C $Header: /u/gcmpack/MITgcm/pkg/opps/opps_calc.F,v 1.14 2016/03/10 20:57:11 jmc Exp $
C $Name:  $

#include "OPPS_OPTIONS.h"
#undef OPPS_ORGCODE

C--  File opps_calc.F:
C--   Contents
C--   o OPPS_CALC
C--   o STATE1
C--   o NLOPPS

C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
CBOP
C !ROUTINE: OPPS_CALC

C !INTERFACE: ======================================================
      SUBROUTINE OPPS_CALC(
     U     tracerEnv,
     I     wVel,
     I     kMax, nTracer, nTracerInuse,
     I     I, J, bi, bj, myTime, myIter, myThid )

C !DESCRIPTION: \bv
C     *=====================================================================*
C     | SUBROUTINE OPPS_CALC                                                |
C     | o Compute all OPPS fields defined in OPPS.h                         |
C     *=====================================================================*
C     | This subroutine is based on the routine 3dconvection.F              |
C     | by E. Skyllingstad (?)                                              |
C     | plenty of modifications to make it work:                            |
C     | - removed many unused parameters and variables                      |
C     | - turned everything (back) into 1D code                             |
C     | - pass variables, that are originally in common blocks:             |
C     |   maxDepth                                                          |
C     | - pass vertical velocity, set in OPPS_INTERFACE                     |
C     | - do not use convadj for now (whatever that is)                     |
C     | - changed two .LT. 0 to .LE. 0 statements (because of possible      |
C     |   division)                                                         |
C     | - replaced statement function state1 by call to a real function     |
C     | - removed range check, actually moved it up to OPPS_INTERFACE       |
C     | - avoid division by zero: if (Wd.EQ.0) dt = ...1/Wd                 |
C     | - cleaned-up debugging                                              |
C     | - replaced local dz and GridThickness by global drF                 |
C     | - replaced 1/dz by 1*recip_drF                                      |
C     | - replaced 9.81 with gravity (=9.81)                                |
C     | - added a lot of comments that relate code to equation in paper     |
C     |   (Paluszkiewicz+Romea, 1997, Dynamics of Atmospheres and Oceans,   |
C     |   26, pp. 95-130)                                                   |
C     | - included passive tracer support. This is the main change and may  |
C     |   not improve the readability of the code because of the joint      |
C     |   treatment of active (theta, salt) and passive tracers. The array  |
C     |   tracerEnv(Nr,2+PTRACERS_num) contains                             |
C     |   theta    = tracerEnv(:,1),                                        |
C     |   salt     = tracerEnv(:,2), and                                    |
C     |   ptracers = tracerEnv(:,3:PTRACERS_num+2).                         |
C     |   All related array names have been changed accordingly, so that    |
C     |   instead of Sd(Nr) and Td(Nr) (plume salinity and temperature), we |
C     |   have Pd(Nr,nTracer) (tracer in plume), with Sd(:) = Pd(:,2),      |
C     |   Td(:) = Pd(:,1), etc.                                             |
C     | o TODO:                                                             |
C     |   clean up the logic of the vertical loops and get rid off the      |
C     |   GOTO statements                                                   |
C     *=====================================================================*
C \ev

      IMPLICIT NONE

C !USES: ============================================================
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "OPPS.h"
#include "GRID.h"

C !INPUT PARAMETERS: ===================================================
C Routine arguments
C     bi, bj :: array indices on which to apply calculations
C     myTime :: Current time in simulation

      INTEGER I, J, bi, bj, KMax, nTracer, nTracerInUse
      INTEGER myThid, myIter
      _RL     myTime
      _RL tracerEnv(Nr,nTracer),wVel(Nr)

#ifdef ALLOW_OPPS
C !FUNCTIONS: ==========================================================
c     EXTERNAL DIFFERENT_MULTIPLE
c     LOGICAL  DIFFERENT_MULTIPLE
      _RL STATE1

C !LOCAL VARIABLES: ====================================================
C Local constants
C     msgBuf      :: Informational/error message buffer
      CHARACTER*(MAX_LEN_MBUF) msgBuf
      INTEGER K, K2, K2m1, K2p1, ktr
      INTEGER ntime,nn,kmx,ic
      INTEGER maxDepth

      _RL wsqr,oldflux,newflux,entrainrate
      _RL pmix
      _RL D1, D2
      _RL dz1,dz2
      _RL radius,StartingFlux
      _RL dtts,dt
C     Arrays
      _RL Paa(Nr,nTracer)
      _RL wda(Nr), mda(Nr), pda(Nr,nTracer)
C
C     Pd, Wd           :: tracers, vertical velocity in plume
C     Md               :: plume mass flux (?)
C     Ad               :: fractional area covered by plume
C     Dd               :: density in plume
C     De               :: density of environment
C     PlumeEntrainment ::
      _RL Ad(Nr),Wd(Nr),Dd(Nr),Md(Nr)
      _RL De(Nr)
      _RL PlumeEntrainment(Nr)
      _RL Pd(Nr,nTracer)
CEOP

C--   Check to see if should convect now
C      IF ( DIFFERENT_MULTIPLE(cAdjFreq,myTime,deltaTClock) ) THEN
      IF ( .true. ) THEN
C     local initialization

C     Copy some arrays
      dtts = dTtracerLev(1)

C     start k-loop

      DO k=1,KMax-1

C initialize the plume T,S,density, and w velocity

       DO ktr=1,nTracerInUse
        Pd(k,ktr) = tracerEnv(k,ktr)
       ENDDO
       Dd(k)=STATE1(Pd(k,2),Pd(k,1),i,j,k,bi,bj,myThid)
       De(k)=Dd(k)
CML       print *, 'ml-opps:', i,j,k,tracerEnv(k,2),tracerEnv(k,1),
CML     &      Dd(k),Pd(k,1),Pd(k,2)
CML compute vertical velocity at cell centers from GCM velocity
       Wd(k)= - .5*(wVel(K)+wVel(K+1))
CML(
CML    avoid division by zero
CML       IF (Wd(K) .EQ. 0.D0) Wd(K) = 2.23e-16
CML)

C guess at initial top grid cell vertical velocity

CML          Wd(k) = 0.03

C these estimates of initial plume velocity based on plume size and
C top grid cell water mass

c          Wd(k) = 0.5*drF(k)/(dtts*FRACTIONAL_AREA)
c          Wd(k) = 0.5*drF(k)/dtts

       wsqr=Wd(k)*Wd(k)
       PlumeEntrainment(k) = 0.0

#ifdef ALLOW_OPPS_DEBUG
       IF ( OPPSdebugLevel.GE.debLevB ) THEN
        WRITE(msgBuf,'(A,I3)')
     &       'S/R OPPS_CALC: doing old lowerparcel', k
        CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
     &       SQUEEZE_RIGHT , 1)
       ENDIF
#endif /* ALLOW_OPPS_DEBUG */
       radius=PlumeRadius
       StartingFlux=radius*radius*Wd(k)*Dd(k)
       oldflux=StartingFlux

       dz2=DrF(k)
       DO k2=k,KMax-1
        D1=STATE1( Pd(k2,2), Pd(k2,1),i,j,k2+1,bi,bj,myThid)
        D2=STATE1( tracerEnv(k2+1,2), tracerEnv(k2+1,1),
     &                                i,j,k2+1,bi,bj,myThid)
        De(k2+1)=D2

C To start downward, parcel has to initially be heavier than environment
C but after it has started moving, we continue plume until plume tke or
C flux goes negative

CML     &       _hFacC(i,j,k-1,bi,bj)
CML     &       *_hFacC(i,j,k,bi,bj) .GT. 0.
CML     &  .AND.
        IF (D2-D1 .LT. STABILITY_THRESHOLD.or.k2.ne.k) THEN
         dz1=dz2
         dz2=DrF(k2+1)

C     find mass flux according to eq.(3) from paper by vertical integration

         newflux=oldflux+e2*radius*Wd(k2)*Dd(k2)*
     &        .5*(dz1+dz2)
CML         print *, 'ml-opps:', i,j,k,oldflux,newflux,e2,radius,
CML     &        Wd(k2),Dd(k2),Pd(k2,1),Pd(k2,2),dz1,dz2

         PlumeEntrainment(k2+1) = newflux/StartingFlux

         IF(newflux.LE.0.0) then
#ifdef ALLOW_OPPS_DEBUG
          IF ( OPPSdebugLevel.GE.debLevA ) THEN
           WRITE(msgBuf,'(A,I3)')
     &          'S/R OPPS_CALC: Plume entrained to zero at level ', k2
           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
     &          SQUEEZE_RIGHT , 1)
          ENDIF
#endif /* ALLOW_OPPS_DEBUG */
          maxdepth = k2
          if(maxdepth.eq.k) goto 1000
          goto 1
         endif

C entrainment rate is basically a scaled mass flux dM/M

         entrainrate = (newflux - oldflux)/newflux
         oldflux = newflux

C mix var(s) are the average environmental values over the two grid levels

         DO ktr=1,nTracerInUse
          pmix=(dz1*tracerEnv(k2,ktr)+dz2*tracerEnv(k2+1,ktr))
     &         /(dz1+dz2)
          Pd(k2+1,ktr)=Pd(k2,ktr)
     &         - entrainrate*(pmix - Pd(k2,ktr))
         ENDDO

C compute the density at this level for the buoyancy term in the
C vertical k.e. equation

         Dd(k2+1)=STATE1(Pd(k2+1,2),Pd(k2+1,1),i,j,k2+1,bi,bj,myThid)

C next, solve for the vertical velocity k.e. using combined eq. (4)
C and eq (5) from the paper

#ifdef ALLOW_OPPS_DEBUG
         IF ( OPPSdebugLevel.GE.debLevA ) THEN
          WRITE(msgBuf,'(A,3E12.4,I3)')
     &    'S/R OPPS_CALC: Dd,De,entr,k ',Dd(k2),De(k2),entrainrate,k2
          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
     &         SQUEEZE_RIGHT , 1)
         ENDIF
#endif /* ALLOW_OPPS_DEBUG */
CML   insert Eq. (4) into Eq. (5) to get something like this for wp^2
         wsqr = wsqr - wsqr*abs(entrainrate)+ gravity*
     &        (dz1*(Dd(k2)-De(k2))/De(k2)
     &        +dz2*(Dd(k2+1)-De(k2+1))/De(k2+1))

C if negative k.e. then plume has reached max depth, get out of loop

         IF(wsqr.LE.0.0)then
          maxdepth = k2
#ifdef ALLOW_OPPS_DEBUG
          IF ( OPPSdebugLevel.GE.debLevA ) THEN
           WRITE(msgBuf,'(A,I3)')
     &     'S/R OPPS_CALC: Plume velocity went to zero at level ', k2
           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
     &          SQUEEZE_RIGHT , 1)
           WRITE(msgBuf,'(A,4A14)')
     &          'S/R OPPS_CALC: ', 'wsqr', 'entrainrate',
     &          '(Dd-De)/De up', '(Dd-De)/De do'
           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
     &          SQUEEZE_RIGHT , 1)
           WRITE(msgBuf,'(A,4E14.6)')
     &          'S/R OPPS_CALC: ', wsqr, entrainrate,
     &          (Dd(k2)-De(k2))/De(k2), (Dd(k2+1)-De(k2+1))/De(k2+1)
           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
     &          SQUEEZE_RIGHT , 1)
          ENDIF
#endif /* ALLOW_OPPS_DEBUG */
          if(maxdepth.eq.k) goto 1000
          goto 1
         endif
         Wd(k2+1)=sqrt(wsqr)

C     compute a new radius based on the new mass flux at this grid level
C     from Eq. (4)

         radius=sqrt(newflux/(Wd(k2)*Dd(k2)))
        ELSE
         maxdepth=k2
         if(maxdepth.eq.k) goto 1000
         GOTO 1
        ENDIF
       ENDDO

C plume has reached the bottom

       MaxDepth=kMax

 1     CONTINUE

       Ad(k)=FRACTIONAL_AREA
       IC=0

C start iteration on fractional area, not used in OGCM implementation

       DO IC=1,Max_ABE_Iterations

C next compute the mass flux beteen each grid box using the entrainment

        Md(k)=Wd(k)*Ad(k)

        DO k2=k+1,maxDepth
         Md(k2)=Md(k)*PlumeEntrainment(k2)
#ifdef ALLOW_OPPS_DEBUG
         IF ( OPPSdebugLevel.GE.debLevA ) THEN
          WRITE(msgBuf,'(A,2E12.4,I3)')
     &         'S/R OPPS_CALC: Md, Wd, and  k are ',Md(k2),Wd(k2),k2
          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
     &         SQUEEZE_RIGHT , 1)
         ENDIF
#endif /* ALLOW_OPPS_DEBUG */
        ENDDO

C Now move on to calculate new temperature using flux from
C Td, Sd, Wd, ta, sa, and we. Values for these variables are at
C center of grid cell, use weighted average to get boundary values

C use a timestep limited by the GCM model timestep and the maximum plume
C velocity (CFL criteria)

C calculate the weighted wd, td, and sd
        dt = dtts
        do k2=k,maxDepth-1
         IF ( Wd(K2) .NE. 0. _d 0 ) dt = min(dt,drF(k2)/Wd(k2))

C time integration will be integer number of steps to get one
C gcm time step

         ntime = nint(0.5*int(dtts/dt))
         if(ntime.eq.0) then
          ntime = 1
         endif

C make sure area weighted vertical velocities match; in other words
C make sure mass in equals mass out at the intersection of each grid
C cell. Eq. (20)

         mda(k2) = (md(k2)*drF(k2)+md(k2+1)*drF(k2+1))/
     *        (drF(k2)+drF(k2+1))

         wda(k2) = (wd(k2)*drF(k2)+wd(k2+1)*drF(k2+1))/
     *        (drF(k2)+drF(k2+1))

         DO ktr = 1, nTracerInUse
          Pda(k2,ktr) = Pd(k2,ktr)
          Paa(k2,ktr) = tracerEnv(k2+1,ktr)
         ENDDO

        enddo
        dt = min(dt,dtts)
#ifdef ALLOW_OPPS_DEBUG
        IF ( OPPSdebugLevel.GE.debLevA ) THEN
         WRITE(msgBuf,'(A,F14.4)')
     &        'S/R OPPS_CALC: time step = ', dt
         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
     &        SQUEEZE_RIGHT , 1)
        ENDIF
#endif /* ALLOW_OPPS_DEBUG */
        DO ktr=1,nTracerInUse
         Pda(maxdepth,ktr) = Pd(maxdepth,ktr)
        ENDDO

        kmx = maxdepth-1
        do nn=1,ntime

C     top point

         DO ktr = 1,nTracerInUse
          tracerEnv(k,ktr) =  tracerEnv(k,ktr)-
     &        (mda(k)*(Pda(k,ktr)-Paa(k,ktr)))*dt*recip_drF(k)
         ENDDO

C now do inner points if there are any

CML         if(Maxdepth-k.gt.1) then
CML    This if statement is superfluous
CML         IF ( k .LT. Maxdepth-1 ) THEN
CML         DO k2=k+1,Maxdepth-1
CML         mda(maxDepth) = 0.
         DO k2=k+1,kmx
          k2m1 = max(k,k2-1)
          k2p1 = max(k2+1,maxDepth)

           DO ktr = 1,nTracerInUse
            tracerEnv(k2,ktr) = tracerEnv(k2,ktr) +
     &           (mda(k2m1)*(Pda(k2m1,ktr)-Paa(k2m1,ktr))
     &           -mda(k2)  *(Pda(k2,ktr)  -Paa(k2,ktr))  )
     &           *dt*recip_drF(k2)
           ENDDO
          ENDDO
CML    This if statement is superfluous
CML         ENDIF

C     bottom point

         DO ktr=1,nTracerInUse
          tracerEnv(kmx+1,ktr) =  tracerEnv(kmx+1,ktr)+
     &        mda(kmx)*(Pda(kmx,ktr)-Paa(kmx,ktr))*dt*recip_drF(kmx+1)
         ENDDO

C     set the environmental temp and salinity to equal new fields

         DO ktr=1,nTracerInUse
          DO k2=1,kmx
           paa(k2,ktr) = tracerEnv(k2+1,ktr)
          ENDDO
         ENDDO

C end loop on number of time integration steps

        enddo
       ENDDO

C     count convection event in this grid cell

       OPPSconvectCount(I,J,K,bi,bj) =
     &      OPPSconvectCount(I,J,K,bi,bj) + 1. _d 0

C     jump here if k = maxdepth or if level not unstable, go to next
C     profile point

 1000  continue

C     end  of k-loop

      ENDDO

C--   End IF (DIFFERENT_MULTIPLE)
      ENDIF

      RETURN
      END


C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| _RL FUNCTION STATE1( sLoc, tLoc, i, j, kRef, bi, bj, myThid ) C !DESCRIPTION: \bv C *===============================================================* C | o SUBROUTINE STATE1 C | Calculates rho(S,T,p) C | It is absolutely necessary to compute C | the full rho and not sigma=rho-rhoConst, because C | density is used as a scale factor for fluxes and velocities C *===============================================================* C \ev C !USES: IMPLICIT NONE C == Global variables == #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "DYNVARS.h" #ifdef ALLOW_NONHYDROSTATIC # include "NH_VARS.h" #endif /* ALLOW_NONHYDROSTATIC */ C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == INTEGER i, j, kRef, bi, bj, myThid _RL tLoc, sLoc C !LOCAL VARIABLES: C == Local variables == _RL rhoLoc _RL pLoc CMLC estimate pressure from depth at cell centers CML mtoSI = gravity*rhoConst CML pLoc = ABS(rC(kRef))*mtoSI IF ( usingZCoords ) THEN C in Z coordinates the pressure is rho0 * (hydrostatic) Potential #ifdef ALLOW_NONHYDROSTATIC IF ( selectP_inEOS_Zc.EQ.3 ) THEN pLoc = rhoConst*( totPhiHyd(i,j,kRef,bi,bj) & + phi_nh(i,j,kRef,bi,bj) & + phiRef(2*kRef) & )*maskC(i,j,kRef,bi,bj) ELSEIF ( selectP_inEOS_Zc.EQ.2 ) THEN #else /* ALLOW_NONHYDROSTATIC */ IF ( selectP_inEOS_Zc.EQ.2 ) THEN #endif /* ALLOW_NONHYDROSTATIC */ C---------- C NOTE: For now, totPhiHyd only contains the Potential anomaly C since PhiRef has not (yet) been added in S/R DIAGS_PHI_HYD C---------- pLoc = rhoConst*( totPhiHyd(i,j,kRef,bi,bj) & + phiRef(2*kRef) & )*maskC(i,j,kRef,bi,bj) c ELSEIF ( selectP_inEOS_Zc.EQ.1 ) THEN C note: for the case selectP_inEOS_Zc=0, also use pRef4EOS (set to C rhoConst*phiRef(2*k) ) to reproduce same previous machine truncation ELSEIF ( selectP_inEOS_Zc.LE.1 ) THEN pLoc = pRef4EOS(kRef)*maskC(i,j,kRef,bi,bj) ELSE pLoc = rhoConst*phiRef(2*kRef)*maskC(i,j,kRef,bi,bj) ENDIF ELSEIF ( usingPCoords ) THEN C in P coordinates the pressure is just the coordinate of the tracer point pLoc = rC(kRef)* maskC(i,j,kRef,bi,bj) ENDIF CALL FIND_RHO_SCALAR( tLoc, sLoc, pLoc, rhoLoc, myThid ) STATE1 = rhoLoc #endif /* ALLOW_OPPS */ RETURN END


#ifdef OPPS_ORGCODE C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C Listed below is the subroutine for use in parallel 3-d circulation code. C It has been used in the parallel semtner-chervin code and is now being used C In the POP code. The subroutine is called nlopps (long story to explain why). C I've attached the version of lopps that we've been using in the simulations. C There is one common block that is different from the standard model commons C (countc) and it is not needed if the array convadj is not used. The routine C does need "kmp" which is why the boundc common is included. For massively C parallel codes (like POP) we think this will work well when converted from a C "slab" (i=is,ie) to a column, which just means removing the "do i=is,ie" loop. C There are differences between this C code and the 1-d code and the earlier scheme implemented in 3-d models. These C differences are described below. subroutine NLOPPS(j,is,ie,ta,sa,gcmdz) parameter (imt = 361 , jmt = 301 , km = 30 ) C Nlopps: E. Skyllingstad and T. Paluszkiewicz C Version: December 11, 1996 C Nlopps: This version of lopps is significantly different from C the original code developed by R. Romea and T. Paluskiewicz. The C code uses a flux constraint to control the change in T and S at C each grid level. First, a plume profile of T,S, and W are C determined using the standard plume model, but with a detraining C mass instead of entraining. Thus, the T and S plume C characteristics still change, but the plume contracts in size C rather than expanding ala classical entraining plumes. This C is heuristically more in line with large eddy simulation results. C At each grid level, the convergence of plume velocity determines C the flux of T and S, which is conserved by using an upstream C advection. The vertical velocity is balanced so that the area C weighted upward velocity equals the area weighted downdraft C velocity, ensuring mass conservation. The present implementation C adjusts the plume for a time period equal to the time for 1/2 of C the mass of the fastest moving level to move downward. As a C consequence, the model does not completely adjust the profile at C each model time step, but provides a smooth adjustment over time. c include "params.h" c include "plume_fast_inc.h" c include "plume_fast.h" c #include "loppsd.h" real ta(imt,km),sa(imt,km),gcmdz(km),dz(km) real pdensity,wsqr,oldflux,newflux,entrainrate,adtemp REAL Del,D,dza1,dza2,kd,kd1,Smix,Thmix,PlumeS,PlumeT,PlumeD INTEGER i,j,k Clfh integer is,ie,k2 Clfh REAL D1,D2,state1,Density REAL dz1,dz2 REAL radius,StartingFlux real ttemp(km),stemp(km),taa(km),saa(km) real wda(km),tda(km),sda(km),mda(km) real dtts,dt,sumo,sumn integer ntime,nn,kmx,ic LOGICAL debug,done INTEGER MAX_ABE_ITERATIONS PARAMETER(MAX_ABE_ITERATIONS=1) REAL PlumeRadius REAL STABILITY_THRESHOLD REAL FRACTIONAL_AREA REAL MAX_FRACTIONAL_AREA REAL VERTICAL_VELOCITY REAL ENTRAINMENT_RATE REAL e2 PARAMETER ( PlumeRadius = 100.D0 ) PARAMETER ( STABILITY_THRESHOLD = -1.E-4 ) PARAMETER ( FRACTIONAL_AREA = .1E0 ) PARAMETER ( MAX_FRACTIONAL_AREA = .8E0 ) PARAMETER ( VERTICAL_VELOCITY = .02E0 ) PARAMETER ( ENTRAINMENT_RATE = -.05E0 ) PARAMETER ( e2 = 2.E0*ENTRAINMENT_RATE ) ! Arrays. REAL Ad(km),Sd(km),Td(km),Wd(km),Dd(km),Md(km) REAL Se(km),Te(km),We(km),De(km) REAL PlumeEntrainment(km) REAL GridThickness(km) C input kmp through a common block common / boundc / wsx(imt,jmt),wsy(imt,jmt),hfs(imt,jmt), 1 ple(imt,jmt),kmp(imt,jmt),kmq(imt,jmt) cwmseas & ,wsx1(imt,jmt),wsy1(imt,jmt) 1 ,wsx2(imt,jmt),wsy2(imt,jmt) C input the variables through a common logical problem common /countc/ convadj(imt,jmt,km),ics,depth(km),problem C-----may want to setup an option to get this only on first call C otherwise it is repetive C griddz is initialize by call to setupgrid dtts = 2400 do k=1,km dz(k) = 0.01*gcmdz(k) enddo do k=1,km GridThickness(k) = dz(k) enddo C modified to loop over slab DO i=is,ie numgridpoints=kmp(i,j) C go to next column if only 1 grid point or on land if(numgridpoints.le.1) goto 1100 C loop over depth debug = .false. C first save copy of initial profile DO k=1,NumGridPoints stemp(k)=sa(i,k) ttemp(k)=ta(i,k) C do a check of t and s range, if out of bounds set flag if(problem) then write(0,*)"Code in trouble before this nlopps call" return endif if(sa(i,k).gt.40..or.ta(i,k).lt.-4.0) then problem = .true. write(0,*)"t out of range at j ",j debug = .true. return endif ENDDO if(debug) then write(*,*)"T and S Profile at ",i,j write(*,*)(ta(i,k),sa(i,k),k=1,NumGridPoints) endif DO k=1,NumGridPoints-1 C initialize the plume T,S,density, and w velocity Sd(k)=stemp(k) Td(k)=ttemp(k) Dd(k)=state1(stemp(k),ttemp(k),k) De(k)=Dd(k) c Wd(k)=VERTICAL_VELOCITY C guess at initial top grid cell vertical velocity Wd(k) = 0.03 C these estimates of initial plume velocity based on plume size and C top grid cell water mass c Wd(k) = 0.5*dz(k)/(dtts*FRACTIONAL_AREA) c Wd(k) = 0.5*dz(k)/dtts wsqr=Wd(k)*Wd(k) PlumeEntrainment(k) = 0.0 if(debug) write(0,*) 'Doing old lowerparcel' radius=PlumeRadius StartingFlux=radius*radius*Wd(k)*Dd(k) oldflux=StartingFlux dz2=GridThickness(k) DO k2=k,NumGridPoints-1 D1=state1(Sd(k2),Td(k2),k2+1) D2=state1(stemp(k2+1),ttemp(k2+1),k2+1) De(k2+1)=D2 C To start downward, parcel has to initially be heavier than environment C but after it has started moving, we continue plume until plume tke or C flux goes negative IF (D2-D1 .LT. STABILITY_THRESHOLD.or.k2.ne.k) THEN dz1=dz2 dz2=GridThickness(k2+1) C define mass flux according to eq. 4 from paper newflux=oldflux+e2*radius*Wd(k2)*Dd(k2)*0.50* . (dz1+dz2) PlumeEntrainment(k2+1) = newflux/StartingFlux IF(newflux.LT.0.0) then if(debug) then write(0,*)"Plume entrained to zero at ",k2 endif maxdepth = k2 if(maxdepth.eq.k) goto 1000 goto 1 endif C entrainment rate is basically a scaled mass flux dM/M entrainrate = (newflux - oldflux)/newflux oldflux = newflux C mix var(s) are the average environmental values over the two grid levels smix=(dz1*stemp(k2)+dz2*stemp(k2+1))/(dz1+dz2) thmix=(dz1*ttemp(k2)+dz2*ttemp(k2+1))/(dz1+dz2) C first compute the new salinity and temperature for this level C using equations 3.6 and 3.7 from the paper sd(k2+1)=sd(k2) - entrainrate*(smix - sd(k2)) td(k2+1)=td(k2) - entrainrate*(thmix - td(k2)) C compute the density at this level for the buoyancy term in the C vertical k.e. equation Dd(k2+1)=state1(Sd(k2+1),Td(k2+1),k2+1) C next, solve for the vertical velocity k.e. using combined eq. 4 C and eq 5 from the paper if(debug) then write(0,*)"Dd,De,entr,k ",Dd(k2),De(k2),entrainrate,k2 endif wsqr = wsqr - wsqr*abs(entrainrate)+ 9.81* . (dz1*(Dd(k2)-De(k2))/De(k2) . +dz2*(Dd(k2+1)-De(k2+1))/De(k2+1)) C if negative k.e. then plume has reached max depth, get out of loop IF(wsqr.LT.0.0)then maxdepth = k2 if(debug) then write(0,*)"Plume velocity went to zero at ",k2 endif if(maxdepth.eq.k) goto 1000 goto 1 endif Wd(k2+1)=sqrt(wsqr) C compute a new radius based on the new mass flux at this grid level radius=sqrt(newflux/(Wd(k2)*Dd(k2))) ELSE maxdepth=k2 if(maxdepth.eq.k) goto 1000 GOTO 1 ENDIF ENDDO C plume has reached the bottom MaxDepth=NumGridPoints 1 continue Ad(k)=FRACTIONAL_AREA IC=0 C start iteration on fractional area, not used in OGCM implementation DO IC=1,Max_ABE_Iterations C next compute the mass flux beteen each grid box using the entrainment 92 continue Md(k)=Wd(k)*Ad(k) DO k2=k+1,MaxDepth Md(k2)=Md(k)*PlumeEntrainment(k2) if(debug) then write(0,*)"Md, Wd, and k are ",Md(k2),Wd(k2),k2 endif ENDDO C Now move on to calculate new temperature using flux from C Td, Sd, Wd, ta, sa, and we. Values for these variables are at C center of grid cell, use weighted average to get boundary values C use a timestep limited by the GCM model timestep and the maximum plume C velocity (CFL criteria) C calculate the weighted wd, td, and sd dt = dtts do k2=k,maxdepth-1 dt = min(dt,dz(k2)/wd(k2)) C time integration will be integer number of steps to get one C gcm time step ntime = nint(0.5*int(dtts/dt)) if(ntime.eq.0) then ntime = 1 endif C make sure area weighted vertical velocities match; in other words C make sure mass in equals mass out at the intersection of each grid C cell. mda(k2) = (md(k2)*dz(k2)+md(k2+1)*dz(k2+1))/ * (dz(k2)+dz(k2+1)) wda(k2) = (wd(k2)*dz(k2)+wd(k2+1)*dz(k2+1))/ * (dz(k2)+dz(k2+1)) tda(k2) = td(k2) sda(k2) = sd(k2) taa(k2) = ttemp(k2+1) saa(k2) = stemp(k2+1) enddo dt = min(dt,dtts) if(debug) then write(0,*)"Time step is ", dt endif tda(maxdepth) = td(maxdepth) sda(maxdepth) = sd(maxdepth) C do top and bottom points first kmx = maxdepth-1 do nn=1,ntime ttemp(k) = ttemp(k)- * (mda(k)*(tda(k)-taa(k)))*dt*recip_drF(k) stemp(k) = stemp(k)- * (mda(k)*(sda(k)-saa(k)))*dt*recip_drF(k) C now do inner points if there are any if(Maxdepth-k.gt.1) then do k2=k+1,Maxdepth-1 ttemp(k2) = ttemp(k2) + * (mda(k2-1)*(tda(k2-1)-taa(k2-1))- * mda(k2)*(tda(k2)-taa(k2))) * *dt*recip_drF(k2) stemp(k2) = stemp(k2) + * (mda(k2-1)*(sda(k2-1)-saa(k2-1))- * mda(k2)*(sda(k2)-saa(k2))) * *dt*recip_drF(k2) enddo endif ttemp(kmx+1) = ttemp(kmx+1)+ * (mda(kmx)*(tda(kmx)-taa(kmx)))* * dt*recip_drF(kmx+1) stemp(kmx+1) = stemp(kmx+1)+ * (mda(kmx)*(sda(kmx)-saa(kmx)))* * dt*recip_drF(kmx+1) C set the environmental temp and salinity to equal new fields do k2=1,maxdepth-1 taa(k2) = ttemp(k2+1) saa(k2) = stemp(k2+1) enddo C end loop on number of time integration steps enddo ENDDO 999 continue C assume that it converged, so update the ta and sa with new fields c if(i.gt.180.and.j.gt.200.and.i.lt.240) then c write(*,*)"Converged ",i,j,k,maxdepth,ttemp(k+1),ta(i,k+1) c endif do k2=k,maxdepth convadj(i,j,k2) = convadj(i,j,k2) + (ttemp(k2)- * ta(i,k2)) sa(i,k2) = stemp(k2) ta(i,k2) = ttemp(k2) c if(i.gt.180.and.j.gt.200.and.i.lt.240) then c write(*,*)"convadj ",convadj(i,j,k2) c endif C see if nlopps messed up if(sa(i,k).gt.40..or.ta(i,k).lt.-4.0) then problem = .true. write(0,*)"t out of range at j after adjust",j debug = .true. endif enddo C jump here if k = maxdepth or if level not unstable, go to next C profile point 1000 continue C end loop on k, move on to next possible plume ENDDO 1100 continue C i loop ENDDO END


#endif /* OPPS_ORGCODE */