C $Header: /u/gcmpack/MITgcm/model/src/cg2d_ex0.F,v 1.1 2012/05/14 13:21:59 jmc Exp $ C $Name: $ #include "CPP_OPTIONS.h" #ifdef TARGET_NEC_SX C set a sensible default for the outer loop unrolling parameter that can C be overriden in the Makefile with the DEFINES macro or in CPP_OPTIONS.h #ifndef CG2D_OUTERLOOPITERS # define CG2D_OUTERLOOPITERS 10 #endif #endif /* TARGET_NEC_SX */ CBOP C !ROUTINE: CG2D_EX0 C !INTERFACE: SUBROUTINE CG2D_EX0( U cg2d_b, cg2d_x, O firstResidual, minResidualSq, lastResidual, U numIters, nIterMin, I myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE CG2D_EX0 C | o Two-dimensional grid problem conjugate-gradient C | inverter (with preconditioner). C | This is the disconnected-tile version (each tile treated C | independently as a small domain, with locally periodic C | BC at the edges. C *==========================================================* C | Con. grad is an iterative procedure for solving Ax = b. C | It requires the A be symmetric. C | This implementation assumes A is a five-diagonal matrix C | of the form that arises in the discrete representation of C | the del^2 operator in a two-dimensional space. C *==========================================================* C \ev C !USES: IMPLICIT NONE C === Global data === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "CG2D.h" C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C cg2d_b :: The source term or "right hand side" (output: normalised RHS) C cg2d_x :: The solution (input: first guess) C firstResidual :: the initial residual before any iterations C minResidualSq :: the lowest residual reached (squared) C lastResidual :: the actual residual reached C numIters :: Inp: the maximum number of iterations allowed C Out: the actual number of iterations used C nIterMin :: Inp: decide to store (if >=0) or not (if <0) lowest res. sol. C Out: iteration number corresponding to lowest residual C myThid :: Thread on which I am working. _RL cg2d_b(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL cg2d_x(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL firstResidual _RL minResidualSq _RL lastResidual INTEGER numIters INTEGER nIterMin INTEGER myThid C !LOCAL VARIABLES: C === Local variables ==== C bi, bj :: tile index in X and Y. C i, j, it2d :: Loop counters ( it2d counts CG iterations ) C actualIts :: actual CG iteration number C err_sq :: Measure of the square of the residual of Ax - b. C eta_qrN :: Used in computing search directions; suffix N and NM1 C eta_qrNM1 denote current and previous iterations respectively. C cgBeta :: coeff used to update conjugate direction vector "s". C alpha :: coeff used to update solution & residual C sumRHS :: Sum of right-hand-side. Sometimes this is a useful C debugging/trouble shooting diagnostic. For neumann problems C sumRHS needs to be ~0 or it converge at a non-zero residual. C cg2d_min :: used to store solution corresponding to lowest residual. C msgBuf :: Informational/error message buffer INTEGER bi, bj INTEGER i, j, it2d INTEGER actualIts(nSx,nSy) INTEGER minResIter(nSx,nSy) _RL cg2dTolerance_sq _RL err_sq, errTile(nSx,nSy) _RL eta_qrNtile(nSx,nSy) _RL eta_qrNM1(nSx,nSy) _RL cgBeta _RL alpha, alphaTile(nSx,nSy) _RL sumRHS, sumRHStile(nSx,nSy) _RL rhsMax, rhsMaxLoc _RL rhsNorm(nSx,nSy) _RL minResTile(nSx,nSy) _RL cg2d_min(1:sNx,1:sNy,nSx,nSy) CHARACTER*(MAX_LEN_MBUF) msgBuf LOGICAL printResidual CEOP C-- Initialise auxiliary constant, some output variable cg2dTolerance_sq = cg2dTolerance*cg2dTolerance C-- Initialise inverter and Normalise RHS rhsMax = 0. _d 0 DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) actualIts(bi,bj) = 0 minResIter(bi,bj) = 0 minResTile(bi,bj) = -1. _d 0 eta_qrNM1(bi,bj) = 1. _d 0 rhsMaxLoc = 0. _d 0 DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj)*cg2dNorm rhsMaxLoc = MAX(ABS(cg2d_b(i,j,bi,bj)),rhsMaxLoc) ENDDO ENDDO rhsNorm(bi,bj) = 1. _d 0 IF ( rhsMaxLoc .NE. 0. ) rhsNorm(bi,bj) = 1. _d 0 / rhsMaxLoc IF (cg2dNormaliseRHS) THEN DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj)*rhsNorm(bi,bj) cg2d_x(i,j,bi,bj) = cg2d_x(i,j,bi,bj)*rhsNorm(bi,bj) ENDDO ENDDO ENDIF rhsMax = MAX( rhsMaxLoc, rhsMax ) ENDDO ENDDO _GLOBAL_MAX_RL( rhsMax, myThid ) C-- Update overlaps CALL EXCH_XY_RL( cg2d_x, myThid ) C-- Initial residual calculation err_sq = 0. sumRHS = 0. DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) IF ( nIterMin.GE.0 ) THEN DO j=1,sNy DO i=1,sNx cg2d_min(i,j,bi,bj) = cg2d_x(i,j,bi,bj) ENDDO ENDDO ENDIF DO j=0,sNy+1 DO i=0,sNx+1 cg2d_s(i,j,bi,bj) = 0. ENDDO ENDDO sumRHStile(bi,bj) = 0. _d 0 errTile(bi,bj) = 0. _d 0 #ifdef TARGET_NEC_SX !CDIR OUTERUNROLL=CG2D_OUTERLOOPITERS #endif /* TARGET_NEC_SX */ DO j=1,sNy DO i=1,sNx cg2d_r(i,j,bi,bj) = cg2d_b(i,j,bi,bj) - & (aW2d(i ,j ,bi,bj)*cg2d_x(i-1,j ,bi,bj) & +aW2d(i+1,j ,bi,bj)*cg2d_x(i+1,j ,bi,bj) & +aS2d(i ,j ,bi,bj)*cg2d_x(i ,j-1,bi,bj) & +aS2d(i ,j+1,bi,bj)*cg2d_x(i ,j+1,bi,bj) & +aC2d(i ,j ,bi,bj)*cg2d_x(i ,j ,bi,bj) & ) errTile(bi,bj) = errTile(bi,bj) & + cg2d_r(i,j,bi,bj)*cg2d_r(i,j,bi,bj) sumRHStile(bi,bj) = sumRHStile(bi,bj) + cg2d_b(i,j,bi,bj) ENDDO ENDDO IF ( nIterMin.GE.0 ) THEN minResTile(bi,bj) = errTile(bi,bj) ENDIF err_sq = MAX( errTile(bi,bj), err_sq ) sumRHS = MAX( ABS(sumRHStile(bi,bj)), sumRHS ) ENDDO ENDDO CALL EXCH_S3D_RL( cg2d_r, 1, myThid ) _GLOBAL_MAX_RL( err_sq, myThid ) _GLOBAL_MAX_RL( sumRHS, myThid ) firstResidual = SQRT(err_sq) printResidual = .FALSE. IF ( debugLevel .GE. debLevZero ) THEN _BEGIN_MASTER( myThid ) printResidual = printResidualFreq.GE.1 WRITE(standardmessageunit,'(A,1P2E22.14)') & ' cg2d: Sum(rhs),rhsMax = ', sumRHS,rhsMax _END_MASTER( myThid ) ENDIF c IF ( err_sq .LT. cg2dTolerance_sq ) GOTO 11 C >>>>>>>>>>>>>>> BEGIN SOLVER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< DO it2d=1, numIters IF ( err_sq.GE.cg2dTolerance_sq ) THEN err_sq = 0. _d 0 DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) IF ( errTile(bi,bj).GE.cg2dTolerance_sq ) THEN C-- Solve preconditioning equation and update C-- conjugate direction vector "s". eta_qrNtile(bi,bj) = 0. _d 0 #ifdef TARGET_NEC_SX !CDIR OUTERUNROLL=CG2D_OUTERLOOPITERS #endif /* TARGET_NEC_SX */ DO j=1,sNy DO i=1,sNx cg2d_q(i,j,bi,bj) = & pC(i ,j ,bi,bj)*cg2d_r(i ,j ,bi,bj) & +pW(i ,j ,bi,bj)*cg2d_r(i-1,j ,bi,bj) & +pW(i+1,j ,bi,bj)*cg2d_r(i+1,j ,bi,bj) & +pS(i ,j ,bi,bj)*cg2d_r(i ,j-1,bi,bj) & +pS(i ,j+1,bi,bj)*cg2d_r(i ,j+1,bi,bj) eta_qrNtile(bi,bj) = eta_qrNtile(bi,bj) & +cg2d_q(i,j,bi,bj)*cg2d_r(i,j,bi,bj) ENDDO ENDDO cgBeta = eta_qrNtile(bi,bj)/eta_qrNM1(bi,bj) eta_qrNM1(bi,bj) = eta_qrNtile(bi,bj) DO j=1,sNy DO i=1,sNx cg2d_s(i,j,bi,bj) = cg2d_q(i,j,bi,bj) & + cgBeta*cg2d_s(i,j,bi,bj) ENDDO ENDDO C-- Do exchanges that require messages i.e. between processes. CALL FILL_HALO_LOCAL_RL( U cg2d_s(0,0,bi,bj), I 1, 1, 1, 1, 1, I EXCH_IGNORE_CORNERS, bi, bj, myThid ) C== Evaluate laplace operator on conjugate gradient vector C== q = A.s alphaTile(bi,bj) = 0. _d 0 #ifdef TARGET_NEC_SX !CDIR OUTERUNROLL=CG2D_OUTERLOOPITERS #endif /* TARGET_NEC_SX */ DO j=1,sNy DO i=1,sNx cg2d_q(i,j,bi,bj) = & aW2d(i ,j ,bi,bj)*cg2d_s(i-1,j ,bi,bj) & +aW2d(i+1,j ,bi,bj)*cg2d_s(i+1,j ,bi,bj) & +aS2d(i ,j ,bi,bj)*cg2d_s(i ,j-1,bi,bj) & +aS2d(i ,j+1,bi,bj)*cg2d_s(i ,j+1,bi,bj) & +aC2d(i ,j ,bi,bj)*cg2d_s(i ,j ,bi,bj) alphaTile(bi,bj) = alphaTile(bi,bj) & + cg2d_s(i,j,bi,bj)*cg2d_q(i,j,bi,bj) ENDDO ENDDO alpha = eta_qrNtile(bi,bj)/alphaTile(bi,bj) C== Update simultaneously solution and residual vectors (and Iter number) C Now compute "interior" points. errTile(bi,bj) = 0. _d 0 DO j=1,sNy DO i=1,sNx cg2d_x(i,j,bi,bj)=cg2d_x(i,j,bi,bj)+alpha*cg2d_s(i,j,bi,bj) cg2d_r(i,j,bi,bj)=cg2d_r(i,j,bi,bj)-alpha*cg2d_q(i,j,bi,bj) errTile(bi,bj) = errTile(bi,bj) & + cg2d_r(i,j,bi,bj)*cg2d_r(i,j,bi,bj) ENDDO ENDDO actualIts(bi,bj) = it2d IF ( printResidual ) THEN IF ( MOD( it2d-1, printResidualFreq ).EQ.0 ) THEN WRITE(msgBuf,'(A,2I4,A,I6,A,1PE21.14)') ' cg2d(bi,bj=', bi, & bj, '): iter=', it2d, ' ; resid.= ', SQRT(errTile(bi,bj)) CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) ENDIF ENDIF IF ( errTile(bi,bj) .GE. cg2dTolerance_sq .AND. & errTile(bi,bj) .LT. minResTile(bi,bj) ) THEN C- Store lowest residual solution minResTile(bi,bj) = errTile(bi,bj) minResIter(bi,bj) = it2d DO j=1,sNy DO i=1,sNx cg2d_min(i,j,bi,bj) = cg2d_x(i,j,bi,bj) ENDDO ENDDO ENDIF CALL FILL_HALO_LOCAL_RL( U cg2d_r(0,0,bi,bj), I 1, 1, 1, 1, 1, I EXCH_IGNORE_CORNERS, bi, bj, myThid ) ENDIF err_sq = MAX( errTile(bi,bj), err_sq ) C- end bi,bj loops ENDDO ENDDO C- end cg-2d iteration loop ENDIF ENDDO c 11 CONTINUE IF ( nIterMin.GE.0 ) THEN C- use the lowest residual solution (instead of current one = last residual) DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) c minResidualSq = MAX( minResTile(bi,bj), minResidualSq ) c nIterMin = MAX( minResIter(bi,bj), nIterMin ) IF ( errTile(bi,bj) .GT. minResTile(bi,bj) ) THEN DO j=1,sNy DO i=1,sNx cg2d_x(i,j,bi,bj) = cg2d_min(i,j,bi,bj) ENDDO ENDDO ENDIF ENDDO ENDDO ENDIF IF (cg2dNormaliseRHS) THEN C-- Un-normalise the answer DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1,sNy DO i=1,sNx cg2d_x(i,j,bi,bj) = cg2d_x(i,j,bi,bj)/rhsNorm(bi,bj) ENDDO ENDDO ENDDO ENDDO ENDIF C-- Return parameters to caller C return largest Iter # and Max residual in numIters and lastResidual C return lowest Iter # and Min residual(^2) in nIterMin and minResidualSq _GLOBAL_MAX_RL( err_sq, myThid ) nIterMin = numIters numIters = 0 minResidualSq = err_sq DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) nIterMin = MIN( actualIts(bi,bj), nIterMin ) numIters = MAX( actualIts(bi,bj), numIters ) minResidualSq = MIN( errTile(bi,bj), minResidualSq ) ENDDO ENDDO lastResidual = SQRT(err_sq) alpha = -nIterMin _GLOBAL_MAX_RL( alpha, myThid ) nIterMin = NINT( -alpha ) alpha = numIters _GLOBAL_MAX_RL( alpha, myThid ) numIters = NINT( alpha ) alpha = -minResidualSq _GLOBAL_MAX_RL( alpha, myThid ) minResidualSq = -alpha RETURN END