over ice-free ocean (+=down)
Qnet(i,j,bi,bj) =
& SSR(I2,2,myThid)
& - SLR(I2,2,myThid)
& - SHF(I2,2,myThid)
& - EVAP(I2,2,myThid)*ALHC
C- E-P over ice-free ocean [m/s]:
EmPmR(i,j,bi,bj) = ( EVAP(I2,2,myThid)
& - prcAtm(i,j) ) * conv_EmP
C- Net short wave (ice-free ocean) into the ocean (+=down)
flxSW(i,j) = Qsw(i,j,bi,bj)
Qsw(i,j,bi,bj) = SSR(I2,2,myThid)
ENDDO
ENDDO
#ifdef ALLOW_THSICE
IF ( useThSIce ) THEN
DO j=1,sNy
DO i=1,sNx
I2 = i+(j-1)*sNx
C- Mixed-Layer Ocean:
IF (land_frc(i,j,bi,bj).EQ.1. _d 0) hOceMxL(i,j,bi,bj) = 0.
C- Evaporation over sea-ice:
evpAtm(i,j) = EVAP(I2,3,myThid)*conv_precip
C- short-wave downward heat flux (open ocean + ice-covered):
icFrac = iceMask(i,j,bi,bj)
opFrac = 1. _d 0 - icFrac
Qsw(i,j,bi,bj) = icFrac*flxSW(i,j) + opFrac*Qsw(i,j,bi,bj)
ENDDO
ENDDO
ENDIF
IF ( useThSIce .AND. aim_energPrecip ) THEN
C-- Add energy flux related to Precip. (snow, T_rain) over sea-ice
DO j=1,sNy
DO i=1,sNx
IF ( iceMask(i,j,bi,bj).GT.0. _d 0 ) THEN
I2 = i+(j-1)*sNx
IF ( EnPrec(I2,myThid).GE.0. _d 0 ) THEN
C- positive => add to surface heating
sHeating(i,j,bi,bj) = sHeating(i,j,bi,bj)
& + EnPrec(I2,myThid)*prcAtm(i,j)
snowPrc(i,j,bi,bj) = 0. _d 0
ELSE
C- negative => make snow
snowPrc(i,j,bi,bj) = prcAtm(i,j)*conv_precip
ENDIF
ELSE
snowPrc(i,j,bi,bj) = 0. _d 0
ENDIF
ENDDO
ENDDO
ELSEIF ( aim_splitSIOsFx ) THEN
#else /* ALLOW_THSICE */
IF ( aim_splitSIOsFx ) THEN
#endif /* ALLOW_THSICE */
DO j=1,sNy
DO i=1,sNx
I2 = i+(j-1)*sNx
IF ( siceFrac(i,j) .GT. 0. ) THEN
icFrac = siceFrac(i,j)/(1. _d 0 - land_frc(i,j,bi,bj))
opFrac = 1. _d 0 - icFrac
C- Net surface heat flux over sea-ice + ice-free ocean (+=down)
Qnet(i,j,bi,bj) = Qnet(i,j,bi,bj)*opFrac
& + ( SSR(I2,3,myThid)
& - SLR(I2,3,myThid)
& - SHF(I2,3,myThid)
& - EVAP(I2,3,myThid)*ALHC
& )*icFrac
C- E-P over sea-ice + ice-free ocean [m/s]:
EmPmR(i,j,bi,bj) = EmPmR(i,j,bi,bj)*opFrac
& + ( EVAP(I2,3,myThid)
& - prcAtm(i,j) ) * conv_EmP * icFrac
C- Net short wave (ice-free ocean) into the ocean (+=down)
Qsw(i,j,bi,bj) = opFrac*Qsw(i,j,bi,bj)
& + icFrac*SSR(I2,3,myThid)
ENDIF
ENDDO
ENDDO
C--
ENDIF
IF ( aim_energPrecip ) THEN
C-- Add energy flux related to Precip. (snow, T_rain) over ice-free ocean
DO j=1,sNy
DO i=1,sNx
I2 = i+(j-1)*sNx
Qnet(i,j,bi,bj) = Qnet(i,j,bi,bj)
& + EnPrec(I2,myThid)*prcAtm(i,j)
ENDDO
ENDDO
ENDIF
DO j=1,sNy
DO i=1,sNx
C- Total Precip : convert units
prcAtm(i,j) = prcAtm(i,j) * conv_precip
C- Oceanic convention: Heat flux are > 0 upward ; reverse sign.
Qsw(i,j,bi,bj) = -Qsw(i,j,bi,bj)
Qnet(i,j,bi,bj)= -Qnet(i,j,bi,bj)
ENDDO
ENDDO
#endif /* ALLOW_AIM */
RETURN
END