Home Contact Us Site Map  
 
       
    next up previous contents
Next: About this document ... Up: manual Previous: 9. Model Uses   Contents

Bibliography

1
A. Adcroft.
Numerical Algorithms for use in a Dynamical Model of the Ocean.
PhD thesis, Imperial College, London, 1995.

2
A. Adcroft and J.-M. Campin.
Comparison of finite volume schemes and direct-space-time methods for ocean circulation models.
Ocean Modelling, 2002.
in preparation.

3
A. Adcroft and D. Marshall.
How slippery are piecewise-constant coastlines in numerical ocean models?
Tellus, 50(1):95-108, 1998.

4
A.J. Adcroft and J.-M. Campin.
Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models.
Ocean Modelling, 2004.
in press.

5
A.J. Adcroft, C.N. Hill, and J. Marshall.
Representation of topography by shaved cells in a height coordinate ocean model.
MWR, 125:2293-2315, 1997.

6
Hill C. Adcroft, A. and J. Marshall.
A new treatment of the coriolis terms in c-grid models at both high and low resolutions.
MWR, 127:1928-1936, 1999.

7
A. Arakawa and V. Lamb.
Computational design of the basic dynamical processes of the ucla general circulation model.
In Methods in Computational Physics, volume 17, pages 174-267. Academic Press, 1977.

8
J.-M. Campin, A. Adcroft, C. Hill, and J. Marshall.
Conservation of properties in a free-surface model.
Ocean Modelling, 6:221-244, 2004.

9
Daniel Jamous Chris Hill, Alistair Adcroft and John Marshall.
A strategy for terascale climate modeling.
In In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, pages 406-425. World Scientific, 1999.

10
A. da Silva, A. C. Young, and S. Levitus.
Atlas of surface marine data 1994, volume 1: Algorithms and procedures.
NOAA Atlas NESDIS, 6, 1994.
http:////ingrid.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.

11
G. Danabasoglu and McWilliams J.C.
Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports.
JC, 8(12):2967-2987, 1995.

12
Roland A. de Szoeke and Roger M. Samelson.
The duality between the Boussinesq and Non-Boussinesq hydrostatic equations of motion.
J. Phys. Oceanogr., 32(8):2194-2203, 2002.

13
Adcroft et al.
Energy conversion in discrete numerical models.
Ocean Modelling, 2002.
in preparation.

14
G. M. Flato and W. D. Hibler, III.
Modeling pack ice as a cavitating fluid.
J. Phys. Oceanogr., 22:626-651, 1992.

15
P. Fofonoff and R.C. Millard, Jr.
Algorithms for computation of fundamental properties of seawater.
Unesco Technical Papers in Marine Science 44, Unesco, 1983.

16
P.R. Gent and J.C. McWilliams.
Isopycnal mixing in ocean circulation models.
J. Phys. Oceanogr., 20:150-155, 1990.

17
P.R. Gent, J. Willebrand, T.J. McDougall, and J.C. McWilliams.
Parameterizing eddy-induced tracer transports in ocean circulation models.
J. Phys. Oceanogr., 25:463-474, 1995.

18
R. Giering.
Tangent linear and adjoint model compiler. users manual 1.4 (tamc version 5.2).
Report  , Massachusetts Institute of Technology, MIT/EAPS; 77 Massachusetts Ave.; Cambridge (MA) 02139; USA, 1999.
http://puddle.mit.edu/$ \sim$ralf/tamc/tamc.html.

19
R. Giering.
Tangent linear and adjoint biogeochemical models.
In P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R.G. Prinn, and D.E. Hartley, editors, Inverse methods in global biogeochemical cycles, volume 114 of Geophysical Monograph, pages 33-48. American Geophysical Union, Washington, DC, 2000.

20
R. Giering and T. Kaminski.
Recipes for adjoint code construction.
ACM Transactions on Mathematical Software, 24:437-474, 1998.

21
J.C. Gilbert and C. Lemaréchal.
Some numerical experiments with variable-storage quasi-newton algorithms.
Math. Programming, 45:407-435, 1989.

22
A. Griewank.
Achieving logarithmic growth of temporal and spatial complexity in reverse Automatic Differentiation.
Optimization Methods and Software, 1:35-54, 1992.

23
A. Griewank.
Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, volume 19 of Frontiers in Applied Mathematics.
SIAM, Philadelphia, 2000.

24
M. Griffies, S. and W. Hallberg, R.
Biharmonic friction with a smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models.
MWR, 128(8):2935-2946, 2000.

25
R.L. Haney.
Surface thermal boundary conditions for ocean circulation models.
J. Phys. Oceanogr., 1:241-248, 1971.

26
I.M. Held and M.J. Suarez.
A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models.
Bulletin of the American Meteorological Society, 75(10):1825-1830, 1994.

27
W. D. Hibler, III.
A dynamic thermodynamic sea ice model.
J. Phys. Oceanogr., 9:815-846, 1979.

28
W. D. Hibler, III.
Modeling a variable thickness sea ice cover.
Mon. Wea. Rev., 1:1943-1973, 1980.

29
C. Hill, M. Follows, V. Bugnion, and J. Marshall.
Spatial and temporal impacts of ocean general circulation on carbon sequestration.
Global Biogeochemical Cycles, 2002.
submitted.

30
C. Hill and J. Marshall.
Application of a parallel navier-stokes model to ocean circulation in parallel computational fluid dynamics.
In N. Satofuka A. Ecer, J. Periaux and S. Taylor, editors, Implementations and Results Using Parallel Computers, pages 545-552. Elsevier Science B.V.: New York, 1995.

31
W.R. Holland and L. B. Lin.
On the origin of mesoscale eddies and their contribution to the general circulation of the ocean. i. a preliminary numerical experiment.
J. Phys. Oceanogr., 5:642-657, 1975a.

32
E. C. Hunke and J. K. Dukowicz.
An elastic-viscous-plastic model for sea ice dynamics.
J. Phys. Oceanogr., 27:1849-1867, 1997.

33
David R. Jackett and Trevor J. McDougall.
Minimal adjustment of hydrographic profiles to achieve static stability.
J. Atmos. Ocean. Technol., 12(4):381-389, 1995.

34
Shi Jiang, Peter H. Stone, and Paola Malanotte-Rizzoli.
An assessment of the Geophysical Fluid Dynamics Laboratory ocean model with coarse resolution: Annual-mean climatology.
J. Geophys. Res., 104(C11):25,623-25,645, 1999.

35
W.G. Large, G. Danabasoglu, S.C. Doney, and J.C. McWilliams.
Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology.
JPO, 27(11):2418-2447, 1997.

36
S. Levitus and T.P.Boyer.
World Ocean Atlas 1994 Volume 4: Temperature.
Technical report, NOAA Atlas NESDIS 4, 1994.

37
J. Marotzke, R. Giering, K.Q. Zhang, D. Stammer, C. Hill, and T. Lee.
Construction of the adjoint mit ocean general circulation model and application to atlantic heat transport variability.
J. Geophys. Res., 104, C12:29,529-29,547, 1999.

38
J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey.
A finite-volume, incompressible navier stokes model for studies of the ocean on parallel computers.
JGR, 102(C3):5753-5766, 1997.

39
J. Marshall, C. Hill, L. Perelman, and A. Adcroft.
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling.
JGR, 102(C3):5733-5752, 1997.

40
J. Marshall, H. Jones, and C. Hill.
Efficient ocean modeling using non-hydrostatic algorithms.
JMR, 18:115-134, 1998.

41
Trevor J. McDougall, David R. Jackett, Daniel G. Wright, and Rainer Feistel.
Accurate and computationally efficient algorithms for potential temperature and density of seawater.
J. Atmos. Ocean. Technol., 2003.

42
Gerdes R., Koberle C., Beckmann A., Herrmann P., and Willebrand J.
Mechanisms for spreading of mediterranean water in coarse-resolution numerical models.
JPO, 29(8):1682-1700, 1999.

43
J.M. Restrepo, G.K. Leaf, and A. Griewank.
Circumventing storage limitations in variational data assimilation studies.
SIAM J. Sci. Comput., 19:1586-1605, 1998.

44
R. K. Rew, G. P. Davis, S. Emmerson, and H. Davies.
NetCDF User's Guide for C, FORTRAN 77, and FORTRAN 90, an interface for data access, version 3.
Report, Unidata Program Center, Boulder, Colorado, 1997.
http://www.unidata.ucar.edu/packages/netcdf/.

45
P.L. Roe.
Some contributions to the modelling of discontinuous flows.
In B.E. Engquist, S. Osher, and R.C.J. Somerville, editors, Large-Scale Computations in Fluid Mechanics, volume 22 of Lectures in Applied Mathematics, pages 163-193. American Mathematical Society, Providence, RI, 1985.

46
Albert J. Semtner, Jr.
A model for the thermodynamic growth of sea ice in numerical investigations of climate.
J. Phys. Oceanogr., 6:379-389, 1976.

47
D. Stammer, C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. Hill, and J. Marshall.
The global ocean circulation during 1992 - 1997, estimated from ocean observations and a general circulation model.
J. Geophys. Res., 2001.
in press.

48
D. Stammer, C. Wunsch, R. Giering, Q. Zhang, J. Marotzke, J. Marshall, and C. Hill.
The global ocean circulation estimated from topex/poseidon altimetry and a general circulation model.
Technical Report 49, Center for Global Change Science, Massachusetts Institute of Technology, Cambridge (MA), USA, 1997.

49
H. Stommel.
The western intensification of wind-driven ocean currents.
Trans. Am. Geophys. Union, 29:206, 1948.

50
K. M. Trenberth, J. Olson, and W. G. Large.
The mean annual cycle in Global Ocean wind stress.
J. Phys. Oceanogr., 20:1742-1760, 1990.

51
K. M. Trenberth, J. Olson, and W. G. Large.
Atmospheric simulations using a gcm with simplified physical parametrization, i model climatology and variability in multidecadal experiments.
Clim. Dynamics, 20:175-191, 2003.

52
R. Wajsowicz.
A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation.
JCP, 105(2):333-338, 1993.

53
M. Winton.
A reformulated three-layer sea ice model.
J. Atmos. Ocean. Technol., 17:525-531, 2000.

54
J. Zhang, W. D. Hibler, III, M. Steele, and D. A. Rothrock.
Arctic ice-ocean modeling with and without climate restoring.
J. Phys. Oceanogr., 28:191-217, 1998.

55
Jinlun Zhang and Drew Rothrock.
Modeling arctic sea ice with an efficient plastic solution.
J. Geophys. Res., 105:3325-3338, 2000.



mitgcm-support@dev.mitgcm.org
Copyright © 2002 Massachusetts Institute of Technology