Home Contact Us Site Map  
 
       
    next up previous contents
Next: 2.10.2 The finite volume Up: 2.10 Spatial discretization of Previous: 2.10 Spatial discretization of   Contents

2.10.1 Notation

The notations we use to describe the discrete formulation of the model are summarized hereafter:
general notation:
$ \Delta x, \Delta y, \Delta r$ grid spacing in X,Y,R directions.
$ A_o$ : Area of the face orthogonal to "o" direction (o=u,v,w ...).
$ {\cal V}_u , {\cal V}_v , {\cal V}_v , {\cal V}_\theta$ : Volume of the grid box surrounding $ u,v,w,\theta$ point;
$ i,j,k$ : current index relative to X,Y,R directions;
basic operator:
$ \delta_i $ : $ \delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2} $
$ \overline{~}i$ : $ \overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2 $
$ \delta_x $ : $ \delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi $

$ \overline{\nabla}$ = gradient operator : $ \overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}$
$ \overline{\nabla} \cdot$ = divergence operator : $ \overline{\nabla}\cdot \vec{\mathrm{f}} =
\frac{1}{\cal A} \{ \delta_i \Delta y \mathrm{f}_x
+ \delta_j \Delta x \mathrm{f}_y \} $
$ \overline{\nabla}^2 $ = Laplacian operator : $ \overline{\nabla}^2 \Phi =
\overline{\nabla}\cdot \overline{\nabla}\Phi $



mitgcm-support@dev.mitgcm.org
Copyright © 2002 Massachusetts Institute of Technology